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Preface

Mathematical objects of a certain sophistication are frequently accompanied
by higher homotopical structures: Maps between them might be connected by
homotopies that witness the weak commutativity of diagrams, which might then
be connected by higher homotopies expressing coherence conditions among
these witnesses, which might then be connected by even higher homotopies ad
infinitum. The natural habitat for such mathematical objects is not an ordinary
1-category but instead an co-category or, more precisely, an (oo, 1)-category,
with the index “1” referring to the fact that the morphisms above the lowest
dimension — the homotopies just discussed — are weakly invertible.

Here the homotopies defining the higher morphisms of an co-category are
to be regarded as data rather than as mere witnesses to an equivalence relation
borne by the 1-dimensional morphisms. This shift in perspective is illustrated
by the relationship between two algebraic invariants of a topological space:
the fundamental groupoid, an ordinary 1-category, and the fundamental oco-
groupoid, an oo-category in which all of the morphisms are weakly invertible.
The objects in both cases are the points of the ambient topological space, but in
the former, the 1-morphisms are homotopy classes of paths, while in the latter,
the 1-morphisms are the paths themselves and the 2-morphisms are explicit
endpoint-preserving homotopies. To encompass examples such as these, all of
the categorical structures in an oo-category are weak. Even at the base level of
1-morphisms, composition is not necessarily uniquely defined but is instead
witnessed by a 2-morphism and associative up to a 3-morphism whose boundary
data involves specified 2-morphism witnesses. Thus, diagrams valued in an
oo-category cannot be said to commute on the nose but are instead interpreted
as homotopy coherent, with explicitly specified higher data.

A fundamental challenge in defining co-categories has to do with giving a pre-
cise mathematical meaning of this notion of a weak composition law, not just for
the 1-morphisms but also for the morphisms in higher dimensions. Indeed, there

Xi
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is a sense in which our traditional set-based foundations for mathematics are not
really suitable for reasoning about co-categories: Sets do not feature prominently
in co-categorical data, especially when oo-categories are considered in a morally
correct fashion as objects that are only well-defined up to equivalence. When
considered up to equivalence, co-categories, like ordinary categories, do not
have a well-defined set of objects. In addition, the morphisms between a fixed
pair of objects in an co-category assemble into an co-groupoid, which describes
a well-defined homotopy type, though not a well-defined space.!

Precision is achieved through a variety of models of (o0, 1)-categories, which
are Bourbaki-style mathematical structures that represent infinite-dimensional
categories with a weak composition law in which all morphisms above dimen-
sion 1 are weakly invertible. In order of appearance, these include simplicial
categories, quasi-categories (née weak Kan complexes), relative categories,
Segal categories, complete Segal spaces, and 1-complicial sets (née saturated
1-trivial weak complicial sets), each of which comes with an associated array of
naturally occurring examples. The proliferation of models of (oo, 1)-categories
begs the question of how they might be compared. In the first decades of the
twenty-first century, Julia Bergner, André Joyal and Myles Tierney, Dominic
Verity, Jacob Lurie, and Clark Barwick and Daniel Kan built various bridges that
prove that each of the models listed above “has the same homotopy theory” in
the sense of defining the fibrant objects in Quillen equivalent model categories.?

In parallel with the development of models of (oo, 1)-categories and the
construction of comparisons between them, Joyal pioneered and Lurie and many
others expanded a wildly successful project to extend basic category theory
from ordinary 1-categories to (o0, 1)-categories modeled as quasi-categories
in such a way that the new quasi-categorical notions restrict along the standard
embedding Cat & QCat to the classical 1-categorical concepts. A natural
question is then, does this work extend to other models of (co, 1)-categories? And
to what extent are basic oo-categorical notions invariant under change of model?
For instance, (o0, 1)-categories of manifolds are most naturally constructed as
complete Segal spaces, so Kazhdan—Varshavsky [65], Boavida de Brito [34],
and Rasekh [95, 96, 98] have recently endeavored to redevelop some of the
category theory of quasi-categories using complete Segal spaces instead in
order to have direct access to constructions and definitions that had previously
been introduced only in the quasi-categorical model.

For practical, aesthetic, and moral reasons, the ultimate desire of practitioners

1 Grothendieck’s homotopy hypothesis posits that co-groupoids up to equivalence correspond to
homotopy types.

2 A recent book by Bergner surveys all but the last of these models and their interrelationships
[15]. For a more whirlwind tour, see [3].
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is to work “model independently,” meaning that theorems proven with any of the
models of (oo, 1)-categories would apply to them all, with the technical details
inherent to any particular model never entering the discussion. Since all models
of (o0, 1)-categories “have the same homotopy theory,” the general consensus is
that the choice of model should not matter greatly, but one obstacle to proving
results of this kind is that, to a large extent, precise versions of the categorical
definitions that have been established for quasi-categories had not been given
for the other models. In cases where comparable definitions do exist in different
models, an ad hoc heuristic proof of model invariance of the categorical notion
in question can typically be supplied, with details to be filled in by experts fluent
in the combinatorics of each model, but it would be more reassuring to have a
systematic method of comparing the category theory of (oo, 1)-categories in
different models via arguments that are somewhat closer to the ground.

Aims

In this text we develop the theory of co-categories from first principles in a model
independent fashion using a common axiomatic framework that is satisfied by a
variety of models. In contrast with prior “analytic” treatments of the theory of
oo-categories — in which the central categorical notions are defined in reference
to the coordinates of a particular model — our approach is “synthetic,” proceeding
from definitions that can be interpreted simultaneously in many models to which
our proofs then apply. While synthetic, our work is not schematic or hand-wavy,
with the details of how to make things fully precise left to “the experts” and
turtles all the way down.? Rather, we prove our theorems starting from a short
list of clearly enumerated axioms, and our conclusions are thus valid in any
model of co-categories satisfying these axioms.

The synthetic theory is developed in any co-cosmos, which axiomatizes the
universe in which co-categories live as objects. So that our theorem statements
suggest their natural interpretation, we recast oco-category as a technical term, to
mean an object in some (typically fixed) co-cosmos. Several common models
of (o0, 1)-categories* are co-categories in this sense, but our co-categories also
3 A less rigorous “model independent” presentation of co-category theory might confront a

problem of infinite regress, since infinite-dimensional categories are themselves the objects of

an ambient infinite-dimensional category, and in developing the theory of the former one is
tempted to use the theory of the latter. We avoid this problem by using a very concrete model for
the ambient (o0, 2)-category of co-categories that arises frequently in practice and is designed
to facilitate relatively simple proofs. While the theory of (00, 2)-categories remains in its
infancy, we are content to cut the Gordian knot in this way.

Quasi-categories, complete Segal spaces, Segal categories, and 1-complicial sets (naturally
marked quasi-categories) all define the co-categories in an co-cosmos.
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include certain models of (o, n)-categories® as well as fibered versions of all

of the above. Thus each of these objects are co-categories in our sense and our
theorems apply to all of them.® This usage of the term “co-categories” is meant
to interpolate between the classical one, which refers to any variety of weak
infinite-dimensional categories, and the common one, which is often taken to
mean quasi-categories or complete Segal spaces.

Much of the development of the theory of co-categories takes place not in the
full co-cosmos but in a quotient that we call the homotopy 2-category, the name
chosen because an co-cosmos is something like a category of fibrant objects in an
enriched model category and the homotopy 2-category is then a categorification
of its homotopy category. The homotopy 2-category is a strict 2-category — like
the 2-category of categories, functors, and natural transformations’ — and in
this way the foundational proofs in the theory of co-categories closely resemble
the classical foundations of ordinary category theory except that the universal
properties they characterize, e.g., when a functor between co-categories defines
a cartesian fibration, are slightly weaker than in the familiar case of strict 1-
categories.

There are many alternate choices we could have made in selecting the axioms
of an co-cosmos. One of our guiding principles, admittedly somewhat contrary
to the setting of homotopical higher category theory, was to allow us to work
as strictly as possible, with the aim of shortening and simplifying proofs. As a
consequence of these choices, the co-categories in an co-cosmos and the functors
and natural transformations between them assemble into a 2-category rather than
a bicategory. To help us achieve this counterintuitive strictness, each co-cosmos
comes with a specified class of maps between co-categories called isofibrations.
The isofibrations have no homotopy-theoretic meaning, as any functor between
oo-categories is equivalent to an isofibration with the same codomain. However,
isofibrations permit us to consider strictly commutative diagrams between oo-
categories and allow us to require that the limits of such diagrams satisfy a
universal property up to simplicially enriched isomorphism. Neither feature is

5 n-quasi-categories, ®,-spaces, iterated complete Segal spaces, and n-complicial sets also
define the co-categories in an co-cosmos, as do saturated (née weak) complicial sets, a model
for (00, 00)-categories.

There is a sense, however, in which many of our definitions are optimized for those co-cosmoi
whose objects are (00, 1)-categories. A good illustration is provided by the notion of discrete
o0-category introduced in Definition 1.2.26. In the co-cosmoi of (0o, 1)-categories, the discrete
co-categories are the co-groupoids. While this is not true for the co-cosmoi of

(o0, n)-categories, we nevertheless put this concept to use in certain exotic co-cosmoi (see, for
instance, Definition 7.4.1).

In fact this is another special case: there is an co-cosmos whose objects are ordinary categories
and its homotopy 2-category is the usual category of categories, functors, and natural

transformations. This 2-category is as old as category theory itself, introduced in Eilenberg and
Mac Lane’s foundational paper [42].

N
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essential for the development of co-category theory. Similar proofs carry through
to a weaker setting, at the cost of more time spent considering coherence of
higher cells.

In Part I, we define and develop the notions of equivalence and adjunction
between oco-categories, limits and colimits in co-categories, and cartesian and
cocartesian fibrations and their discrete variants, for which we prove a version
of the Yoneda lemma. The majority of these results are developed from the
comfort of the homotopy 2-category. In an interlude, we digress into abstract co-
cosmology to give a more careful account of the full class of limit constructions
present in any co-cosmos. This analysis is used to develop further examples of
00-cosmoi, whose objects are pointed co-categories, or stable co-categories, or
cartesian or cocartesian fibrations in a given co-cosmos.?

What is missing from this basic account of the category theory of co-catego-
ries is a satisfactory treatment of the “hom” bifunctor associated to an co-cate-
gory, which is the prototypical example of what we call a module. An instructive
exercise for a neophyte is the challenge of defining the co-groupoid-valued hom
bifunctor in a preferred model. What is edifying is to learn that this construction,
so fundamental to ordinary category theory, is prohibitively difficult.” In our
axiomatization, any co-category in an co-cosmos has an associated co-category
of arrows, equipped with domain and codomain projection functors that respec-
tively define cartesian and cocartesian fibrations in a compatible manner. Such
modules, which themselves assemble into an co-cosmos, provide a convenient
vehicle for encoding universal properties as fibered equivalences. In Part II,
we develop the calculus of modules between oco-categories and apply this to
define and study pointwise Kan extensions. This will give us an opportunity to
repackage universal properties proven in Part I as part of the “formal category
theory” of co-categories.

This work is all “model-agnostic” in the sense of being blind to details about
the specifications of any particular co-cosmos. In Part III we prove that the
category theory of co-categories is also “model independent” in a precise sense:
all categorical notions are preserved, reflected, and created by any “change-of-
model” functor that defines what we call a cosmological biequivalence. This
model independence theorem is stronger than our axiomatic framework might
initially suggest in that it also allows us to transfer theorems proven using
analytic techniques to all biequivalent co-cosmoi. For instance, the four oco-
8 The impatient reader could skip this interlude and take on faith that any co-cosmos begets

various other co without compromising their understanding of what follows — though they

would miss out on some fun.
9 Experts in quasi-category theory know to use Lurie’s straightening—unstraightening construction

[78, 2.2.1.2] or Cisinski’s universal left fibration [28, 5.2.8] and the twisted arrow
quasi-category.
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cosmoi whose objects model (o0, 1)-categories are all biequivalent.'© It follows
that the analytically-proven theorems about quasi-categories from [78] hold for
complete Segal spaces, and vice versa. We conclude with several applications of
this transfer principle. For instance, in the co-cosmoi whose objects are (oo, 1)-
categories, we demonstrate that various universal properties are “pointwise-de-
termined” by first proving these results for quasi-categories using analytical
techniques and then appealing to model independence to extend these results to
biequivalent co-cosmoi.

The question of the model invariance of statements about co-categories is
more subtle than one might expect. When passing an co-category from one
model to another and then back, the resulting object is typically equivalent but
not identical to the original, and certain “evil” properties of co-categories fail
to be invariant under equivalence: the assertion that an oo-category has a single
object is a famous example. A key advantage to our systematic approach to
understanding the model independence of co-category theory is that it allows
us to introduce a formal language and prove that statement about co-categories
expressible in that language are model independent. This builds on work of
Makkai that resolves a similar question about the invariance of properties of a
2-category under biequivalence [82].

Regrettably, space considerations have prevented us from exploring the ho-
motopy coherent structures present in an co-cosmos. For instance, a companion
paper [109] proves that any adjunction between co-categories in an co-cosmos
extends homotopically uniquely to a homotopy coherent adjunction and presents
a monadicity theorem for homotopy coherent monads as a mechanism for co-
categorical universal algebra. The formal theory of homotopy coherent monads
is extended further by Sulyma [124] who develops the corresponding theory of
monadic and comonadic descent and Zaganidis [133] who defines and studies
homotopy coherent monad maps. Another casualty of space limitations is an
exploration of a “macrocosm principle” for cartesian fibrations, which proves
that the codomain projection functor from the co-cosmos of cartesian fibrations
to the base co-cosmos defines a “cartesian fibration of co-cosmoi” in a suitable
sense [111]. We hope to return to these topics in a sequel.

The ideal reader might already have some acquaintance with enriched category
theory, 2-category theory, and abstract homotopy theory so that the constructions
and proofs with antecedents in these traditions will be familiar. Because oo-
categories are of interest to mathematicians with a wide variety of backgrounds,
10 A closely related observation is that the Quillen equivalences between quasi-categories,

complete Segal spaces, and Segal categories constructed by Joyal and Tierney in [64] can be

understood as equivalences of (o0, 2)-categories not just of (00, 1)-categories by making
judicious choices of simplicial enrichments (see §E.2).
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we review all of the material we need on each of these topics in Appendices A,
B, and C, respectively. Some basic facts about quasi-categories first proven by
Joyal are needed to establish the corresponding features of general co-cosmoi
in Chapter 1. We state these results in §1.1 but defer the proofs that require
lengthy combinatorial digressions to Appendix D, where we also introduce n-
complicial sets, a model of (oo, n)-categories for any 0 < n < co. The examples
of co-cosmoi that appear “in the wild” can be found in Appendix E, where we
also present general techniques that the reader might use to find co-cosmoi of
their own. The final appendix addresses a crucial bit of unfinished business.
Importantly, the synthetic theory developed in the co-cosmos of quasi-categories
is fully compatible with the analytic theory developed by Joyal, Lurie, and many
others. This is the subject of Appendix F.

We close with the obligatory disclaimer on sizes. To apply the theory devel-
oped here to the co-categories of greatest interest, one should consider three
infinite inaccessible cardinals @ < 8 < y, as is the common convention [5, 2].
Colloquially, ct-small categories might be called “small,” while $-small cate-
gories are the default size for co-categories. For example, the co-categories of
(small) spaces, chain complexes of (small) abelian groups, or (small) homotopy
coherent diagrams are all 8-small. These normal-sized oo-categories are then
the objects of an co-cosmos that is y-small — “large” in colloquial terms. Of
course, if one is only interested in small simplicial sets, then the co-cosmos of
small quasi-categories is 5-small, rather than y-small, and the theory developed
here equally applies. For this reason, we set aside the Grothendieck universes
and do not refer to these inaccessible cardinals elsewhere.
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BASIC c0-CATEGORY THEORY
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It is difficult and time-consuming to learn a new language. The standard
advice to “fake it til you make it” is disconcerting in mathematical contexts,
where the validity of a proof hinges upon the correctness of the statements it
cites. The aim in Part I of this text is to develop a substantial portion of the theory
of co-categories from first principles, as rapidly and painlessly as possible — at
least assuming that the reader finds classical abstract nonsense to be relatively
innocuous.!!

The axiomatic framework that justifies this is introduced in Chapter 1, but the
impatient or particularly time-constrained reader might consider starting directly
in Chapter 2 with the study of adjunctions, limits, and colimits. In adopting
this approach, one must take for granted that there is a well-defined 2-category
of oo-categories, oo-functors between them, and oo-natural transformations
between these. This 2-category is constructed in Chapter 1, where we see that
any oo-cosmos has a homotopy 2-category and that the familiar models of
(00, 1)-categories define biequivalent co-cosmoi, with biequivalent homotopy
2-categories. To follow the proofs in Chapter 2, it is necessary to understand
the general composition of natural transformations by pasting diagrams. This
and other concepts from 2-category theory are reviewed in Appendix B, which
should be consulted as needed.

The payoff for acquainting oneself with some standard 2-category theory is
that numerous fundamental results concerning equivalences and adjunctions
and limits and colimits can be proven quite expeditiously. We prove one such
theorem, that right adjoint functors between co-categories preserve any limits
found in those co-categories, via a formal argument that is arguably even simpler
than the classical one.

The definitions of adjunctions, limits, and colimits given in Chapter 2 are
optimized for ease of use in the homotopy 2-category of co-categories, co-func-
tors, and co-natural transformations in an co-cosmos, but especially in the latter
cases, these notions are not expressed in their most familiar forms. To encode a
limit of a diagram valued in an co-category as a terminal cone, we introduce
the powerful and versatile construction of the comma oco-category built from
a cospan of functors in Chapter 3. We then prove various “representability
theorems” that characterize those comma co-categories that are equivalent to
ones defined by a single functor. These general results specialize in Chapter
4 to the expected equivalent definitions of adjunctions, limits, and colimits.
This theory is then applied to study limits and colimits of particular diagram
11 Dan Freed defines the category number of a mathematician to be the largest integer 1 so that

they may ponder n-categories for half an hour without developing a migraine. Here we require a
category number of 2, which we note is much smaller than co!
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shapes, which in turn is deployed to establish an equivalence between various
presentations of the important notion of a stable co-category.

The basic theory of co-categories is extended in Chapter 5 to encompass co-
cartesian and cartesian fibrations, which can be understood as indexed families
of co-categories acted upon covariantly or contravariantly by arrows in the base
oo-category. After developing the theory of the various classes of categorical
fibrations, we conclude by proving a fibrational form of the Yoneda lemma that
will be used to further develop the formal category theory of co-categories in
Part II.



0o-Cosmoi and Their Homotopy 2-Categories

In this chapter, we introduce a framework to develop the formal category theory
of co-categories, which goes by the name of an co-cosmos. Informally, an co-
cosmos is an (o0, 2)-category — a category enriched over (oo, 1)-categories —
that is equipped with (o0, 2)-categorical limits. In the motivating examples of
oo-cosmoi, the objects are co-categories in some model. To focus this abstract
theory on its intended interpretation, we recast “co-category” as a technical
term, reserved to mean an object of some co-cosmos.

Unexpectedly, the motivating examples permit us to use a quite strict inter-
pretation of “(o0, 2)-category with (o0, 2)-categorical limits”: an co-cosmos is
a particular type of simplicially enriched category and the (o0, 2)-categorical
limits are modeled by simplicially enriched limits. More precisely, an co-cos-
mos is a category enriched over quasi-categories, these being one of the models
of (o0, 1)-categories defined as certain simplicial sets. The (o0, 2)-categorical
limits are defined as limits of diagrams involving specified maps called isofibra-
tions, which have no intrinsic homotopical meaning — since any functor between
oco-categories is equivalent to an isofibration — but allow us to consider strictly
commuting diagrams.

In §1.1, we introduce quasi-categories, reviewing the classical results that are
needed to show that quasi-categories themselves assemble into an co-cosmos —
the prototypical example. General co-cosmoi are defined in §1.2, where several
examples are given and their basic properties are established. In §1.3, we turn
our attention to cosmological functors between co-cosmoi, which preserve all
of the defining structure. Cosmological functors serve dual purposes, on the
one hand providing technical simplifications in many proofs, and then later on
serving as the “change of model” functors that establish the model independence
of co-category theory.

Finally, in §1.4, we introduce a strict 2-category whose objects are co-catego-
ries, whose 1-cells are the co-functors between them, and whose 2-cells define
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oo-natural transformations between these. Any co-cosmos has a 2-category of
this sort, which we refer to as the homotopy 2-category of the co-cosmos. In
fact, the reader who is eager to get on to the development of the category theory
of oo-categories can skip this chapter on first reading, taking the existence of
the homotopy 2-category for granted, and start with Chapter 2.

1.1 Quasi-Categories

Before introducing an axiomatic framework that allows us to develop oco-cat-
egory theory in general, we first consider one model in particular: quasi-cat-
egories, which were introduced in 1973 by Boardman and Vogt [21] in their
study of homotopy coherent diagrams. Ordinary 1-categories give examples of
quasi-categories via the construction of Definition 1.1.4. Joyal first undertook
the task of extending 1-category theory to quasi-category theory in [61] and
[63] and in several unpublished draft book manuscripts. The majority of the
results in this section are due to him.

Nortartion 1.1.1 (the simplex category). Let A denote the simplex category of
finite nonempty ordinals [n] = {0 < 1 < --- < n} and order-preserving maps.
These include in particular the

i
elementary face operators [n—1] LN [n] 0<i<n
i
elementary degeneracy operators [n+1] 2 [n] 0<i<n

whose images, respectively, omit and double up on the element i € [n]. Every
morphism in A factors uniquely as an epimorphism followed by a monomorph-
ism; these epimorphisms, the degeneracy operators, decompose as composites
of elementary degeneracy operators, while the monomorphisms, the face oper-
ators, decompose as composites of elementary face operators.

The category of simplicial sets is the category sSet := Set™™ of presheaves
on the simplex category. We write A[n] for the standard n-simplex the sim-
plicial set represented by [n] € A, and A¥[n] c dA[n] C A[n] for its k-horn
and boundary sphere, respectively. The sphere dA[n] is the simplicial subset
generated by the codimension-one faces of the n-simplex, while the horn A[n]
is the further simplicial subset that omits the face opposite the vertex k.

Given a simplicial set X it is conventional to write X, for the set of n-sim-
plices, defined by evaluating at [n] € A. By the Yoneda lemma, each n-simplex
X € X,, corresponds to a map of simplicial sets x : A[n] — X. Accordingly, we
write x - 8' for the ith face of the n-simplex, an (n — 1)-simplex classified by
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the composite map
X X
Aln—1] — A[n] — X.
St
The right action of the face operator defines a map X,, — X,,_;. Geometrically,
x - &% is the “face opposite the vertex i” in the n-simplex x.

DEerintTION 1.1.2 (quasi-category). A quasi-category is a simplicial set A in
which any inner horn can be extended to a simplex, solving the displayed lifting
problem:

A[n] — A
[ for n>2,0<k<n. (1.1.3)

Aln]

Quasi-categories were first introduced by Boardman and Vogt [21] under the
name “weak Kan complexes,” a Kan complex being a simplicial set admitting
extensions as in (1.1.3) along all horn inclusions n > 1,0 < k < n. Since any
topological space can be encoded as a Kan complex,! in this way spaces provide
examples of quasi-categories.

Categories also provide examples of quasi-categories via the nerve construc-
tion.

DerintTION 1.1.4 (nerve). The category Cat of 1-categories embeds fully faith-
fully into the category of simplicial sets via the nerve functor. An n-simplex
in the nerve of a 1-category C is a sequence of n composable arrows in C, or
equally a functor m+ 1 — C from the ordinal category m + 1 := [n] with objects
0,...,n and a unique arrow i — j just wheni < j.

The map [n] — n + 1 defines a fully faithful embedding A < Cat. From
this point of view, the nerve functor can be described as a “restricted Yoneda
embedding” which carries a category C to the restriction of the representable
functor hom(—, C) to the image of this inclusion. More general “nerve-type
constructions” are described in Exercise 1.1.i.

RemMARrk 1.1.5. The nerve of a category C is 2-coskeletal as a simplicial set,
meaning that every sphere dA[n] — C with n > 3 is filled uniquely by an
n-simplex in C (see Definition C.5.2). Note a sphere dA[2] — C extends to a

1 The total singular complex construction defines a functor from topological spaces to simplicial
sets that is an equivalence on their respective homotopy categories — weak homotopy types of
spaces correspond to homotopy equivalence classes of Kan complexes [93, §11.2]. The left
adjoint constructed by Exercise 1.1.i “geometrically realizes” a simplicial set as a topological
space.
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2-simplex if and only if that arrow along its diagonal edge is the composite of
the arrows along the edges in the inner horn A![2] € dA[2] — C. The simplices
in dimension 3 and above witness the associativity of the composition of the
path of composable arrows found along their spine, the 1-skeletal simplicial
subset formed by the edges connecting adjacent vertices. In fact, as suggested
by the proof of Proposition 1.1.6, any simplicial set in which inner horns admit
unique fillers is isomorphic to the nerve of a 1-category (see Exercise 1.1.iv).

We decline to introduce explicit notation for the nerve functor, preferring
instead to identify 1-categories with their nerves. As we shall discover the
theory of 1-categories extends to co-categories modeled as quasi-categories in
such a way that the restriction of each co-categorical concept along the nerve
embedding recovers the corresponding 1-categorical concept. For instance, the
standard simplex A[n] is isomorphic to the nerve of the ordinal category m + 1,
and we frequently adopt the latter notation — writing 1 := A[0], 2 = A[1],
3 := A[2], and so on — to suggest the correct categorical intuition.

To begin down this path, we must first verify the implicit assertion that has
just been made:

ProrosrTion 1.1.6 (nerves are quasi-categories). Nerves of categories are quasi-
categories.

Proof Via the isomorphism C = cosk, C from Remark 1.1.5 and the adjunc-
tion sk, - cosk, of C.5.2, the required lifting problem displayed below-left
transposes to the one displayed below-right:

Af[n] —— C = cosk, C sk, A[n] —— C
7 ,/”
Aln] sk, Aln]

The functor sk, replaces a simplicial set by its 2-skeleton, the simplicial subset
generated by the simplices of dimension at most two. For n > 4, the inclusion
sk, A¥[n] < sk, A[n] is an isomorphism, in which case the lifting problems
on the right admit (unique) solutions. So it remains only to solve the lifting
problems on the left in the cases n = 2 and n = 3.

To that end consider

A2] — C A3 — C N3] — C
Al2] A[3] A[3]

An inner horn A![2] — C defines a composable pair of arrows in C; an extension
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to a 2-simplex exists precisely because any composable pair of arrows admits a
(unique) composite.

An inner horn A![3] = C specifies the data of three composable arrows in C,
as displayed in the following diagram, together with the composites gf, hg, and
(hg)f-

51

y w
(h)f
—_—— C
\g /
gf h

C

Co 3

Because composition is associative, the arrow (hg)f is also the composite of
gf followed by h, which proves that the 2-simplex opposite the vertex c; is
present in C; by 2-coskeletality, the 3-simplex filling this boundary sphere is
also present in C. The filler for a horn A%[3] — C is constructed similarly. [

DerintTION 1.1.7 (homotopy relation on 1-simplices). A parallel pair of 1-sim-
plices f, g in a simplicial set X are homotopic if there exists a 2-simplex whose
boundary takes either of the following forms?

£ SN
/ \ / S (1.1.8)
X—5 ) X — )

or if f and g are in the same equivalence class generated by this relation.
In a quasi-category, the relation witnessed by either of the types of 2-simplex

on display in (1.1.8) is an equivalence relation and these equivalence relations
coincide.

Lemma 1.1.9 (homotopic 1-simplices in a quasi-category). Parallel 1-simplices
f and g in a quasi-category are homotopic if and only if there exists a 2-simplex
of any or equivalently all of the forms displayed in (1.1.8).

Proof Exercise 1.1.ii. O

DeriniTION 1.1.10 (the homotopy category [44, §2.4]). By 1-truncating, any
simplicial set X has an underlying reflexive directed graph with the 0-simplices
of X defining the objects and the 1-simplices defining the arrows:
.51
_—
X «.0°— Xo,
—_—
.80

2 The symbol “ = " is used in diagrams to denote a degenerate simplex or an identity arrow.
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By convention, the source of an arrow f € Xj is its Oth face f - 8! (the face
opposite 1) while the target is its 1st face f - 6° (the face opposite 0). The free
category on this reflexive directed graph has X, as its object set, degenerate 1-
simplices serving as identity morphisms, and nonidentity morphisms defined to
be finite directed paths of nondegenerate 1-simplices. The homotopy category
hX of X is the quotient of the free category on its underlying reflexive directed
graph by the congruence? generated by imposing a composition relation h = go f
witnessed by 2-simplices

f 1 g
AN
Xo —h.) Xy

This relation implies in particular that homotopic 1-simplices represent the same
arrow in the homotopy category.

The homotopy category of the nerve of a 1-category is isomorphic to the
original category, as the 2-simplices in the nerve witness all of the composition
relations satisfied by the arrows in the underlying reflexive directed graph. Indeed,
the natural isomorphism hC = C forms the counit of an adjunction, embedding
Cat as a reflective subcategory of sSet.

ProposriTioN 1.1.11. The nerve embedding admits a left adjoint, namely the
functor which sends a simplicial set to its homotopy category:

h

/‘\
Cat Set
Wl %€
The adjunction of Proposition 1.1.11 exists for formal reasons (see Exercise
1.1.i), but nevertheless, a direct proof can be enlightening.

Proof For any simplicial set X, there is a natural map from X to the nerve of
its homotopy category hX; since nerves are 2-coskeletal, it suffices to define
the map sk, X — hX, and this is given immediately by the construction of
Definition 1.1.10. Note that the quotient map X — hX becomes an isomorphism
upon applying the homotopy category functor and is already an isomorphism
whenever X is the nerve of a category. Thus the adjointness follows from Lemma
B.4.2 or by direct verification of the triangle equalities. O

The homotopy category of a quasi-category admits a simplified description.

LemmMma 1.1.12 (the homotopy category of a quasi-category). If A is a quasi-cat-
egory then its homotopy category hA has

3" A binary relation ~ on parallel arrows of a 1-category is a congruence if it is an equivalence
relation that is closed under pre- and post-composition: if f ~ g then hfk ~ hgk.
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« the set of 0-simplices Ag as its objects

« the set of homotopy classes of 1-simplices A; as its arrows

« the identity arrow at a € Aq represented by the degenerate I-simplex
a-d’ €A

« a composition relation h = g o f in hA between the homotopy classes of
arrows represented by any given 1-simplices f,g,h € Ay if and only if there
exists a 2-simplex with boundary

f % g
AN
ag ——

Proof Exercise 1.1.iii. O

DerintTION 1.1.13 (isomorphism in a quasi-category). A 1-simplex in a quasi-
category is an isomorphism* just when it represents an isomorphism in the
homotopy category. By Lemma 1.1.12 this means that f: a — b is an iso-
morphism if and only if there exists a 1-simplex f~': b — a together with a
pair of 2-simplices

The properties of the isomorphisms in a quasi-category are most easily proved
by arguing in a closely related category where simplicial sets have the additional
structure of a “marking” on a specified subset of the 1-simplices; maps of
these so-called marked simplicial sets must then preserve the markings (see
Definition D.1.1). For instance, each quasi-category has a natural marking,
where the marked 1-simplices are exactly the isomorphisms (see Definition
D.4.5). Since the property of being an isomorphism in a quasi-category is
witnessed by the presence of 2-simplices with a particular boundary, every
map between quasi-categories preserves isomorphisms, inducing a map of the
corresponding naturally marked quasi-categories. Because marked simplicial
sets seldom appear outside of the proofs of certain combinatorial lemmas about
the isomorphisms in quasi-categories, we save the details for Appendix D.

Let us now motivate the first of several results proven using marked techniques.
A quasi-category A is defined to have extensions along all inner horns. But
when the initial or final edges, respectively, of an outer horn A°[2] — A or
4 Joyal refers to these maps as “isomorphisms” while Lurie refers to them as “equivalences.” We

prefer, wherever possible, to use the same term for co-categorical concepts as for the analogous
1-categorical ones.
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A?[2] = A map to isomorphisms in A, then a filler

a _ _ a
f/ N gl 4 N
e \‘A /’ D
AQ ——— @ QG ——— Q@

should intuitively exist. The higher-dimensional “special outer horns” behave
similarly:

ProrposiTion 1.1.14 (special outer horn filling). Any quasi-category A admits
fillers for those outer horns

A[n] —2 A A'[n] — A
2l nl
for n>1
Aln] Aln]

in which the edges gl 1) and hl|(,_y ) are isomorphisms.’

The proof of Proposition 1.1.14 requires clever combinatorics, due to Joyal,
and is deferred to Proposition D.4.6. Here, we enjoy its myriad consequences.
Immediately:

CoroLLARY 1.1.15. A quasi-category is a Kan complex if and only if its homo-
topy category is a groupoid.

Proof 1If the homotopy category of a quasi-category is a groupoid, then all of
its 1-simplices are isomorphisms, and Proposition 1.1.14 then implies that all
inner and outer horns have fillers. Thus, the quasi-category is a Kan complex.
Conversely, in a Kan complex, all outer horns can be filled and in particular
fillers for the horns displayed in Definition 1.1.13 can be used to construct left
and right inverses for any 1-simplex, which can be rectified to a single two-sided
inverse by Lemma 1.1.12. O

A quasi-category contains A a canonical maximal sub Kan complex A=,
the simplicial subset spanned by those 1-simplices that are isomorphisms. Just
as the arrows in a quasi-category A are represented by simplicial maps 2 — A
whose domain is the nerve of the free-living arrow, the isomorphisms in a
quasi-category can be represented by diagrams [ - A whose domain, called the
homotopy coherent isomorphism, is the nerve of the free-living isomorphism:

5 In the case 1 = 1, no condition is needed on the horns; degenerate 1-simplices define the
required lifts.
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CoroLLARY 1.1.16. An arrow f in a quasi-category A is an isomorphism if and
only if it extends to a homotopy coherent isomorphism

f

2—> A

A
%
%
.
%
%
%
.

-
Proof 1If f is an isomorphism, the map f: 2 — A lands in the maximal sub
Kan complex contained in A:

L}A:CA

2
LA
[‘ ”’
r”’
-
[

By Exercise 1.1.v, the inclusion 2 < [ can be expressed as a sequential compos-
ite of pushouts of outer horn inclusions. Since A~ is a Kan complex, this shows
that the required extension exists and in fact lands in A~ C A. O

The category of simplicial sets, like any category of presheaves, is cartesian
closed. By the Yoneda lemma and the defining adjunction, an n-simplex in the
exponential YX corresponds to a simplicial map X x A[n] — Y, and its faces
and degeneracies are computed by precomposing in the simplex variable. Our
next aim is to show that the quasi-categories define an exponential ideal in the
simplicially enriched category of simplicial sets: if X is a simplicial set and A is
a quasi-category, then A% is a quasi-category. We deduce this as a corollary of
the “relative” version of this result involving certain maps called isofibrations
that we now introduce.

DeriniTION 1.1.17 (isofibration). A simplicial map f: A — B between quasi-
categories is an isofibration if it lifts against the inner horn inclusions, as
displayed below-left, and also against the inclusion of either vertex into the
free-living isomorphism [.

AN[n] — A — A

1
e L7
s i
e R
.
[

Aln] —— B —— B

To notationally distinguish the isofibrations, we depict them as arrows “—»"" with
two heads.

Proposition 1.1.14 is subsumed by its relative analogue, proven as Theorem
D.5.1:
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ProrosiTion 1.1.18 (special outer horn lifting). Any isofibration between quasi-
categories f . A - B admits lifts against those outer horns

A[n] —2- A A'[n] 2 A
T Al
[ e lf f o lf for n>1

in which the edges glio.1}, Mln—1,n}p Kljo,1} and €|gn_1,ny are isomorphisms.

OBSERVATION 1.1.19.

®

(ii)

(iii)

@iv)

For any simplicial set X, the unique map X — 1 whose codomain
is the terminal simplicial set is an isofibration if and only if X is a
quasi-category.

Any collection of maps, such as the isofibrations, that is characterized
by a right lifting property is automatically closed under composition,
product, pullback, retract, and (inverse) limits of towers (see Lemma
C.2.3).

Combining (i) and (ii), if A - B is an isofibration, and B is a quasi-cate-
gory, then so is A.

The isofibrations generalize the eponymous categorical notion. The
nerve of any functor f: A — B between categories defines a map of
simplicial sets that lifts against the inner horn inclusions. This map then
defines an isofibration if and only if given any isomorphism in B and
specified object in A lifting either its domain or codomain, there exists an
isomorphism in A with that domain or codomain lifting the isomorphism
in B.

Much harder to establish is the stability of the isofibrations under the formation
of “Leibniz® exponentials” as displayed in (1.1.21). This is proven in Proposition

D.5.2.

ProrositioN 1.1.20. Ifi: X < Y is a monomorphism and f: A - Bis an

6 The name alludes to the Leibniz rule in differential calculus, or more specifically to the
identification of the domain of the Leibniz product of Lemma D.3.1 with the boundary of the
prism (see Definition C.2.8 and Remark D.3.2).
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isofibration, then the induced Leibniz exponential map i M f

Al

(1.1.21)

is again an isofibration.”

CoRrOLLARY 1.1.22. If X is a simplicial set and A is a quasi-category, then AX
is a quasi-category. Moreover, a 1-simplex in AX is an isomorphism if and only
if its components at each vertex of X are isomorphisms in A.

Proof The first statement is a special case of Proposition 1.1.20 (see Exercise
1.1.vii), while the second statement is proven similarly by arguing with marked
simplicial sets (see Corollary D.4.19). O

DerintTION 1.1.23 (equivalences of quasi-categories). A map f: A — B be-
tween quasi-categories is an equivalence if it extends to the data of a “homotopy
equivalence” with the free-living isomorphism [ serving as the interval: that is,
if there exist maps g: B — A,

A B
/ Tevo y Tevo
A5 A and B L. p

A i \ gvl

We write “=” to decorate equivalences and A ~ B to indicate the presence of
an equivalence A = B.

Remark 1.1.24. If f: A — Bis an equivalence of quasi-categories, then the
functor hf : hA — hB is an equivalence of categories, where the data displayed
above defines an equivalence inverse hg : hB — hA and natural isomorphisms

7 Degenerate cases of this result, taking X = (J or B = 1, imply that the other six maps in this
diagram are also isofibrations (see Exercise 1.1.vii).
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encoded by the composite® functors

hA —"%, h(A) —— (hA)! hB —2, h(BY) (hB)!

DeriniTioN 1.1.25. A map f: X — Y between simplicial sets is a trivial
fibration if it admits lifts against the boundary inclusions for all simplices

0A[n] — X
f zlf for n >0 (1.1.26)

Aln] — Y
We write “~” to decorate trivial fibrations.

RemMARK 1.1.27. The simplex boundary inclusions dA[n] & A[n] “cellularly
generate” the monomorphisms of simplicial sets (see Definition C.2.4 and Lem-
ma C.5.9). Hence the dual of Lemma C.2.3 implies that trivial fibrations lift
against any monomorphism between simplicial sets. In particular, it follows that
any trivial fibration X = Y is a split epimorphism.

The notation “~»" is suggestive: the trivial fibrations between quasi-categories
are exactly those maps that are both isofibrations and equivalences. This can be
proven by a relatively standard although rather technical argument in simplicial
homotopy theory, appearing as Proposition D.5.6.

ProposiTioN 1.1.28. Fora map f: A — B between quasi-categories the fol-
lowing are equivalent:

(i) fis a trivial fibration
(ii) f is both an isofibration and an equivalence
(iii) f is a split fiber homotopy equivalence: an isofibration admitting a
section S that is also an equivalence inverse via a homotopy o from id4
to Sf that composes with f to the constant homotopy from f to f.

A+Aa—1D) Ly
[ P zlf
Axl — a1, B

As a class characterized by a right lifting property, the trivial fibrations are
also closed under composition, product, pullback, limits of towers, and contain

8 Note that h(A") 2 (hA)! in general. Objects in the latter are homotopy classes of isomorphisms
in A, while objects in the former are homotopy coherent isomorphisms, given by a specified
1-simplex in A, a specified inverse 1-simplex, together with an infinite tower of coherence data
indexed by the nondegenerate simplices in [.
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the isomorphisms. The stability of these maps under Leibniz exponentiation is
proven along with Proposition 1.1.20 in Proposition D.5.2.

ProposiTioN 1.1.29. Ifi: X — Y is a monomorphism and f: A — Bis an
isofibration, then if either f is a trivial fibration or if i is in the class cellularly
generated by the inner horn inclusions and the map 1 < [ then the induced
Leibniz exponential map

if
AY By aX
a trivial fibration.

To illustrate the utility of these Leibniz stability results, we give an “internal”
or “synthetic” characterization of the Kan complexes.

LemmAa 1.1.30. A quasi-category A is a Kan complex if and only if the map
Al » A? induced by the inclusion 2 < | is a trivial fibration.

Note that Proposition 1.1.20 implies that A’ - A? is an isofibration.

Proof The lifting property that characterizes trivial fibrations transposes to
another lifting property, displayed below-right

6A[n] > AI] 6A[n] X [ aA[ky{]xg A[n] X 2 7 A
1 - =
Aln] — A Aln] X1

that asserts that A admits extensions along maps formed by taking the Leibniz
product — also known as the pushout product — of a simplex boundary inclusion
0A[n] & A[n] with the inclusion 2 < 1. By Exercise 1.1.v(ii) the inclusion
2 < [ is a sequential composite of pushouts of left outer horn inclusions. By
Corollary D.3.11, a key step along the way to the proofs of Propositions 1.1.20
and 1.1.29, it follows that the Leibniz product is also a sequential composite
of pushouts of left and inner horn inclusions. If A is a Kan complex, then the
extensions displayed above right exist, and, by transposing, the map A’ - A? is
a trivial fibration.

Conversely, if A' = A? is a trivial fibration then in particular it is surjective
on vertices. Thus every arrow in A is an isomorphism, and Corollary 1.1.15
tells us that A must be a Kan complex. O

Digression 1.1.31 (the Joyal model structure). The category of simplicial sets
bears a Quillen model structure, in the sense of Definition C.3.1, whose fibrant
objects are exactly the quasi-categories and in which all objects are cofibrant.
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Between fibrant objects, the fibrations, weak equivalences, and trivial fibrations
are precisely the isofibrations, equivalences, and trivial fibrations just introduced.
Proposition 1.1.28 proves that the trivial fibrations are the intersection of the
fibrations and the weak equivalences. Propositions 1.1.20 and 1.1.29 reflect
the fact that the Joyal model structure is a cartesian closed model category,
satisfying the additional axioms of Definition C.3.10.

We decline to elaborate further on the Joyal model structure for quasi-cate-
gories since we have highlighted all of the features that we need. The results
enumerated here suffice to show that the category of quasi-categories defines an
oo-cosmos, a concept to which we now turn.

Exercises

Exercisk 1.1.i ([103, §1.5]). Given any cosimplicial object C: A — & valued
in any category &, there is an associated nerve functor N¢ defined by:

& L) sSet A
AN
c
E —— hom(C—, E) IS
e L 5 sSet
N¢

By construction n-simplices in NoE correspond to maps C"* — E in €. Show that
if € is cocomplete, then N has a left adjoint defined as the left Kan extension of
the functor C along the Yoneda embedding & : A & sS8et. This gives a second
proof of Proposition 1.1.11.

Exercisk 1.1.ii (Boardman—Vogt [21]). Consider the set of 1-simplices in a
quasi-category with initial vertex a and final vertex b.

(i) Prove that the relation defined by f ~ g if and only if there exists a

b
2-simplex with boundary f/- \ is an equivalence relation.

aT»b

(i) Prove that the relation defined by f ~ g if and only if there exists a

a
2-simplex with boundary / \{ is an equivalence relation.
a—7F b
(iii) Prove that the equivalence relations defined by (i) and (ii) are the same.

This proves Lemma 1.1.9.
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Exercisk 1.1.iii. Consider the free category on the reflexive directed graph

.St
—
Al € .g0— AO’
_—
.80

underlying a quasi-category A.

©)

(ii)

(iii)

@iv)

Consider the binary relation that identifies sequences of composable
1-simplices with common source and common target whenever there
exists a simplex of A in which the sequences of 1-simplices define two
paths from its initial vertex to its final vertex. Prove that this relation is
stable under pre- and post-composition with 1-simplices and conclude
that its transitive closure is a congruence: an equivalence relation that
is closed under pre- and post-composition.’

Consider the congruence relation generated by imposing a composition
relation h = g o f witnessed by 2-simplices

f % g
AN
ag ———— a,

and prove that this coincides with the relation considered in (i).

In the congruence relations of (i) and (ii), prove that every sequence
of composable 1-simplices in A is equivalent to a single 1-simplex.
Conclude that every morphism in the quotient of the free category by
this congruence relation is represented by a 1-simplex in A.

Prove that for any triple of 1-simplices f,g,hin A, h = go f in the
homotopy category hA of Definition 1.1.10 if and only if there exists a
2-simplex with boundary

f % g
N\
b G

This proves Lemma 1.1.12.

Exercise 1.1.iv. Show that any quasi-category in which inner horns admit
unique fillers is isomorphic to the nerve of its homotopy category.

Exercisk 1.1.v. Let [ be the nerve of the free-living isomorphism.

9 Given a congruence relation on the hom-sets of a 1-category, the quotient category can be
formed by quotienting each hom-set (see [81, §11.8]).
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(i) Prove that [ contains exactly two nondegenerate simplices in each di-
mension.

(ii) Inductively build [ from 2 by expressing the inclusion 2 < [ as a sequen-
tial composite of pushouts of left outer horn inclusions'® A°[n] < A[n],
one in each dimension starting with n = 2.11

Exercisk 1.1.vi. Prove the relative version of Corollary 1.1.16: for any isofi-
bration p: A - B between quasi-categories and any f : 2 — A that defines an
isomorphism in A any homotopy coherent isomorphism in B extending pf lifts
to a homotopy coherent isomorphism in A extending f.

f

b

ExEercisk 1.1.vii. Specialize Proposition 1.1.20 to prove the following:

(i) If A is a quasi-category and X is a simplicial set then AX is a quasi-cate-
gory.
(i) If A is a quasi-category and X < Y is a monomorphism then AY - AX
is an isofibration.
(iii) If A » Bis an isofibration and X is a simplicial set then A% » BXisan
isofibration.

Exercisk 1.1.viii. Anticipating Lemma 1.2.17:

(i) Prove that the equivalences defined in Definition 1.1.23 are closed under
retracts.
(ii) Prove that the equivalences defined in Definition 1.1.23 satisfy the 2-of-3
property.
Exercisk 1.1.ix. Prove thatif f : X =» Yis a trivial fibration between quasi-cat-
egories then the functor hf : hX =» hYis a surjective equivalence of categories.

1.2 oco-Cosmoi

In §1.1, we presented “analytic” proofs of a few of the basic facts about quasi-
categories. The category theory of quasi-categories can be developed in a similar

10 By the duality described in Definition 1.2.25, the right outer horn inclusions A"[n] & A[n]
can be used instead.

11 This decomposition of the inclusion 2 < [ reveals which data extends homotopically uniquely
to a homotopy coherent isomorphism. For instance, the 1- and 2-simplices of Definition 1.1.13
together with a single 3-simplex that has these as its outer faces with its inner faces degenerate.
Homotopy type theorists refer to this data as a half adjoint equivalence [125, §4.2].
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style, but we aim instead to develop the “synthetic” theory of infinite-dimen-
sional categories, so that our results apply to many models at once. To achieve
this, our strategy is not to axiomatize what infinite-dimensional categories are,
but rather to axiomatize the categorical “universe” in which they live.

The definition of an co-cosmos abstracts the properties of the category of
quasi-categories together with the isofibrations, equivalences, and trivial fibra-
tions introduced in §1.1.12 First, the category of quasi-categories is enriched
over the category of simplicial sets — the set of morphisms from A to B coin-
cides with the set of vertices of the simplicial set B4 — and moreover these
hom spaces are all quasi-categories. Second, certain limit constructions that
can be defined in the underlying unenriched category of quasi-categories satisfy
universal properties relative to this simplicial enrichment, with the usual iso-
morphism of sets extending to an isomorphism of simplicial sets. And finally,
the isofibrations, equivalences, and trivial fibrations satisfy properties that are
familiar from abstract homotopy theory, forming a category of fibrant objects
a la Brown [23] (see §C.1). In particular, the use of isofibrations in diagrams
guarantees that their strict limits are equivalence invariant, so we can take ad-
vantage of up-to-isomorphism universal properties and strict functoriality of
these constructions while still working “homotopically.”

As explained in Digression 1.2.13, there are a variety of models of infinite-
dimensional categories for which the category of “co-categories,” as we call
them, and “co-functors” between them is enriched over quasi-categories and
admits classes of isofibrations, equivalences, and trivial fibrations satisfying
analogous properties. This motivates the following axiomatization:

DerINTTION 1.2.1 (00-CcOSMOS). An co-cosmos X is a category that is enriched

over quasi-categories,'> meaning in particular that

« its morphisms f : A — B define the vertices of a quasi-category denoted
Fun(A, B) and referred to as a functor space,

that is also equipped with a specified collection of maps that we call isofibrations
and denote by “—” satisfying the following two axioms:

(i) (completeness) The quasi-categorically enriched category K possesses
a terminal object, small products, pullbacks of isofibrations, limits of
countable towers of isofibrations, and cotensors with simplicial sets, each

12 Metaphorical allusions aside, our co-cosmoi resemble the fibrational cosmoi of Street [117].

13 This is to say J is a simplicially enriched category (see Digression 1.2.4) whose hom spaces
are all quasi-categories.
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of these limit notions satisfying a universal property that is enriched
over simplicial sets.'4

(ii) (isofibrations) The isofibrations contain all isomorphisms and any map
whose codomain is the terminal object; are closed under composition,
product, pullback, forming inverse limits of towers, and Leibniz coten-
sors with monomorphisms of simplicial sets; and have the property that
if f: A > Bis an isofibration and X is any object then Fun(X, A) -
Fun(X, B) is an isofibration of quasi-categories.

For ease of reference, we refer to the simplicially enriched limits of diagrams
of isofibrations enumerated in (i) as the cosmological limit notions.

DeriniTION 1.2.2. In an co-cosmos K, a morphism f: A — Bis

« an equivalence just when the induced map f, : Fun(X,A) = Fun(X, B) on
functor spaces is an equivalence of quasi-categories for all X € X, and
« atrivial fibration just when f is both an isofibration and an equivalence.

These classes are denoted by “=” and “=»”, respectively.

Put more concisely, one might say that an co-cosmos is a “quasi-categorically
enriched category of fibrant objects” (see Definition C.1.1 and Example C.1.3).

ConvenTION 1.2.3 (c0-category, as a technical term). Henceforth, we recast
co-category as a technical term to refer to an object in an arbitrary ambient oo-
cosmos. Similarly, we use the term co-functor — or more commonly the elision
“functor” — to refer to a morphism f : A — B in an oco-cosmos. This explains
why we refer to the quasi-category Fun(A, B) between two co-categories in an
co-cosmos as a “functor space’: its vertices are the (oo-)functors from A to B.

DicrEssion 1.2.4 (simplicial categories, §A.2). A simplicial category A is
given by categories A, with a common set of objects and whose arrows are
called n-arrows, that assemble into a diagram A°? — Cat of identity-on-objects
functors

—-.53—>
— .g2 — - .52 —>
—.5¢—> — gl — — .5l —>
oAy — gl = Ay —5t— Ay — 09— Ay = A (1.2.5)
- .51 —> — g0 — - .5V —>
— g0 — - .50 —>
- .50 —>

The category A, of 0-arrows is the underlying category of the simplicial
category A, which forgets the higher dimensional simplicial structure.

14 We elaborate on these simplicially enriched limits in Digression 1.2.6.
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The data of a simplicial category can equivalently be encoded by a simp-
licially enriched category with a set of objects and a simplicial set A(x,y)
of morphisms between each ordered pair of objects: an n-arrow in A, from x
to y corresponds to an n-simplex in A(x, y) (see Exercise 1.2.i). Each endo-
hom space contains a distinguished identity 0-arrow (the degenerate images of
which define the corresponding identity n-arrows) and composition is required
to define a simplicial map

Ay, z) X A(x,y) —— A(x,z)

the single map encoding the compositions in each of the categories A, and
also the functoriality of the diagram (1.2.5). The composition is required to be
associative and unital, in a sense expressed by the commutative diagrams of
simplicial sets

oXid

Ay, z) x A(x,y) X A(w, x) = A(x,z) X A(w, x)

idXOl l

A(y’ Z) XA(w’y) — s A(wa Z)

idy X id
Alx,y) ——— A, y) X A(x,y)

id xidxl \ lo

Alx,y) X A(x,x) ——— A(x,y)

On account of the equivalence between these two presentations, the terms
“simplicial category” and “simplicially enriched category” are generally taken
to be synonyms.'

In particular, the underlying category K, of an co-cosmos X is the category
whose objects are the co-categories in K and whose morphisms are the 0-arrows,
i.e., the vertices in the functor spaces. In all of the examples to appear in what
follows, this recovers the expected category of co-categories in a particular
model and functors between them.

DiGrEssion 1.2.6 (simplicially enriched limits, §A.4-A.5). Let.A be a simplicial
category. The cotensor of an object A € A by a simplicial set U is characterized
by a natural isomorphism of simplicial sets

AX,AY) = AX,A)Y (1.2.7)

15 The phrase “simplicial object in Cat” is reserved for the more general yet less common notion
of a diagram A°?P — Cat that is not necessarily comprised of identity-on-objects functors.
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Assuming such objects exist, the simplicial cotensor defines a bifunctor
s8etP x A —— A
(U,A) — AV

in a unique way making the isomorphism (1.2.7) natural in U and A as well.

The other simplicial limit notions postulated by axiom 1.2.1(i) are coni-
cal, which is the term used for ordinary 1-categorical limit shapes that sat-
isfy an enriched analog of the usual universal property (see Definition A.5.2).
Such limits also define limits in the underlying category, but the usual univer-
sal property is strengthened. By applying the covariant representable functor
AX, =) Ay — sSet to a limit cone (lim;e; Aj = Aj)jey in Ap, we obtain a
natural comparison map

AX,limAj) — lim A(X, 4)). (1.2.8)
jeJ jeJ

We say that lim ¢y A;j defines a simplicially enriched limit if and only if (1.2.8)
is an isomorphism of simplicial sets for all X € A.

The general theory of enriched categories is reviewed in Appendix A.

PreviEw 1.2.9 (flexible weighted limits in co-cosmoi). The axiom 1.2.1(i)
implies that any co-cosmos K admits all flexible limits, a much larger class of
simplicially enriched “weighted” limits (see Definition 6.2.1 and Proposition
6.2.8).

We quickly introduce the three examples of co-cosmoi that are most easily
absorbed, deferring more sophisticated examples to the end of this section. The
first of these is the prototypical co-cosmos.

ProposiTioN 1.2.10 (the oo-cosmos of quasi-categories). The full subcategory
QCat C sSet of quasi-categories defines an co-cosmos in which the isofibra-
tions, equivalences, and trivial fibrations coincide with the classes already
bearing these names.

Proof The subcategory QCat C sSet inherits its simplicial enrichment from
the cartesian closed category of simplicial sets: by Proposition 1.1.20, whenever
A and B are quasi-categories, Fun(A4, B) := B4 is again a quasi-category.

The cosmological limits postulated in 1.2.1(i) exist in the ambient category of
simplicial sets.'® For instance, the defining universal property of the simplicial
cotensor (1.2.7) is satisfied by the exponentials of simplicial sets. Moreover,

16 Any category of presheaves is cartesian closed, complete, and cocomplete — a “cosmos™ in the
sense of Bénabou.
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since the category of simplicial sets is cartesian closed, each of the conical limits
is simplicially enriched in the sense discussed in Digression 1.2.6 (see Exercise
1.2.ii and Proposition A.5.4).

We now argue that the full subcategory of quasi-categories inherits all these
limit notions and at the same time establish the stability of the isofibrations
under the formation of these limits. In fact, this latter property helps to prove
the former. To see this, note that a simplicial set is a quasi-category if and only
if the map from it to the point is an isofibration. More generally, if the codomain
of any isofibration is a quasi-category then its domain must be as well. So if any
of the maps in a limit cone over a diagram of quasi-categories are isofibrations,
then it follows that the limit is itself a quasi-category.

Since the isofibrations are characterized by a right lifting property, Lemma
C.2.3 implies that the isofibrations contains all isomorphism and are closed
under composition, product, pullback, and forming inverse limits of towers. In
particular, the full subcategory of quasi-categories possesses these limits. This
verifies all of the axioms of 1.2.1(i) and 1.2.1(ii) except for the last two: Leibniz
closure and closure under exponentiation (—)X. These last closure properties
are established in Proposition 1.1.20, and in fact by Exercise 1.1.vii, the former
subsumes the latter . This completes the verification of the co-cosmos axioms.

It remains to check that the equivalences and trivial fibrations coincide with
those maps defined by 1.1.23 and 1.1.25. By Proposition 1.1.28 the latter co-
incidence follows from the former, so it remains only to show that the equiva-
lences of 1.1.23 coincide with the representably defined equivalences: those
maps of quasi-categories f : A — B for which AX — BX is an equivalence
of quasi-categories in the sense of Definition 1.1.23. Taking X = A[0], we
see immediately that representably defined equivalences are equivalences, and
the converse holds since the exponential (—)X preserves the data defining a
simplicial homotopy. O

Two further examples fit into a common paradigm: both arise as full sub-
categories of the co-cosmos of quasi-categories and inherit their co-cosmos
structures from this inclusion (see Lemma 6.1.4). But it is also instructive,
and ultimately takes less work, to describe the resulting co-cosmos structures
directly.

ProposiTioN 1.2.11 (the oo-cosmos of categories). The category Cat of 1-cate-
gories defines an co-cosmos whose isofibrations are the isofibrations: functors
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satisfying the displayed right lifting property:

1T —
11— B
The equivalences are the equivalences of categories and the trivial fibrations

are surjective equivalences: equivalences of categories that are also surjective
on objects.

Proof 1t is well-known that the 2-category of categories is complete (and in
fact also cocomplete) as a Cat-enriched category (see Definition A.6.17 or [67]).
The categorically enriched category of categories becomes a quasi-categori-
cally enriched category by applying the nerve functor to the hom-categories
(see §A.7). Since the nerve functor is a right adjoint, it follows formally that
these 2-categorical limits become simplicially enriched limits. In particular, as
proscribed in Proposition A.7.8, the cotensor of a category A by a simplicial set
U is defined to be the functor category A"U. This completes the verification of
axiom (i).

Since the class of isofibrations is characterized by a right lifting property,
Lemma C.2.3 implies that the isofibrations are closed under all of the limit
constructions of 1.2.1(ii) except for the last two, and by Exercise 1.1.vii, the
Leibniz closure subsumes the closure under exponentiation.

To verify that isofibrations of categories f : A - B are stable under forming
Leibniz cotensors with monomorphisms of simplicial sets i : U < V, we must
solve the lifting problem below-left

11— AW hUxuuhUhVﬂ»A
7 /,

j[ 7 lhiﬁf @ hik j[ -y lf

| W B" xph ANV hV x I —F— B

which transposes to the lifting problem above-right, which we can solve by hand.
Here the map f defines a natural isomorphism between fs: hV — Band a
second functor. Our task is to lift this to a natural isomorphism y from s to
another functor that extends the natural isomorphism « along hi: hU — hV.
Note this functor hi need not be an inclusion, but it is injective on objects, which
is enough.

We define the components of y by cases. If an object v € hVis equal to i(u) for
some u € hU define ¥y, = a,; otherwise, use the fact that f is an isofibration
to define ¥, to be any lift of the isomorphism (3, to an isomorphism in A with
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domain s(v). The data of the map y : hV X | — A also entails the specification
of the functor hV' — A that is the codomain of the natural isomorphism y.
On objects, this functor is given by v — cod(y,). On morphisms, this functor
defined in the unique way that makes y into a natural transformation:

(k:v—>0) = postk)oy ™.

This completes the proof that Cat defines an co-cosmos. Since the nerve
of a functor category, such as A, is isomorphic to the exponential between
their nerves, the equivalences of categories coincide with the equivalences of
Definition 1.1.23. It follows that the equivalences in the co-cosmos of categories
coincide with equivalences of categories, and since the surjective equivalences
are the intersection of the equivalences and the isofibrations, this completes the
proof. O

Prorosition 1.2.12 (the co-cosmos of Kan complexes). The category Kan of
Kan complexes defines an co-cosmos whose isofibrations are the Kan fibrations:
maps that lift against all horn inclusions A¥[n] & A[n] forn > 1and 0 < k <
n.

The proof proceeds along the lines of Lemma 6.1.4. We show that the subcat-
egory of Kan complexes inherits an co-cosmos structure by restricting structure
from the co-cosmos of quasi-categories.

Proof By Proposition 1.1.18, an isofibration between Kan complexes is a
Kan fibration. Conversely, since the homotopy coherent isomorphism [ can
be built from the point 1 by attaching fillers to a sequence of outer horns, all
Kan fibrations define isofibrations. This shows that between Kan complexes,
isofibrations and Kan fibrations coincide. So to show that the category of Kan
complexes inherits an co-cosmos structure by restriction from the co-cosmos of
quasi-categories, we need only verify that the full subcategory KXan < QCat
is closed under all of the limit constructions of axiom 1.2.1(i). For the conical
limits, the argument mirrors the one given in the proof of Proposition 1.2.10,
while the closure under cotensors is a consequence of Corollary D.3.11, which
implies that the Kan complexes also define an exponential ideal in the category
of simplicial sets. The remaining axiom 1.2.1(ii) is inherited from the analogous
properties established for quasi-categories in Proposition 1.2.10. O

We mention a common source of co-cosmoi found in nature to build intuition
for readers familiar with Quillen’s model categories, a popular framework for
abstract homotopy theory, but reassure newcomers that model categories are
not needed outside of Appendix E where these results are proven.
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DiGression 1.2.13 (a source of co-cosmoi in nature). As explained in §E.1,
certain easily described properties of a model category imply that the full subcat-
egory of fibrant objects defines an co-cosmos whose isofibrations, equivalences,
and trivial fibrations are the fibrations, weak equivalences, and trivial fibrations
between fibrant objects. Namely, any model category that is enriched as such
over the Joyal model structure on simplicial sets in which all fibrant objects are
cofibrant presents an co-cosmos (see Proposition E.1.1). This model-categorical
enrichment over quasi-categories can be defined when the model category is
cartesian closed and equipped with a right Quillen adjoint to the Joyal model
structure on simplicial sets whose left adjoint preserves finite products (see
Corollary E.1.4). In this case, the right adjoint becomes the underlying quasi-
category functor (see Proposition 1.3.4(ii)) and the co-cosmoi so-produced is
cartesian closed (see Definition 1.2.23). The oo-cosmoi listed in Example 1.2.24
all arise in this way.

The following results are consequences of the axioms of Definition 1.2.1.
To begin, observe that the trivial fibrations enjoy the same stability properties
satisfied by the isofibrations.

LemmMma 1.2.14 (stability of trivial fibrations). The trivial fibrations in an oo-cos-
mos define a subcategory containing the isomorphisms and are stable under
product, pullback, and forming inverse limits of towers. Moreover, the Leibniz
cotensors of any trivial fibration with a monomorphism of simplicial sets is a
trivial fibration as is the Leibniz cotensor of an isofibration with a map in the
class cellularly generated by the inner horn inclusions and the map 1 < |, and
if E > B is a trivial fibration then so is Fun(X, E) = Fun(X, B).

Proof We prove these statements in the reverse order. By axiom 1.2.1(ii) and
the definition of the trivial fibrations in an co-cosmos, we know that if E =» B
is a trivial fibration then Fun(X, E) = Fun(X, B) is both an isofibration and an
equivalence, and hence by Proposition 1.1.28 a trivial fibration. For stability
under the remaining constructions, we know in each case that the maps in
question are isofibrations in the co-cosmos; it remains to show only that the maps
are also equivalences. The equivalences in an co-cosmos are defined to be the
maps that Fun(X, —) carries to equivalences of quasi-categories, so it suffices to
verify that trivial fibrations of quasi-categories satisfy the corresponding stability
properties. For the Leibniz stability properties, this is established in Proposition
1.1.29, while the remaining properties are covered by Lemma C.2.3. O

By a Yoneda-style argument, the “homotopy equivalence” characterization
of the equivalences in the co-cosmos of quasi-categories of Definition 1.1.23
extends to an analogous characterization of the equivalences in any co-cosmos:
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Lemma 1.2.15 (equivalences are homotopy equivalences). A map f: A - B
between oo-categories in an co-cosmos K is an equivalence if and only if it ex-
tends to the data of a “homotopy equivalence” with the free-living isomorphism
I serving as the interval: that is, if there exist maps g: B - A

A B
/ ZTevo V ZT"’VO
A a Al and B B B! (1.2.16)
% zlevl \ zlevl
A B

in the co-cosmos.

Proof By hypothesis, if f: A — B defines an equivalence in the co-cosmos
X then the induced map on post-composition f, : Fun(B,A) = Fun(B, B) is an
equivalence of quasi-categories in the sense of Definition 1.1.23. Evaluating the
inverse equivalence § : Fun(B, B) = Fun(B, A) and homotopy 3 : Fun(B, B) —
Fun(B, B)' at the 0-arrow idg € Fun(B, B), we obtain a O-arrow g: B — A
together with an isomorphism 8 : 1 — Fun(B, B) from the composite fg to idg.
By the defining universal property of the cotensor (1.2.7), this isomorphism
internalizes to define the map 8 : B — B'in X displayed on the right of (1.2.16).

Now the hypothesis that f is an equivalence also provides an equivalence of
quasi-categories f, : Fun(4,A) = Fun(A, B), and the map Bf : A — B' repre-
sents an isomorphism in Fun(A4, B) from fgf to f. Since f, is an equivalence, we
conclude from Remark 1.1.24 that id4 and gf are isomorphic in the quasi-cate-
gory Fun(A, A): explicitly, such an isomorphism may be defined by applying the
inverse equivalence /1 : Fun(4, B) — Fun(A, A) and composing with the compo-
nents at id4, gf € Fun(A, A) of the isomorphism & : Fun(4,A) — Fun(4,A)"
from idgyn(a,4) to hf,.. Now by Corollary 1.1.16 this isomorphism is represented
by amap | — Fun(A, A) fromid, to gf, which internalizes toamap ot : A — Al
in X displayed on the left of (1.2.16).

The converse is easy: the simplicial cotensor construction commutes with
Fun(X, —), so a homotopy equivalence (1.2.16) induces a homotopy equivalence
of quasi-categories as in Definition 1.1.23. O

LemMA 1.2.17. The equivalences in an co-cosmos are closed under retracts
and satisfy the 2-of-3 property: given a composable pair of functors and their
composite, if any two of these are equivalences so is the third.

By the representable definition of equivalences and functoriality, Lemma
1.2.17 follows easily from the corresponding results for equivalences between
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quasi-categories (see Exercise 1.1.viii). But for sake of completeness, we prove
the general cosmological result without relying on this base case, subsuming
Exercise 1.1.viii.

Proof Let f: A = B be an equivalence equipped with the data of (1.2.16)
and consider a retract diagram

— A — C

D

|
|

By Lemma 1.2.15, to prove that h: C — D is an equivalence, it suffices to
construct the data of an inverse homotopy equivalence. To that end define
k: D — C to be the composite vgs and then observe from the commutative
diagrams

c

k / X

A—=CcC AT>B—t>D
/ Tevo | Tevo T g Tevo Tevo

c4 a0 Y, 0 p_s,p f.p_ L. p
W [or o \ Jor o
D—SsB-f.,4-",C B—5D

that v'oau : C — C'and t'Bs: D — D' define the required homotopy coherent
isomorphisms.

Via Lemma 1.2.15, the 2-of-3 property for equivalences follows from the fact
that the set of isomorphisms in a quasi-category is closed under composition.
Homotopy coherent isomorphisms in a quasi-category represent isomorphisms
in the homotopy category, whose composite in the homotopy category is then
an isomorphism, which can be lifted to a representing homotopy coherent
isomorphism by Corollary 1.1.16.17 We now apply this to the homotopy coherent
isomorphisms in the functor spaces of an co-cosmos that form part of the data
of an equivalence of co-categories.

17 Tn fact, by Example D.5.5, homotopy coherent isomorphisms can be composed directly, but we
do not need this here.
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To prove that equivalences are closed under composition, consider a compos-
able pair of equivalences with their inverse equivalences

The equivalence data of Lemma 1.2.15 defines isomorphisms ¢ : idqy @ kf €
Fun(A,A) andy : idg = hg € Fun(B, B), the latter of which whiskers to define
kyf: kf = khgf € Fun(B, B). Composing these, we obtain an isomorphism
idy = khgf € Fun(A, A), witnessing that kh defines a left equivalence inverse
of gf. The other isomorphism is constructed similarly.

To prove that the equivalences are closed under right cancelation, consider a
diagram

4
2N
f g

A—— B — C
~
k
with k an inverse equivalence to f and ¢ and inverse equivalence to gf. We
claim that f¢ defines an inverse equivalence to g. One of the required isomor-
phisms id¢c = gf¢ is given already. The other is obtained by composing three
isomorphisms in Fun(B, B)

B!

idg 22— i L2 rogpi L2

fég.
The proof of stability of equivalence under left cancelation is dual. U

The trivial fibrations admit a similar characterization as split fiber homotopy
equivalences.

Lemma 1.2.18 (trivial fibrations split). Every trivial fibration admits a section

N -

.
S b
p

B ——

that defines a split fiber homotopy equivalence
(idg,sp)

/_\
E—)E”—»EXE

(CVO evl)
pl p”l
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and conversely any isofibration that defines a split fiber homotopy equivalence
is a trivial fibration.

Proof 1If p: E =» Bis a trivial fibration, then by the final stability property of
Lemma 1.2.14, so is p, : Fun(X, E) = Fun(X, B) for any co-category X. By
Definition 1.1.25, we may solve the lifting problem below-left

@ = 8A[0] —— Fun(B,E) 141 —95P) | EinE, B)
o oy
[‘ ,,S """ le* [ C\f‘_,,—*"’ zlp*
1= A[0] —— Fun(B,B) 1= g —— Fun(E, B)
idg !

to find amap s: B — E so that ps = idg, and then solve the lifting problem
above-right to construct the desired fibered homotopy. The converse is immediate
from Lemma 1.2.15. O

A classical construction in abstract homotopy theory proves the following:

Lemma 1.2.19 (Brown factorization lemma). Any functor f: A — Bin an
co-cosmos may be factored as an equivalence followed by an isofibration, where
this equivalence is constructed as a section of a trivial fibration.

o —Pf
& X (1.2.20)
o N
A— > B
f
Moreover, f is an equivalence if and only if the isofibration p is a trivial fibration.

Proof The displayed factorization is constructed by the pullback of an isofi-
bration formed by the simplicial cotensor of the inclusion 1 + 1 < [ into the
co-category B.
Al
A fl

A-2-5 Pf — > B

(q:p) N
( AN’P l l(evo,evl)

AXB —— BXB
fxB
Note the map q is a pullback of the trivial fibration ev : B' = B and is hence a
trivial fibration. Its section s, constructed by applying the universal property of
the pullback to the displayed cone with summit A, is thus an equivalence by the
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2-of-3 property. Again by 2-of-3, it follows that f is an equivalence if and only
if pis. O

RemAaRrk 1.2.21 (equivalences satisfy the 2-of-6 property). In fact the equiva-
lences in any co-cosmos satisfy the stronger 2-of-6 property: for any composable
triple of functors

if gf and hg are equivalences then f, g, h, and hgf are too. An argument of
Blumberg and Mandell [20, 6.4] reproduced in Proposition C.1.8 uses Lemmas
1.2.17,1.2.18, and 1.2.19 to prove that the equivalences have the 2-of-6 property
(see Corollary C.1.9).

One of the key advantages of the co-cosmological approach to abstract cate-
gory theory is that there are a myriad varieties of “fibered” co-cosmoi that can
be built from a given co-cosmos, which means that any theorem proven in this
axiomatic framework specializes and generalizes to those contexts. The most
basic of these derived co-cosmoi is the co-cosmos of isofibrations over a fixed
base, which we introduce now. Other examples of co-cosmoi are developed in
Chapter 6, once we have a deeper understanding of the cosmological limits of
axiom 1.2.1(3).

Prorosition 1.2.22 (sliced co-cosmoi). For any co-cosmos K and any oo-cat-
egory B € X there is an co-cosmos X ,g of isofibrations over B whose

(i) objects are isofibrations p . E - B with codomain B
(ii) functor spaces, say from p: E » Bto q. F -» B, are defined by
pullback
Fung(p: E » B,q: F » B) — Fun(E,F)
| |
p

I — Fun(E,B)

and abbreviated to Fung(E, F) when the specified isofibrations are clear
from context
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(iii) isofibrations are commutative triangles of isofibrations over B

E—' »F

N4

(iv) terminal object is id : B - B and products are defined by the pullback
along the diagonal

xPE; — [ E;

l ’ lHipi

B—2—TI,B

(v) pullbacks and limits of towers of isofibrations are created by the forgetful
functor X;jg — K

(vi) simplicial cotensor of p: E - Bwith U € sSet is constructed by the
pullback

Umgp — EUY

| *
B;»BU

(vii) and in which a map over B

f

E—F

P ¥

is an equivalence in the oo-cosmos K g if and only if f is an equivalence
in XK.

Proof The functor spaces are quasi-categories since axiom 1.2.1(ii) asserts
that for any isofibration q : F - B in X the map q,. : Fun(E, F) » Fun(E, B)
is an isofibration of quasi-categories. Other parts of this axiom imply that each
of the limit constructions — such as the products and cotensors constructed in (iv)
and (vi) — define isofibrations over B. The closure properties of the isofibrations
in X/p follow from the corresponding ones in X. The most complicated of
these is the Leibniz cotensor stability of the isofibrations in XXz, which follows
from the corresponding property in X, since for a monomorphism of simplicial
sets i: X < Y and an isofibration r over B as in (iii) above, the map i rhAB ris
constructed by pulling back i hr along A: B — BY.

The fact that the above constructions define simplicially enriched limits in a
simplicially enriched slice category are standard from enriched category theory.
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It remains only to verify that the equivalences in the co-cosmos of isofibrations
are created by the forgetful functor K5 — XK. Suppose first that the map
f displayed in (vii) defines an equivalence in J. Then for any isofibration
s: A - B the induced map on functor spaces in K, is defined by the pullback:

Fung(A, E) Fun(A, E) s
RS p: | >~
Fung(A, F) Fun(A, F)

— Cob g
Fun(A, B)

N

1

Since f is an equivalence in X, the map f, : Fun(A, E) — Fun(A, F) is an equiv-
alence, and so it follows that the induced map on fibers over s is an equivalence
as well.!8

For the converse implication, we appeal to Lemma 1.2.15.If f: E — Fis
an equivalence in XX, then it admits a homotopy inverse in X;g. The inverse
equivalence g : F — E also defines an inverse equivalence in X and the required
simplicial homotopies in K

E—25imgp — E FanBq_»F"

are defined by composing with the top horizontal leg of the pullback defining
the cotensor in K /p. O

As mentioned in Digression 1.2.13, many of the co-cosmoi we encounter
“in the wild” satisfy an additional axiom. Note, however, that this axiom is not
inherited by the sliced co-cosmoi of Proposition 1.2.22, which is one of the
reasons it was not included in Definition 1.2.1.

DerintTION 1.2.23 (cartesian closed co-cosmoi). An co-cosmos X is cartesian
closed if the product bifunctor — X —: K X K — K extends to a simplicially
enriched two-variable adjunction

Fun(A X B, C) = Fun(4, CB) = Fun(B, C4)
in which the right adjoints (—)4 : K — % preserve isofibrations for all A € .

For instance, the co-cosmos of quasi-categories is cartesian closed, with the
exponentials defined as (special cases of) simplicial cotensors. This is one of
the reasons that we use the same notation for cotensor and for exponential.'®

18 The stability of equivalences between isofibrations under pullback can be proven either as a
consequence of Lemmas 1.2.14 and 1.2.19 using standard techniques from simplicial homotopy
theory (see Lemma C.1.11) or by arguing 2-categorically (see Proposition 3.3.4).

19 Other advantages of this convenient notational conflation are discussed in §2.3 and in
Proposition 10.3.5.
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Note in this case the functor spaces and the exponentials coincide. The same is
true for the cartesian closed co-cosmoi of categories and of Kan complexes. In
general, the functor space from A to B is the “underlying quasi-category” of the
exponential B4 whenever it exists (see Remark 1.3.11).

ExampLE 1.2.24 (co-cosmoi of (o0, 1)-categories; §E.2). The following models
of (o0, 1)-categories define cartesian closed co-cosmoi:

(i) Rezk’s complete Segal spaces define the objects of an co-cosmos €SS,
in which the isofibrations, equivalences, and trivial fibrations are the
corresponding classes of the model structure of [100].2°

(ii) The Segal categories defined by Dwyer, Kan, and Smith [38] and de-
veloped by Hirschowitz and Simpson [56] define the objects of an co-
cosmos Segal, in which the isofibrations, equivalences, and trivial fibra-
tions are the corresponding classes of the model structure of [13, 90].2!

(iii) The 1-complicial sets of [129], equivalently the “naturally marked quasi-
categories” of [78], define the objects of an co-cosmos 1-Comp in which
the isofibrations, equivalences, and trivial fibrations are the correspond-
ing classes of the model structure from either of these sources.

In §E.3, we show that certain models of (oo, n)-categories or even (oo, 00)-
categories define oco-cosmoi: n-quasi-categories, ®,,-spaces, iterated complete
Segal spaces, and n-complicial sets.

DerFintTION 1.2.25 (cO0-dual co-cosmoi). There is an identity-on-objects involu-
tive functor (—=)°: A — A that reverses the ordering of the elements in each
ordinal [n] € A. In the notation of 1.1.1, the functor (—)° sends a face map
8': [n—1] » [n] to the face map 6" ': [n — 1] » [n] and sends the de-
generacy map o' : [n + 1] > [n] to the degeneracy map o ~%: [n + 1] »
[n]. Precomposition with this involutive automorphism induces an involution
(=)°P: sSet — sSet that sends a simplicial set X to its opposite simplicial set
X°P, with the orientation of the vertices in each simplex reversed. This con-
struction preserves all conical limits and colimits and induces an isomorphism
(YX)oP = (Y°P)X™ on exponentials.

20 Warning: the model category of complete Segal spaces is enriched over simplicial sets in two
distinct “directions” — one enrichment makes the simplicial set of maps between two complete
Segal spaces into a Kan complex that probes the “spacial” structure while another enrichment
makes the simplicial set of maps into a quasi-category that probes the “categorical” structure
[64]. It is this latter enrichment that we want.

Here we reserve the term “Segal category” for those simplicial objects with a discrete set of
objects that are Reedy fibrant and satisfy the Segal condition. The traditional definition does not
include the Reedy fibrancy condition because it is not satisfied by the simplicial object defined
as the nerve of a Kan complex enriched category. Since Kan complex enriched categories are
not among our preferred models of (00, 1)-categories this does not bother us.

21
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For any co-cosmos X, there is a dual co-cosmos K° with the same objects
but with functor spaces defined by:

Fungeeo(A, B) := Fung(A, B)°P.

The isofibrations, equivalences, and trivial fibrations in K°° coincide with those
of XK.

Conical limits in K° coincide with those in &, while the cotensor of A € K
with U € sSet is defined to be AU”.

A 2-categorical justification for this notation is given in Exercise 1.4.ii.

DeriniTION 1.2.26 (discrete oo-categories). An oco-category E in an co-cosmos
X is discrete just when for all X € X the functor space Fun(X, E) is a Kan
complex.

In the co-cosmos of quasi-categories, the discrete co-categories are exactly
the Kan complexes. Similarly, in the co-cosmoi of Example 1.2.24 whose oo-
categories are (00, 1)-categories in some model, the discrete co-categories are
the co-groupoids. Importantly for what follows, the discrete co-categories can
be characterized “internally” to the co-cosmos as follows:

LemMa 1.2.27. An co-category E is discrete if and only if E' =» E? is a trivial
fibration.

Proof By Definition 1.2.2, the isofibration E' - E? is a trivial fibration if and
only if for all co-categories X the induced map on functor spaces

Fun(X,E") — Fun(X, E?)
Al al
Fun(X,E)! — Fun(X,E)*

is a trivial fibration of quasi-categories. Via the universal property of the sim-
plicial cotensor, Lemma 1.1.30 tells us that this map is a trivial fibration if and
only if Fun(X, E) is a Kan complex. O

The reader may check that the discrete co-categories in any co-cosmos assem-
ble into an oco-cosmos K=. A proof appears in Proposition 6.1.6 where general
techniques for producing new co-cosmoi from given ones are developed.

Exercises

Exercisk 1.2.i. Define an equivalence between the categories of:

(i) simplicial categories, as in (1.2.5), and
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(ii) categories enriched over simplicial sets.

ExEercisk 1.2.ii. Elaborate on the proof of Proposition 1.2.10 by proving that
the simplicially enriched category QCat admits conical products satisfying the
universal property of Digression 1.2.6. That is:

(i) Define the cartesian product A X B and the projection maps 74 : AXB —
Aand g . A X B — B for a pair of quasi-categories A and B and prove
that this data satisfies the usual (unenriched) universal property.

(ii) Given another quasi-category X, use (i) and the Yoneda lemma to show
that the projection maps induce an isomorphism of quasi-categories

(A x B —=— AX x BX.

(iii) Explain how this relates to the universal property of Digression 1.2.6.
(iv) Express the usual 1-categorical universal property of (i) as the “0-di-
mensional aspect” of the universal property of (ii).

Exercisk 1.2.iii. Prove that any object in an co-cosmos has a path object

Bl]
ﬂ \(evjm)
P

_
B A BXxB

constructed by cotensoring with the free-living isomorphism.

Exercise 1.2.iv. Show that if X is a cartesian closed oco-cosmos then K is as
well.

ExEercisk 1.2.v (6.1.6). Use Proposition 1.2.12 to show that the discrete co-cat-
egories in any co-cosmos define an co-cosmos whose functor spaces are all Kan
complexes.

1.3 Cosmological Functors

Certain “right adjoint type” constructions define maps between co-cosmoi that
preserve all of the structures axiomatized in Definition 1.2.1. The simple obser-
vation that such constructions define cosmological functors between oco-cosmoi
streamlines many proofs.

DEerintTION 1.3.1 (cosmological functor). A cosmological functor is a sim-
plicial functor (see Definition A.2.6) between co-cosmoi that preserves the
specified isofibrations and all of the cosmological limits.
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In general, cosmological functors preserve any oo-categorical notion that can
be characterized infernally to the co-cosmos — for instance, as a map equipped
with additional structure — as opposed to externally — for instance, by a statement
that involves a universal or existential quantifier. For example, the equivalences
in an co-cosmos are characterized externally in Definition 1.2.2, which might
lead one to suspect that a nonsurjective cosmological functor could fail to
preserve them. However, Lemma 1.2.15 characterizes equivalences in terms of
the presence of structures defined internally to an co-cosmos, so as a result:

Lemma 1.3.2. Any cosmological functor also preserves equivalences and trivial
fibrations.

Proof By Lemma 1.2.15 the equivalences in an co-cosmos coincide with the
“homotopy equivalences” defined by cotensoring with the free-living isomorph-
ism. Since a cosmological functor preserves simplicial cotensors, it preserves
the data displayed in (1.2.16) and hence carries equivalences to equivalences.
The preservation of trivial fibrations follows. O

REMARK 1.3.3. Similarly, arguing from Definition 1.2.26 it would not be clear
whether cosmological functors preserve discrete oco-categories, but using the
internal characterization of Lemma 1.2.27 — an co-category A is discrete if and
only if A" = A?is a trivial fibration — this follows from the fact that cosmological
functors preserve simplicial cotensors and trivial fibrations.

We now demonstrate that cosmological functors are abundant:

ProvposiTioN 1.3.4. The following constructions define cosmological functors
for any co-cosmos X:

(i) The functor space Fun(X,—): KX — QCat, for any co-category X.
(ii) The underlying quasi-category functor

(=)o =Fun(1,-): X — QCat,

specializing (i) to the terminal co-category 1.

(iii) The simplicial cotensor (=)V : K — X, for any simplicial set U.

(iv) The exponential (=)4 : K — X, for any oo-category A in a cartesian
closed oo-cosmos XK.

(v) Pullback of isofibrations f* : K ;g — K, 4 along any functor f : A — B

in an oco-cosmos XK.

(vi) Moreover, for any cosmological functor F: KX — £ and any co-cat-
egory A € X, the induced map on slices F. K4 — Lpp defines a
cosmological functor.



40 oo-Cosmoi and Their Homotopy 2-Categories

Proof The first four of these statements are nearly immediate, the preservation
of isofibrations being asserted explicitly as a hypothesis in each case and the
preservation of limits following from familiar arguments.

For (v), pullback in an co-cosmos X is a simplicially enriched limit con-
struction; one consequence of this is that f* : K, — X ,4 defines a simplicial
functor. The action of the functor f* on a 0-arrow g in X, is also defined by a
pullback square: since the front and back squares in the displayed diagram are
pullbacks the top square is as well

ffE —— > E
e g
N P| N
/*q B i A/q

A——— B

f

f

Since isofibrations are stable under pullback, it follows that f*: K;g — K4
preserves isofibrations. It remains to prove that this functor preserves the sim-
plicial limits constructed in Proposition 1.2.22, which is fundamentally a conse-
quence of the commutativity of limit constructions. In each case, this can be
verified explicitly. We illustrate this computation for simplicial cotensors by
constructing the commutative cube:

Uy f*'p —— (f'E)Y
L/// | - /L

Uhngp —— EU (f*pV
. pU
A A — AU
/ /U
B f . BU f

Since the front, back, and right faces are pullbacks, the left is as well.
The final statement (vi) is left as Exercise 1.3.i. ]

ExawmpLE 1.3.5. By Propositions 1.2.11 and 1.2.12, the full subcategory inclu-
sions Cat < QCat and Kan < QCat both define cosmological functors (see
also Lemma 6.1.4). These cosmological embeddings explicate the intuition that
the formal category theory of 1-categories or of co-groupoids can be recovered
as a special case of the formal category theory of (oo, 1)-categories.

Non-examples of cosmological functors are also instructive:
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Non-ExampLE 1.3.6. The forgetful functor X, — X is simplicial and pre-
serves isofibrations but does not define a cosmological functor, failing to pre-
serve cotensors and products. However, by Proposition 1.3.4(v), its right adjoint
— X B: X — X, does define a cosmological functor.

Non-ExampLE 1.3.7. The cosmological embedding Kan < QCat has a right
adjoint (=)~ : QCat — Kan that carries each quasi-category to its “co-group-
oid core” or maximal sub Kan complex, the simplicial subset containing those
n-simplices whose edges are all isomorphisms. This core functor preserves
isofibrations and 1-categorical limits but is not cosmological since it is not
simplicially enriched: any functor K — Q whose domain is a Kan complex and
whose codomain is a quasi-category factors through the inclusion Q= < Q via
a unique map K — Q= but in general Fun(K, Q) ¢ Fun(K, Q), since a natural
transformation K X A[1] — Q only factors through Q= < Q in the case where
its components are invertible (see Lemma 12.1.12 however).

Certain cosmological functors are especially well-behaved:

DerintTION 1.3.8 (cosmological biequivalence). A cosmological functor defines
a cosmological biequivalence F : K = £ if it additionally

(i) is essentially surjective on objects up to equivalence: for all C € £
there exists A € X so that FA ~ C and

(ii) defines a local equivalence: for all A, B € X, the action of F on functor
spaces defines an equivalence of quasi-categories

Fun(A, B) —~— Fun(FA, FB).

Cosmological biequivalences are studied more systematically in Chapter
10, where we think of them as “‘change-of-model” functors. Crucially for our
proof of the “model independence” of (o0, 1)-category theory in Chapter 11,
there are a variety of cosmological biequivalences between the co-cosmoi of
(00, 1)-categories:

ExamprLE 1.3.9 (§E.2).

(i) The underlying quasi-category functors defined on the co-cosmoi of
complete Segal spaces, Segal categories, and 1-complicial sets

€8s 2% gcar Segal “2% gear 1-comp 2% Qcar

are all biequivalences. In the first two cases these are defined by “evalu-
ating at the Oth row” and in the last case this is defined by “forgetting
the markings.”
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(ii) There are also cosmological biequivalences nerve : QCat = €8S and
nerve : QCat = Segal defined by Joyal and Tierney [64].

(iii) The functor disc: CSS = Segal defined by Bergner [14] that “dis-
cretizes” a complete Segal spaces also defines a cosmological biequiva-
lence.

(iv) Another cosmological biequivalence ()% : QCat = 1-Comp that gives
each quasi-category its “natural marking.”

In terminology justified by Proposition 10.2.1:

DeriNiTiON 1.3.10. An co-cosmos X is an co-cosmos of (oo, 1)-categories
just when the underlying quasi-category (=), : K — QCat is a cosmological
biequivalence.

RemARKk 1.3.11. The underlying quasi-category functor (—), : X — QCat
carries the internal homs of a cartesian closed co-cosmos X to the corresponding
functor spaces: for any co-categories A and B in X, we have

(BA), = Fun(1, B4) =~ Fun(A, B).

In the case where the co-cosmos X is biequivalent to QCat, we see in Chapters
10 and 11 that this entails no essential loss of categorical information.

Cosmological biequivalences not only preserve equivalences but also reflect
and create them.

Lemma 1.3.12. Let F: K = £ be a cosmological biequivalence. Then:

(i) A functor f: A — B between co-categories in X is an equivalence if
and only if Ff : FA — FB is an equivalence in L.

(ii) A pair of oo-categories in K are equivalent if and only if their images in
L are equivalent.

Proof Lemma 1.3.2 implies that cosmological functors preserve equivalences
and thus also the existence of an equivalence between a pair of co-categories in
X. To see that equivalences are also reflected, suppose f : A — B is a functor
in X with the property that Ff : FA = FB is an equivalence in £. Now for any
oco-category X, simplicial functoriality provides a commutative diagram

Fun(X,A) —*  Fun(X,B)

} I
Fun(FX, FA) —L*, Fun(FX,FB)
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so from the 2-of-3 property we conclude that f, : Fun(X,A) = Fun(X, B) is an
equivalence, proving that f is an equivalence in X.

To see that equivalences are created, suppose now that A and B are oo-
categories in K equipped with an equivalence:

FA ) FB
f_ // ZTeVO ng 2T€V0
FA = FB FA —2 FA FB —— FB'
g \ lleVl \ lleVl
g
FA FB

in £. Since Fun(A, B) = Fun(FA, FB) and Fun(B,A) = Fun(FB,FA) are
equivalences of quasi-categories the induced functors of homotopy categories
h(Fun(A4, B)) = h(Fun(FA, FB)) and h(Fun(B,A)) = h(Fun(FB,FA)) are
equivalences of categories, by Remark 1.1.24, and in particular essentially
surjective. So we may lift f and g to functors f: A — Bandg: B — A in
h(Fun(4, B)) and h(Fun(B, A)), respectively, so that Ff =~ f and Fg ~ §. The
commutative diagram of quasi-categories

Fun(B, A) X Fun(4, B) —>— Fun(A4,A)

I I

Fun(FB, FA) X Fun(FA, FB) —— Fun(FA, FA)

induces a commutative diagram between their homotopy categories. In particular,
by applying the composition bifunctor to the isomorphisms Ff = f and Fg = &,
we see that

F(idy) = idpy = go f 2 Fgo Ff = F(go f)

in h(Fun(A, A)). By fully faithfulness of h(Fun(A4, A)) = h(Fun(FA, FA)), this
isomorphism lifts to an isomorphism id4 = go f in h(Fun(A, A)). By Corollary
1.1.16, this isomorphism can be represented by a homotopy coherent isomorph-
ism | — Fun(A4, A), which internalizes to define a map a : A — A’ as required.
The construction of the homotopy coherent isomorphism 3 : B — B' from fog
to idg proceeds similarly. O

The proof of the creation of equivalences in Lemma 1.3.12 is surprisingly
delicate, passing to the homotopy categories of the functor spaces to avoid
lifting and composing homotopy coherent isomorphisms; an argument along
those lines is also possible, and left to the reader as Exercise 1.3.ii. The next
section provides context for the argument just given by introducing the homotopy
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2-category of an oo-cosmos. The reader is then invited to revisit the creation of
equivalences in Exercise 1.4.vi.

Exercises

Exercisk 1.3.i. Prove that for any cosmological functor F: KX — £ and any
A € X, the induced map F: K4 — L£/p4 defines a cosmological functor.

Exercisk 1.3.ii. Sketch a proof that cosmological biequivalences create equiva-
lences between oco-categor ies without passing to homotopy categories, by lifting
and composing the homotopy coherent isomorphisms given as part of the data
of the hypothesized equivalences.

ExEercisg 1.3.iii. Suppose F: X - L£,G: L - M,and H: M — N are
cosmological functors, and assume that GF and HG are cosmological biequiva-
lences. Show that F, G, H, and HGF are cosmological biequivalences.

1.4 The Homotopy 2-Category

Small 1-categories define the objects of a strict 2-category?? Cat of categories,
functors, and natural transformations. Many basic categorical notions — those
defined in terms of categories, functors, and natural transformations — can be
defined internally to the 2-category Cat. This suggests a natural avenue for
generalization: reinterpreting these same definitions in a generic 2-category
using its objects in place of small categories, its 1-cells in place of functors, and
its 2-cells in place of natural transformations.

In Chapter 2, we develop a significant portion of the theory of co-categories
in any fixed oco-cosmos following exactly this outline, working internally to a
2-category that we refer to as the homotopy 2-category that we associate to
any co-cosmos. The homotopy 2-category of an co-cosmos is a quotient of the
full co-cosmos, replacing each quasi-categorical functor space by its homotopy
category. Surprisingly, this rather destructive quotienting operation preserves
quite a lot of information. Indeed, essentially all of the development of the
22 Appendix B introduces 2-categories and 2-functors, reviewing the 2-category theory needed

here. Succinctly, in parallel with Digression 1.2.4, 2-categories (see Definition B.1.1) can be
understood equally as:

» “two-dimensional” categories, with objects; 1-cells, whose boundary are given by a pair of
objects; and 2-cells, whose boundary are given by a parallel pair of 1-cells between a pair of
objects — together with partially defined composition operations governed by this boundary data

« or as categories enriched over Cat.
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theory of co-categories in Part I takes place in the homotopy 2-category of an
oo-cosmos. This said, we caution the reader against becoming overly seduced by
homotopy 2-categories, which are more of a technical convenience for reducing
the complexity of our arguments than a fundamental notion of co-category
theory.

The homotopy 2-category for the co-cosmos of quasi-categories was first
introduced by Joyal in his work on the foundations of quasi-category theory
[63].

DerintTION 1.4.1 (homotopy 2-category). Let K be an co-cosmos. Its homotopy
2-category is the 2-category HX whose

« objects are the the objects A, B of X, i.e., the co-categories;
+ l-cells f: A — Bare the O-arrows in the functor space Fun(A, B), i.e., the

oo-functors; and
f
o 2-cells A @ B are homotopy classes of 1-simplices in Fun(A, B),
g
which we call co-natural transformations.

Put another way hX is the 2-category with the same objects as KX and with
hom-categories defined by

hFun(A, B) := h(Fun(4, B)),
that is, hFun(A, B) is the homotopy category of the quasi-category Fun(A4, B).

The underlying category of a 2-category is defined by simply forgetting its
2-cells. Note that an co-cosmos X and its homotopy 2-category )X share the
same underlying category K of co-categories and co-functors in K.

DiGression 1.4.2 (change of base, §A.7). The homotopy category functor
preserves finite products, as of course does its right adjoint. It follows that the
adjunction of Proposition 1.1.11 induces a change-of-base adjunction

hy

2-Cat ‘/J_\ sSet-Cat

~_ 7

whose left and right adjoints change the enrichment by applying the homotopy
category functor or the nerve functor to the hom objects of the enriched category.
Here 2-Cat and sSet-Cat can each be understood as 2-categories — of enriched
categories, enriched functors, and enriched natural transformations — and both
change of base constructions define 2-functors (see Propositions A.7.3 and
A.7.5). Since the nerve embedding is fully faithful, 2-categories can be identified
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as a full subcategory comprised of those simplicial categories whose hom spaces
are nerves of categories.

The proof of Lemma 1.3.12 uses an observation worth highlighting:

LeEmma 1.4.3.
L
(i) Every2-cell A \{;a/, B in the homotopy 2-category of an co-cosmos

is represented by a map of quasi-categories as below-left or equivalently
by a functor as below-right

LSRR A—* B
8
\ o (g,f)\‘ E/(Pl,Po)
2 ———Fun(A,B) BXB

and two such maps represent the same 2-cell if and only if they are
homotopic as 1-simplices in Fun(A, B).
f
(ii) Every invertible 2-cell A T =la > B inthe homotopy 2-category of

~—_
g

an oo-cosmos is represented by a map of quasi-categories as below-left
or equivalently by a functor as below-right

1+1 o A—% g
8 \
“w @) ,
1 £ Fun(4,B) &) "pypg P

and two such maps represent the same invertible 2-cell if and only if

their common restrictions along 2 < | are homotopic as I-simplices in
Fun(A, B).

The notion of homotopic 1-simplices referenced here is defined in Lemma
1.1.9. Since the 2-cells in the homotopy 2-category are referred to as oco-natural
transformations, we refer to the invertible 2-cells in the homotopy 2-category as
co-natural isomorphisms.

Proof The statement (i) records the definition of the 2-cells in the homotopy
2-category and the universal property (1.2.7) of the simplicial cotensor. For (ii),
a 2-cell in the homotopy 2-category is invertible if and only if it defines an
isomorphism in the appropriate hom-category hFun(A, B). By Corollary 1.1.16
it follows that each invertible 2-cell a is represented by a homotopy coherent
isomorphism « : | — Fun(A, B), which similarly internalizes to define a functor
rq7: A— B O
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An upshot of Digression 1.4.2 is that change of base is an operation that
applies to enriched functors as well as enriched categories, as can be directly
verified in the case of greatest interest.

Lemma 1.4.4. Any simplicial functor F . K — £ between co-cosmoi induces a
2-functor F : hK — HL between their homotopy 2-categories.

Proof The action of the induced 2-functor F: H X — HL on objects and 1-
cells is given by the corresponding action of F: K — £; recall an co-cosmos
and its homotopy 2-category have the same underlying 1-category. Each 2-cell
in hX is represented by a 1-simplex in Fun(A, B) which is mapped via

Fun(4, B) —X— Fun(FA, FB)

f Ff
/\ /\
A\Jw(/B»—)FA\l}ia/,FB
g Fg

to a 1-simplex representing a 2-cell in L. Since the action F: Fun(A4, B) —
Fun(FA, FB) on functor spaces defines a morphism of simplicial sets, it pre-
serves faces and degeneracies. In particular, homotopic 1-simplices in Fun(A, B)
are carried to homotopic 1-simplices in Fun(FA, FB) so the action on 2-cells
just described is well-defined. The 2-functoriality of these mappings follows
from the simplicial functoriality of the original mapping. O

We now begin to relate the simplicially enriched structures of an co-cosmos to
the 2-categorical structures in its homotopy 2-category by proving that homotopy
2-categories inherit products from their co-cosmoi that satisfy a 2-categori-
cal universal property. To illustrate, recall that the terminal co-category 1 €
X has the universal property Fun(X,1) = 1 for all X € XK. Applying the
homotopy category functor we see that 1 € HX has the universal property
hFun(X,1) = 1 for all X € hX, which is expressed by saying that the co-
category 1 defines a 2-terminal object in the homotopy 2-category. This 2-
categorical universal property has both a 1-dimensional and a 2-dimensional
aspect. Since hFun(X,1) = 1 is a category with a single object, there exists
a unique morphism X — 1 in X, and since hFun(X, 1) = 1 has only a single
morphism, the only 2-cells in X with codomain 1 are identities.

ProrosiTionN 1.4.5 (cartesian (closure)).

(i) The homotopy 2-category of any oo-cosmos has 2-categorical products.
(ii) The homotopy 2-category of a cartesian closed co-cosmos is cartesian
closed as a 2-category.
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Proof While the functor h : sSet — Cat only preserves finite products, the
restricted functor h: QCat — Cat preserves all products on account of the
simplified description of the homotopy category of a quasi-category given in
Lemma 1.1.12. Thus for any set I and family of co-categories (4;);ez in X, the
homotopy category functor carries the isomorphism of functor spaces to an
isomorphism of hom-categories

Fun(X, [ [,.;A) —— 11
h
hFun(X, TT,_,A) —= TI,_, hFun(X,A)).

el Fun(X, A;)

<«

This proves that the homotopy 2-category hX has products whose universal
properties have both a 1- and 2-dimensional component, as described in the
empty case for terminal objects above.

If XK is a cartesian closed oo-cosmos, then for any triple of co-categories
A,B,C € X there exist exponential objects C4,CB € X characterized by
natural isomorphisms

Fun(A X B, C) = Fun(4, CB) = Fun(B, C4).
Passing to homotopy categories we have natural isomorphisms
hFun(A X B, C) = hFun(A, CB) = hFun(B, C4),

which demonstrates that HX is cartesian closed as a 2-category: functors A X
B — C transpose to define functors A — CB and B —» C4, and natural
transformations transpose similarly. O

There is a standard definition of isomorphism between two objects in any
1-category, preserved by any functor. Similarly, there is a standard definition of
equivalence between two objects in any 2-category, preserved by any 2-functor:

DeriniTION 1.4.6 (equivalence). An equivalence in a 2-category is given by

« a pair of objects A and B;
« apairof 1-cells f: A—> Bandg: B— A;and
« a pair of invertible 2-cells

= ~
A \:{LO{/ A and B gl}/ﬁ/ B
&f

When A and B are equivalent, we write A ~ B and refer to the 1-cells f and g

as equivalences, denoted by “=.”
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In the case of the homotopy 2-category of an co-cosmos we have a competing
definition of equivalence from 1.2.1: namely a 1-cell f : A = B that induces an
equivalence f, : Fun(X,A) = Fun(X, B) on functor spaces — or equivalently,
by Lemma 1.2.15, a homotopy equivalence defined relative to the interval [.
Crucially, all three notions of equivalence coincide:

TueoreM 1.4.7 (equivalences are equivalences). In any co-cosmos K, the fol-
lowing are equivalent and characterize what it means for a functor f: A - B
between co-categories to define an equivalence.

(i) Forall X € X, the post-composition map f, . Fun(X,A) = Fun(X, B)
defines an equivalence of quasi-categories.
(ii) There exists a functor g . B — A and natural isomorphisms o : idy =
gf and B: fg = idg in the homotopy 2-category.
(iii) There exists a functor g . B — A and maps

b
o)

A2 A and B

«N_Q.;_N»

evy

b
or]

in the co-cosmos in K.

As an illustrative comparison of 2-categorical and quasi-categorical tech-

niques, rather than appealing to Lemma 1.2.15 to prove (i)<(iii), we re-prove
it.
Proof For (1)=(ii), if the induced map f, : Fun(X,A) = Fun(X, B) defines an
equivalence of quasi-categories then the functor f, : hFun(X, A) = hFun(X, B)
defines an equivalence of categories, by Remark 1.1.24. In particular, the
equialence f, : hFun(B,A) = hFun(B, B) is essentially surjective so there
exists g € hFun(B,A) and an isomorphism §: fg = idg € hFun(B,B).
Now since f, : hFun(A4,A) = hFun(A, B) is fully faithful, the isomorphism
Bf: fef = f € hFun(A, B) can be lifted to define an isomorphism a=! : gf =
id4 € hFun(A, A). This defines the data of a 2-categorical equivalence in Defi-
nition 1.4.6.

To see that (ii)=(iii) recall from Lemma 1.4.3 that the natural isomorphisms
a: idy = gf and B: fg = idg in hK are represented by maps a: A — A’
and B: B — B'in K as in (1.2.16).

Finally, (iii)=(i) since Fun(X, —) carries the data of (iii) to the data of an
equivalence of quasi-categories as in Definition 1.1.23. O
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It is hard to overstate the importance of Theorem 1.4.7 for the work that follows.
The categorical constructions that we introduce for co-categories, co-functors,
and oo-natural transformations are invariant under 2-categorical equivalence
in the homotopy 2-category and the universal properties we develop similarly
characterize 2-categorical equivalence classes of co-categories. Theorem 1.4.7
then asserts that such constructions are “homotopically correct”: both invariant
under equivalence in the co-cosmos and precisely identifying equivalence classes
of objects.

The equivalence invariance of the functor space in the codomain variable is
axiomatic, but equivalence invariance in the domain variable is not.23 Nor is it
evident how this could be proven from either (i) or (iii) of Theorem 1.4.7. But
using (ii) and 2-categorical techniques, there is now a short proof.

CoroLLARY 1.4.8. Equivalences of co-categories A' = A and B = B’ induce
an equivalence of functor spaces Fun(A, B) = Fun(A’, B’).

Proof The representable simplicial functors Fun(4,—): X — QCat and
Fun(—,B) : X° — QCat induce 2-functors Fun(4,—) : hX — §hQCat and
Fun(—,B) : hX°° — HhQCat, which preserve the 2-categorical equivalences of
Definition 1.4.6. By Theorem 1.4.7 this is what we wanted to show. O

There is also a standard 2-categorical notion of an isofibration, defined in
the statement of Proposition 1.4.9 and elaborated upon in Definition B.4.4. We
now show that any isofibration in an co-cosmos defines an isofibration in its
homotopy 2-category.

ProrosiTioN 1.4.9 (isofibrations are isofibrations). An isofibration p: E - B
in an co-cosmos K also defines an isofibration in the homotopy 2-category hK:
given any invertible 2-cell as displayed below-left abutting to B with a specified
lift of one of its boundary I-cells through p, there exists an invertible 2-cell
abutting to E with this boundary 1-cell as displayed below-right that whiskers
with p to the original 2-cell.

XL F X =0 3E
=B lp _ e lp
b B B

Proof The universal property of the statement says that the functor
psx . hFun(X, E) » hFun(X, B)

23 Lemma 1.3.2 does not apply since Fun(—, B) is not cosmological.
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is an isofibration of categories in the sense defined in Proposition 1.2.11. By
axiom 1.2.1(ii), since p: E - B is an isofibration in X, the induced map
P« . Fun(X, E) » Fun(X, B) is an isofibration of quasi-categories. So it suffices
to show that the functor h: QCat — Cat carries isofibrations of quasi-categor-
ies to isofibrations of categories.

So let us now consider an isofibration p : E - B between quasi-categories.
By Corollary 1.1.16, every isomorphism 3 in the homotopy category hB of the
quasi-category B is represented by a simplicial map 8 : | — B. By Definition
1.1.17, the lifting problem

e
_—

1
[
I

—_
B

o

p

“«—

=

can be solved, and the map y: | — E so produced represents a lift of the
isomorphism from hB to an isomorphism in hE with domain e. O

ConvenTioN 1.4.10 (on isofibrations in homotopy 2-categories). Since the
converse to Proposition 1.4.9 does not hold, there is a potential ambiguity when
using the term “isofibration” to refer to a map in the homotopy 2-category of an
oo-cosmos. We adopt the convention that when we declare a map in §X to be an
isofibration we always mean this is the stronger sense of defining an isofibration
in XK. This stronger condition gives us access to the 2-categorical lifting property
of Proposition 1.4.9 and also to homotopical properties axiomatized in Definition
1.2.1, which ensure that the strictly defined limits of 1.2.1(i) are automatically
equivalence invariant constructions (see §C.1 and Proposition 6.2.8).

We conclude this chapter with a final definition that can be extracted from the
homotopy 2-category of an co-cosmos. The 1- and 2-cells in the homotopy 2-
category from the terminal co-category 1 € X to a generic co-category A € K
define the objects and morphisms in the homotopy category of the co-category
A.

DEerintTION 1.4.11 (homotopy category of an co-category). The homotopy
category of an co-category A in an co-cosmos X is defined to be the homotopy
category of its underlying quasi-category, that is:

hA := hFun(1, A) := h(Fun(1, A)).
As we shall discover, homotopy categories generally inherit “derived” ana-

logues of structures present at the level of co-categories. An early example of
this appears in Proposition 2.1.7(ii).
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Exercises

EXERcISE 1.4.1.

(i) What is the homotopy 2-category of the co-cosmos Cat of 1-categories?
(ii) Prove that the nerve defines a 2-functor Cat & hQCat that is locally
fully faithful.

ExEercisk 1.4.ii. Demonstrate that the homotopy 2-category of the dual cosmos
XK<° of an co-cosmos X is the co-dual of the homotopy 2-category hX — in
symbols §(K°) = (hX)° — with the domains and codomains of 2-cells but not
1-cells reversed (see Definition B.1.6).

f
Exercisk 1.4.iii. Consider a natural isomorphism A =Y« 3 B between a
g
parallel pair of functors in an co-cosmos. Give two proofs that if either f or g is
an equivalence then both functors are, either by arguing entirely in the homotopy

2-category or by appealing to Lemma 1.4.3.

Exercisk 1.4.iv. Extend Lemma 1.2.27 to show that the following four con-

ditions are equivalent, characterizing the discrete objects E in an co-cosmos
X

(i) Eisadiscrete object in the homotopy 2-category §K, that is, every 2-cell
with codomain E is invertible.
(ii) For each X € X, the hom-category hFun(X, E) is a groupoid.
(iii) For each X € X, the mapping quasi-category Fun(X, E) is a Kan com-
plex.
(iv) The isofibration E' - E2, induced by the inclusion of simplicial sets
2 < [, is a trivial fibration.

Exercisk 1.4.v (10.3.1). Extend Lemma 1.4.4 to show thatif F: X — Lisa
cosmological biequivalence then F : K — hL is a 2-categorical biequivalence,
a 2-functor that is essentially surjective on objects up to equivalence that locally
defines an equivalence of hom-categories.

Exercise 1.4.vi. Let F: K = L be a cosmological biequivalence and let
A, B € X. Re-prove part of the statement of Lemma 1.3.12: that if FA ~ FB in
L then A ~ Bin X.

ExEercisk 1.4.vii (3.6.2). Let B be an oo-category in the co-cosmos X and let
HX g denote the 2-category whose

« objects are isofibrations E -» B in KX with codomain B;
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« 1-cells are 1-cells in HX over B; and

E—F

N
B

« 2-cells are 2-cells o in h&C

that lie over B in the sense that gor = id,,.

Argue that the homotopy 2-category h(K ;) of the sliced co-cosmos has the
same underlying 1-category but different 2-cells. How do these compare with
the 2-cells of hX)p?
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Adjunctions, Limits, and Colimits I

Heuristically, co-categories generalize ordinary 1-categories by adding in higher
dimensional morphisms and weakening the composition law. One could imagine
“oo-tizing” other types of categorical structure similarly, by adding in higher
dimension and weakening properties. The naive hope is that proofs establishing
the theory of 1-categories might similarly generalize to give proofs for co-
categories, just by adding a prefix “co-" everywhere. In this chapter, we make
this dream a reality — at least for a library of basic propositions concerning
equivalences, adjunctions, limits, and colimits and the interrelationships between
these notions.

Recall that categories, functors, and natural transformations assemble into a
2-category Cat. Similarly, the co-categories, co-functors, and co-natural trans-
formations in any co-cosmos assemble into a 2-category, namely the homotopy
2-category of the co-cosmos, introduced in §1.4. In fact, Cat can be regarded as
a special case of a homotopy 2-category (by Exercise 1.4.i). In this chapter, we
use 2-categorical techniques to define adjunctions between co-categories and
limits and colimits of diagrams valued in an co-category and prove that these
notions interact in the expected ways. In the homotopy 2-category of categories,
this recovers classical results from 1-category theory, and in some cases even
specializes to the standard proofs. As these arguments are equally valid in any
homotopy 2-category, our proofs also establish the desired generalizations by
simply appending the prefix “oco-.”

In §2.1, we define an adjunction between oco-categories to be an adjunction in
the homotopy 2-category of co-categories, oco-functors, and co-natural transfor-
mations. While it takes some work to justify the moral correctness of this simple
definition, it has the great advantage that proofs of a number of results concern-
ing the calculus of adjunctions and equivalences can be taken “off the shelf”
in the sense that anyone who is sufficiently well-acquainted with 2-categories
might know them already. In §2.2, we specialize the theory of adjunctions be-

54
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tween oo-categories to define and study initial and terminal elements inside an
oo-category. This section also serves as a warmup for the more subtle general
theory of limits and colimits of diagrams valued in an co-category, which is the
subject of §2.3. Finally, in §2.4, we study the interactions between these notions,
proving that right adjoints preserve limits and left adjoints preserve colimits.

Missing from this discussion is an account of the universal properties associ-
ated to the unit of an adjunction or to a limit cone. These will be incorporated
when we return to these topics in Chapter 4 after introducing an appropriate
“hom oco-category” with which to state them.

2.1 Adjunctions and Equivalences

In §1.4, we encounter the definition of an equivalence between a pair of objects
in a 2-category. In the case where the ambient 2-category is the homotopy
2-category of an co-cosmos, Theorem 1.4.7 observes that the 2-categorical
notion of equivalence precisely recaptures the notion of equivalence between oco-
categories in the full co-cosmos. In each of the examples of co-cosmoi we have
considered, the representably defined equivalences in the co-cosmos coincide
with the standard notion of equivalences between co-categories as presented
in that particular model.! Thus, the 2-categorical notion of equivalence is the
“correct” notion of equivalence between co-categories.

Similarly, there is a standard definition of an adjunction between a pair of
objects in a 2-category, which, when interpreted in the homotopy 2-category
of co-categories, functors, and natural transformations in an co-cosmos, will
define the correct notion of adjunction between co-categories.

DerintTiON 2.1.1 (adjunction). An adjunction between oo-categories is com-
prised of:

« a pair of oo-categories A and B;
+ apair of co-functorsu: A - Band f: B — A; and
« apair of co-natural transformations 7 : idg = uf ande: fu = idy, called
the unit and counit respectively,
L For instance, as outlined in Digression 1.2.13, the equivalences in the co-cosmoi of Example

1.2.24 recapture the weak equivalences between fibrant—cofibrant objects in the usual model
structure.
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so that the triangle equalities hold:?

B ———8B B B ———— B B
A= SNTIOR (Y
A———A A A————A A

The functor f is called the left adjoint and u is called the right adjoint, a
relationship that is denoted symbolically in text by writing f - u or in a
displayed diagram such as?
f
e,
A \i_/, B

We typically drop the prefix “co” from the functors and natural transforma-

tions between oco-categories.

DiGression 2.1.2 (justifying the 2-categorical definition of an adjunction). We
offer a few words of justification for those who find Definition 2.1.1 implausible
— perhaps too simple to be trusted. Joyal was the first to propose using the
standard 2-categorical definition to define an adjunction between co-categories,
defining an adjunction between quasi-categories to be an adjunction in the
homotopy 2-category hQCat in the preface to [63]. However, this definition was
not widely adopted, with most practitioners instead using Lurie’s definition of
adjunction between quasi-categories [78, §5.2], which takes a quite different
form. In §F.5, we prove that in the co-cosmos of quasi-categories, Joyal’s 2-
categorical definition of adjunction precisely recovers Lurie’s. As explained in
Part 11, each of the models of (o0, 1)-categories described in Example 1.2.24
“has the same category theory,” so Definition 2.1.1 agrees with the community
consensus notion of adjunction between (oo, 1)-categories.

In the co-cosmoi whose objects model (oo, 1)- or (0o, co)-categories, the ad-
junctions defined in the homotopy 2-category are the “pseudo-style” adjunctions.
While these are not the most general adjunctions that might be considered —
for instance, one might have the triangle equality relations satisfied only up to
coherent noninvertible 3-cells — they are an important class of adjunctions. One
reason for the relevance of Definition 2.1.1 in all co-cosmoi is its relationships
to the equivalences, which Theorem 1.4.7 establishes are morally “correct,” and
to the notions of limits and colimits to be introduced.

2 The left-hand equality of pasting diagrams asserts the composition relation u€ - nu = id,, in the
hom-category hFun(A, B), while the right-hand equality asserts that € f - f7 =idy in
hFun(B, A). The calculus of pasting diagrams is surveyed in §B.1.

3 Some authors contort adjunction diagrams so that the left adjoint is always oriented in a

particular direction; we instead use the turnstile symbol “L” to indicate which adjoint is the left
adjoint.
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Finally, a reasonable objection is that Definition 2.1.1 appears too “low di-
mensional,” comprised of data found entirely in the homotopy 2-category and
ignoring the higher dimensional morphisms in an co-cosmos. In fact, any adjunc-
tion between co-categories extends to a homotopy coherent adjunction involving
data in all dimensions, and moreover such extensions are homotopically unique
[109].

The definition of an adjunction given in Definition 2.1.1 is “equational” in
character: stated in terms of the objects, 1-cells, and 2-cells of a 2-category and
their composites. Immediately:

Lemma 2.1.3. An adjunction in a 2-category is preserved by any 2-functor. [

ExampLE 2.1.4 (adjunctions between 1-categories). Via the nerve embedding
Cat < hQCat, any adjunction between 1-categories induces an adjunction
between their nerves regarded as quasi-categories.

ExampLE 2.1.5 (adjunctions between topological categories). Cordier’s homo-
topy coherent nerve [29, 30] defines a 2-functor NN : Kan-Cat — hQCat from
the 2-category of Kan complex enriched categories, simplicially enriched func-
tors, and simplicial natural transformations, to the homotopy 2-category hQCat.
In this way, topologically enriched adjunctions define adjunctions between
quasi-categories.

ExampLE 2.1.6 (Quillen adjunctions). Topologically enriched adjunctions are
relatively rare. More prevalent are “up-to-homotopy” topologically enriched
adjunctions, such as those presented by Quillen adjunctions between (simplicial)
model categories. These also define adjunctions between quasi-categories (see
Mazel-Gee [85] or [108, §6.2]).

These examples define adjunctions between quasi-categories, but Lemma
2.1.3 applies to the 2-functors underlying the cosmological functors of Example
1.3.9 to transfer adjunctions defined in one model of (o0, 1)-categories to ad-
junctions defined in each of the other models. The preservation of adjunctions
by 2-functors, such as those given by Lemma 1.4.4, also proves:

f

ProposiTioN 2.1.7. Given an adjunction A @ B between oo-categories:

u
(i) for any co-category X,

e
Fun(X,A) <1 = Fun(X,B)

Uy

defines an adjunction between quasi-categories;
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(ii) for any co-category X,

I
hFun(X,A) <1 hFun(X,B)
Uy
defines an adjunction between categories;
(iii) for any simplicial set U,
fU
U+« — pU
AW L OB
uU
defines an adjunction between oo-categories; and
(iv) if the ambient co-cosmos is cartesian closed, then for any oo-category
G
fC
AC (/I\ BC

~—— -

u€

defines an adjunction between oco-categories.

For instance, taking X = 1 in (ii) yields a “derived” adjunction between the
homotopy categories of the co-categories A and B (see Definition 1.4.11):
fx
—, —
hA <L 5 hB
U,
Proof Any adjunction f - u in the homotopy 2-category hX is preserved by
each of the 2-functors Fun(X, —) : X — hQCat, hFun(X,—): hX — Cat,
()Y hK = HX, and (=) : hK — HX. O

ReEmMARK 2.1.8. There are contravariant versions of each of the adjunction preser-
vation results of Proposition 2.1.7, the first of which we explain in detail (see
Exercise 2.1.i for further discussion). Fixing the codomain variable of the functor
space at any oo-category C € X defines a 2-functor

Fun(—,C): hX® — hQCat

that is contravariant on 1-cells and covariant on 2-cells.* Such 2-functors pre-
serve adjunctions, but exchange left and right adjoints: for instance, given f - u

4 On a 2-category, the superscript “op” is used to signal that the 1-cells should be reversed but not
the 2-cells, the superscript “co” is used to signal that the 2-cells should be reversed but not the
1-cells, and the superscript “coop” is used to signal that both the 1- and 2-cells should be
reversed (see Definition B.1.6).
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in X, we obtain an adjunction
u*
Fun(A,C) <L = Fun(B,C)
f*
between the functor spaces.

The next five results have standard proofs that can be taken “off the shelf” by
querying any 2-category theorist who may happen to be standing nearby. The
only novelty is the observation that these standard arguments can be applied to
the theory of adjunctions between oco-categories.

ProposiTION 2.1.9. Adjunctions compose: given adjoint functors

I f I
u’ u'u

the composite functors are adjoint.

Proof Writingn: idg= uf,e: fu=idy,n : idc¢=>u'f',and€’ : f'u' =
idg for the respective units and counits, the pasting diagrams

C=C

c
f\ I’ A' u/ UE'\T

B B and B B

N/ 7« N

7
A A

define the unit and counit of ff’ - u'u so that the triangle equalities hold:

C—— c
Lo
AN N 5
B B B = B
N e N i)
Ae—onu—a A
0
o c
Vet e fe B
B B B = B

A
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An adjoint to a given functor is unique up to natural isomorphism:

ProrosiTion 2.1.10 (uniqueness of adjoints).

(i) If f Huand f' 4 u, then f = f'.
(ii) Conversely, if f Huand f = f', then f' 4 u.

Proof Writingn: idg= uf,e: fu=>1ids,n': idg=>uf’,ande': f'u=
id4 for the respective units and counits, the pasting diagrams

7 f 7 f!
AN AZEEAN
A —

',
A=———A
define 2-cells f = f’ and f' = f. The composites f = ' = fand f' >
f = f' are computed by pasting these diagrams together horizontally on one
side or on the other. Applying the triangle equalities for the adjunctions f - u

A

and f'  u both composites are easily seen to be identities. Hence f = f' as
functors from B to A.
Part (ii) is left as Exercise 2.1.ii. O

The following result weakens the hypotheses of Definition 2.1.1.

LemMa 2.1.11 (minimal adjunction data). A pair of functors f: B — A and
u: A — B form an adjoint pair f - u if and only if there exist natural
transformations idg = uf and fu = idy so that the triangle equality composites
= fuf = fand u= ufu= u are both invertible.

Proof The unit and counit of an adjunction certainly satisfy these hypotheses.
For the converse, consider natural transformations 7 : idg = uf ande': fu=
id4 so that the triangle equality composites

fn e'f

!’
f gb::u%}ufué}u

¢:=f fuf

are isomorphisms. We construct an adjunction f - u with unit » by modifying €’
to form the counit €. To explain the idea of the construction, note that for a fixed
pair of generalized elements b: X — Band a: X — A, pasting with 7 and

5 By the co-dual of this construction, we could alternatively take €’ to be the counit at the cost of
modifying #) to form the unit (see Exercise 2.1.iii).
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with €’ defines functions between the displayed sets of natural transformations:

PN
N
X——— A
¢-f(=) ¢ —¢
x—L B , B,
NS u-n ———1 N
X——— A
I,b-—\‘ . /dff(—)
X—>—>B
AN
A

From the hypothesis that the triangle equality composites are isomorphisms,
two of these functions are invertible, and then by the 2-of-6 property for isomor-
phisms all six maps are bijections.

Define the “corrected” counit to be the composite:

- N

A#A

so that one of the triangle equality composites reduces to the identity:

B
\ \ \Un Ue\ s \ =f<=>f
A 4 A A
Now from the pasting equality
w7 N\ /\ d Cu /N
N E}Mﬁ» \Un = e LY S
A A = A A=——=A

we see that (ue - nu) - = 1. Since 9 is invertible, we may cancel to conclude
that ue - nu = id,,. L

A standard 2-categorical result is that any equivalence in a 2-category can be
promoted to an equivalence that also defines an adjunction:
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ProposiTion 2.1.12 (adjoint equivalences). Any equivalence can be promoted
to an adjoint equivalence by modifying one of the 2-cells. That is, the invertible
2-cells in an equivalence can be chosen so as to satisfy the triangle equalities.
Hence, if f and g are inverse equivalences then f 4 gand g 1 f.

Proof Consider an equivalence comprised of functors f : A — Bandg: B —
A and invertible 2-cells

fg
T —ui >
A\:l;a/,A and B{i/ﬁ/B
g

Since o and 3 are both invertible, the triangle equality composites are as well,
and the construction of Lemma 2.1.11 applies. O

One use of Proposition 2.1.12 is to show that adjunctions are equivalence
invariant:

ProposriTioN 2.1.13. A functor u: A — B between oo-categories admits a
left adjoint if and only if, for any pair of equivalent co-categories A' ~ A and
B' ~ B, the equivalent functor u' : A" — B’ admits a left adjoint.

As we shall discover, all of co-category theory is equivalence invariant in this
way.

Proof Ifu: A — Badmits a left adjoint then by composing f - u with the
adjoint equivalences A’ ~ A and B ~ B’ we obtain an equivalent adjunction:

. f o

u

Conversely, if the equivalent functor u’: A" = A 2 B > B’ admits a left
adjoint f” then again we obtain a composite adjunction:

f,
— T~ ,/l\ N
A\J__/A\NJAYBVB\JN_/B

whose right adjoint is naturally isomorphic to the original functor u. By Propo-
sition 2.1.10 the displayed left adjoint is then a left adjoint to u. O

For later use, we close with an example of an abstractly defined adjunction
that can be constructed for any co-category in any co-cosmos via the results
proven in this section.
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LemMma 2.1.14. For any co-category A, the “composition” functor

(—idgom(-))
P

A xS (2.1.15)
A \i/

(idgoa(—y—)
admits left and right adjoints, which extend an arrow into a composable pair by
pairing it with the identities at its domain or its codomain, respectively.
Proof There is a dual adjunction in A C Cat whose functors we describe
using notation for simplicial operators introduced in 1.1.1:

0

o0 A°
T 3 L )
=52 - AP — sl — A
\\l/
ol g0t

For any co-category A in an co-cosmos K, Exercise 2.1.i describes a 2-functor
A Cat™® — HXK carrying the adjoint triple displayed above-left to the one
displayed above-right.

Now we claim there is a trivial fibration A* =» A%x 4 A® constructed as follows.
The pushout diagram of simplicial sets displayed below-left is carried by the
simplicial cotensor A s8et™® —» K toa pullback diagram of co-categories
below-right; since the legs of the pushout square are monomorphisms, the legs
of the pullback square are isofibrations by 1.2.1(ii):

A[2] —— 2 AN g2
] - ]61 l - leVO
ﬂ A2 evy A

By Lemma 1.2.14, the cotensor of the inner horn inclusion A'[2] & A[2] = 3
with the co-category A defines a trivial fibration q : A% =» AN[2] ~ A% x , A2,
By Lemma 1.2.18, the trivial fibration q : A% =» A% x4 A% admits a section s,
which defines an equivalence inverse. By Proposition 2.1.12, these functors are
both left and right adjoints. The desired adjoint triple may then be constructed
as the composite adjunction:

0

q A°
/_\ /\
AxA s Sl S 0
A 4L - <~
q 1

AO'
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Note that the adjoint functors of (2.1.15) commute with the “endpoint evalua-
tion” functors to A X A. In fact, the units and counits can similarly be fibered
over A X A (see Example 3.6.13).

Exercises

Exercisk 2.1.i. The aim of this exercise is to spell out the most subtle of the
dual adjunction-preservation results discussed in Remark 2.1.8.

(i) Let A be an co-category is an co-cosmos K. Show that the simplicial
cotensor restricts to define a 2-functor A7) : hQCat® — HhIK.
(i) Argue that the 2-functor of (i) restricts further along the nerve embedding
to define a 2-functor A7) : Cat® — hK.
(iii) Conclude that for any adjunction between 1-categories as below-left
there is an induced adjunction between oco-categories as below-right:

f *

u
P I« | ~ AJ
NG W) AL 4
u f*

Exercisg 2.1.ii. Prove Proposition 2.1.10(ii).

Exercisk 2.1.iii. Dualize the proof of Lemma 2.1.11 so that it applies in the
context of Proposition 2.1.12 to show that any equivalence can be promoted
into an adjoint equivalence in which the counit is part of the originally specified
data.

Exercisk 2.1.iv. Prove that an adjoint equivalence between co-categories de-
scends to an adjoint equivalence between their homotopy categories.

2.2 Initial and Terminal Elements

Employing the tactic used in Definition 1.4.11 to define the homotopy category
of an co-category, we use the terminal co-category 1 to probe inside an co-
category A. An object a in the homotopy category hA is defined to be a map of
oco-categories a : 1 — A. To avoid the proliferation of the term “objects,” and in
deference to Lawvere’s notion of (generalized) elements [74], we refer to maps
a: 1 — A as elements® of the co-category A henceforth. This terminology
will help us keep track of the “category level” under discussion: elements a

6 A generalized element of A is a functor f : X — A. By the Yoneda lemma, an co-category is
determined by its generalized elements.
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live inside oco-categories A, which are the objects of co-cosmoi K — which
themselves define “infinite-dimensional categories,” albeit of a different sort.

DEeriNITION 2.2.1 (initial/terminal element). An initial element in an co-cate-
gory A is a left adjoint to the unique functor ! : A — 1, as displayed below-left,
while a terminal element in an co-category A is a right adjoint, as displayed
below-right.

171 >4 11 ~A

Let us unpack the definition of an initial element; dual remarks apply to
terminal elements.

Lemma 2.2.2 (minimal data). To define an initial element in an co-category A,
it suffices to specify

e an elementi:. 1 — A and

.
* a natural transformation '/' e \IA from the constant functor at i to

A _ A
the identity functor

so that the component €i . i = I, an arrow from i to i in hA, is invertible.

Proof Proposition 1.4.5, whose proof starts in the paragraph before its state-
ment, demonstrates that the co-category 1 € X is 2-terminal in the homotopy
2-category hK. The 1-dimensional aspect of this universal property implies
that any element i: 1 — A defines a section of the unique map !: A — 1,
while the 2-dimensional aspect asserts that there exist no nonidentity 2-cells
with codomain 1. In particular, the unit of the adjunction i ! is necessarily
an identity and one of the triangle equalities comes for free. What remains of
Definition 2.1.1 in this setting is the data of a counit natural transformation
€: il = idy together with the condition that its component €i = id;. But in
fact we can prove that this natural transformation must be the identity from the
weaker and more natural assumption that €i : i = i is invertible.
To see this consider, the horizontal composite

1 1 iliti == gy
!/'Ue\i¢ /'J}e\i‘ 2 i!eiﬂ ﬂd

i!i?}i
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By naturality of whiskering,” we can evaluate this composite as a vertical
composite in two ways. Since 1 is 2-terminal, the whiskered cell le = id,,
so the composition relation reduces to €i - €i = €i. Thus €i is an idempotent
isomorphism, and hence, by cancelation, an identity. O

Put more concisely, an initial element defines a left adjoint right inverse to
the functor ! : A - 1, while a terminal element defines a right adjoint right
inverse (see §B.4).

Lemma 2.2.3 (uniqueness). Any two initial elements in an oo-category A are
isomorphic in hA and any element of hA that is isomorphic to an initial element
is initial.

Proof By Proposition 2.1.10, any two left adjoints i and i’ to the functor
11 A — 1 are naturally isomorphic, and any a : 1 — A that is isomorphic to a
left adjointto ! : A — 1 is itself a left adjoint. A natural isomorphism between
a pair of functors i,i’ : 1 — A gives exactly the data of an isomorphism i & i’
between the corresponding elements of the homotopy category hA. O

Remark 2.2.4. Applying the 2-functor Fun(X, —) : X — HQCat to an initial
elementi: 1 — A of an co-category A € X yields an adjunction

Ly
1= Fun(X,1) 71 = Fun(X,A)
!
Via the isomorphism Fun(X, 1) = 1 that expresses the universal property of the

terminal co-category 1, the constant functor at an initial element
xX—t51-"54

defines an initial element of the functor space Fun(X, A). This observation can
be summarized by saying that initial elements are representably initial at the
level of the co-cosmos.

Conversely, if i : 1 — A is representability initial, then i defines an initial ele-
ment of A. This is most easily seen by passing to the homotopy 2-category, where
we can show that an initial element i : 1 — A is initial among all generalized
elements f : X — A in the following precise sense.

7 “Naturality of whiskering” refers to the observation of Lemma B.1.3 that any
horizontal-composite of 2-cells in a 2-category can be expressed as a vertical composite of

whiskerings of those cells in two different ways, in this case giving rise to the commutative
diagram in hA := hFun(1, A) displayed above-right.
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Lemma 2.2.5. Anelementi: 1 — A is initial if and only if forall f: X — A
there exists a unique 2-cell with boundary

N

1
! i
=1l
X—
f

Proof 1fi: 1 — Aisinitial, then the adjunction of Definition 2.2.1 is preserved
by the 2-functor hFun(X, —) : H X — Cat, defining an adjunction

s

12 hFun(X,1) Z__1 > hFun(X,A)

!
Via the isomorphism hFun(X, 1) = 1, this adjunction proves that the constant
functor i! : X — A is initial in the category hFun(X, A) and thus has the univer-
sal property of the statement.

Conversely, if i: 1 — A satisfies the universal property of the statement,

applying this to the generic element of A (the identity map idy : A — A)
produces the data of Lemma 2.2.2. O

Lemma 2.2.5 says that initial elements are representably initial in the homo-
topy 2-category. Specializing the generalized elements to ordinary elements,
we see that initial and terminal elements in A respectively define initial and
terminal elements in its homotopy category:

|~

1 > (2.2.6)
\_/’

-~

In general the property of being “homotopy initial,” i.e., initial in the homotopy
category, is weaker than being initial in the oo-category. However Nguyen,
Raptis, and Schrade observe that a homotopy initial element in a complete
(00, 1)-category necessarily defines an initial element [88, 2.2.2].

Continuing the theme of the equivalence invariance of co-categorical notions:

LemMma 2.2.7. If A has an initial element and A ~ A’ then A’ has an initial
element and these elements are preserved up to isomorphism by the equivalences.

Proof By Proposition 2.1.12, the equivalence A ~ A’ can be promoted to an
adjoint equivalence, which can immediately be composed with the adjunction
characterizing an initial element i of A:
i ~
TS 4, TS

!
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The composite adjunction provided by Proposition 2.1.9 proves that the image
of i defines an initial element of A’, which by construction is preserved by the
equivalence A = A’. By the uniqueness of initial elements established in Lemma
2.2.3, this argument also shows that the equivalence A’ = A preserves initial
elements. O

We now turn to the general theory of limits and colimits of diagrams valued
in an oo-category. The theory of initial elements previews this material well
since in fact an initial element can be understood as an example of both notions:
an initial element is the colimit of the empty diagram and also the limit of the
diagram encoded by the identity functor, as we explain in Example 2.3.11.

Exercises

Exercisk 2.2.i. Use Lemma 2.2.5 to show that a representably initial element,
as described in Remark 2.2.4, necessarily defines an initial element in A.

Exercisk 2.2.ii. Prove that initial elements are preserved by left adjoints and
terminal elements are preserved by right adjoints.

2.3 Limits and Colimits

We now introduce limits and colimits of diagram valued inside an co-category
A in some co-cosmos. We consider two varieties of diagrams:

« diagrams indexed by a simplicial set J and valued in an co-category A in a
generic co-cosmos and

« diagrams indexed by an oo-category J and valued in an co-category A in a
cartesian closed co-cosmos.?

DEeriniTION 2.3.1 (diagram oco-category). For an co-category A and a simplicial
set J — or possibly, in the case of a cartesian closed co-cosmos, an co-category J
— we refer to A’ as the co-category of J-shaped diagrams in A. A diagram of
shape Jin A is an element d : 1 — A’.°

8 For the co-cosmoi of (co, 1)-categories of Example 1.2.24, there is no essential difference
between these notions: in QCat they are tautologically the same, and in all biequivalent
co-cosmoi the co-category of diagrams indexed by an co-category J is equivalent to the
co-category of diagrams indexed by its underlying quasi-category, regarded as a simplicial set
(see Proposition 10.3.5).

9 When A7 is the exponential of a cartesian closed co-cosmos, diagrams stand in bijection with
functors d : J = A.
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Both constructions of the co-category of diagrams in an co-cosmos K define
simplicial bifunctors

sSet? X K —— K KP XK —— K
(J,A) — A’ (J,A) —— A’

In either indexing context, there is a terminal object 1 with the property that
Al = A for any co-category A. Restriction along the unique map !: J — 1
induces the constant diagram functor A : A — A’.

We deliberately conflate the notation for co-categories of diagrams indexed
by a simplicial set or by another oo-category because all of the results we prove
in Part I about the former case also apply to the latter. For economy of language,
we refer only to simplicial set indexed diagrams for the remainder of this section.

DEerintTION 2.3.2 (limit and colimit functor). An co-category A admits all
colimits of shape J if the constant diagram functor A : A — A’ admits a left
adjoint, while A admits all limits of shape J if the constant diagram functor
admits a right adjoint:

colim
1

Al —ar—A
~_1t “
lim

In the oo-cosmos of categories, Definition 2.3.2 reduces to the classically
defined limit and colimit functors, but in a general co-category limits and colimits
should be thought of as analogous to the classical notions of “homotopy limits”
and “homotopy colimits.” In certain cases, this correspondence can be made
precise. Every quasi-category is equivalent to the homotopy coherent nerve of a
Kan complex enriched category [111, 7.2.2], and homotopy limit or homotopy
colimit cones in the Kan complex enriched category correspond exactly to limit
or colimit cones in the homotopy coherent nerve (see Lurie’s [78, 4.2.4.1] or
[113,6.1.4,6.2.7]). In the oo-categorical context, no stricter notion of limit or
colimit is available, so the “homotopy” qualifier is typically dropped.

Limits or colimits of set-indexed diagrams — the case where the indexing
shape is a coproduct of the terminal object 1 indexed by a set J — are called
products or coproducts, respectively.

Lemma 2.3.3. Products or coproducts in an oo-category A also define products
or coproducts in its homotopy category hA.

Proof When J is a set, the co-category of diagrams itself decomposes as a
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product A7 ~ T ;A. Since the 2-functor that carries an co-category to its
homotopy category
hFun(1,—
hxK LS Cat

Ar——hA

preserves products, there is a chain of isomorphisms

h(4”) = h(IT,4) = [T, h4 = (h4)’

when J is a set. Thus, in this special case, the adjunctions of Definition 2.3.2
that define products or coproducts in an co-category descend to the adjunctions
that define products or coproducts in its homotopy category:

colim
(hA) =~ h(4’) L, >
\J./'
lim
This remains true in the case J = @, explaining the observation made in (2.2.6).
O

WAaARNING 2.3.4. This argument does not extend to more general limit or colimit
notions, and such co-categorical limits or colimits do not typically descend
to limits or colimits in the homotopy category.!? In §3.2, we observe that the
homotopy category construction fails to preserve more complicated cotensors,
even in the relatively simple case of J = 2.

The problem with Definition 2.3.2 is that it is insufficiently general: many
oco-categories have certain, but not all, limits of diagrams of a particular indexing
shape. So it would be desirable to re-express Definition 2.3.2 in a form that
allows us to consider the limit of a single diagram d : 1 — A’ or of a family of
diagrams. To achieve this, we make use of the following 2-categorical notion
that op-dualizes the more familiar absolute (Kan) extension diagrams.

DEeFintTION 2.3.5 (absolute lifting diagram). Given a cospan C £4 <L Bin
a 2-category, an absolute left lifting of g through f is given by a 1-cell € and
2-cell A as displayed below-left

B X —2.B X —-2.B
Elf e
¢ lf cl 2 lf _ cl i lf
M Py

10 This sort of behavior is familiar from abstract homotopy theory: homotopy limits and colimits
are not generally limits or colimits in the homotopy category.
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so that any 2-cell as displayed above-center factors uniquely through (¢, 1) as
displayed above-right.

Dually, an absolute right lifting of g through f is given by a 1-cell r and
2-cell p as displayed below-left

b

B x—2.B x—-Lt.B
r g o

f Cl U f = c f
Upl x - /rUp

so that any 2-cell as displayed above-center factors uniquely through (r, p) as
displayed above-right.

When these exist, left and right liftings respectively define left and right
adjoints to the composition functor f, : hFun(C, B) — hFun(C, A), with the
2-cells defining the components of the unit and counit of these adjunctions,
respectively, at the object g. The adjective “absolute” refers to the following
stability property.

Lemma 2.3.6. Absolute left or right lifting diagrams are stable under restriction
of their domain object: if (€, 1) defines an absolute left lifting of g through f,
then for any ¢ . X — C, the restricted diagram (€c, Ac) defines an absolute left
lifting of gc through f.

B
¢
ol
X—C— A
c g
Proof Exercise 2.3.ii. O

Units and counits of adjunctions provide important examples of absolute left
and right lifting diagrams, respectively:

LemmA 2.3.7. A 2-cellny: idg = uf defines the unit of an adjunction f 4 u if
and only if (f,n) defines an absolute left lifting diagram, displayed below-left.

A B
Gl Al
B B A A

Dually a 2-cell € : fu = id, defines the counit of an adjunction if and only if
(u, €) defines an absolute right lifting diagram, displayed above-right.
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Proof The universal property of the absolute right lifting diagram

X —2.B xX—L.B

e boe
7 e

A=——A A A

asserts that every natural transformation o : f b= ahasa unique transpose
B: b= ua across the adjunction between the hom-categories of the homotopy
2-category:
S
/\
hFun(X, B) -~ Ll = hFun(X, A)

Uy

Thus if f - u with counit €, Proposition 2.1.7(ii) supplies this induced adjunc-
tion and (u, €) defines an absolute right lifting of id4 through f.

Conversely, the unit and triangle equalities of an adjunction can extracted
from the universal property of the absolute right lifting diagram. The details are
left as Exercise 2.3.iii. O

In particular, the unit and counit of the adjunctions colim -4 A - lim of
Definition 2.3.2 define absolute left and right lifting diagrams:

A A

COV l A lim l A
Y] Je

A Al Al Al

By Lemma 2.3.6, these universal properties are retained upon restricting to
any subobject of the co-category of diagrams. This motivates the following
definition:

DerintTION 2.3.8 (limit and colimit). A colimit of a family of diagramsd : D —
A’ of shape J in an co-category A is given by an absolute left lifting diagram

A

colimd l A
i

D—d)A]

comprised of a generalized element colimd: D — A and a colimit cone
7. d= Acolimd.
Dually, a limit of a family of diagrams d: D — A’ of shape J in an oco-
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category A is given by an absolute right lifting diagram

A

“‘V lA
e

DT>AJ

comprised of a generalized element limd: D — A and a limit cone €:
Alimd = d.

REmMaARK 2.3.9. If A has all limits of shape J, then Lemma 2.3.6 implies that
any family of diagrams d: D — A’ has a limit, defined by composing the
limit functor lim : A” — A with d. In an co-cosmos of (oo, 1)-categories, if
every diagram d : 1 — A’ has a limit, then A admits all limits of shape J (see
Corollary 12.2.10), but in general families of diagrams cannot be reduced to
single diagrams.

ExampLE 2.3.10. An initial elementi: 1 — A can be regarded as a colimit
of the empty diagram. The co-category A2 =~ 1 of empty diagrams in A is
terminal, so the constant diagram functor reduces to ! : A — 1. To show that
initial elements are colimits in the sense of Definition 2.3.8, we must verify that
an initial element defines an absolute left lifting diagram whose 2-cell is the
identity:

x—1.a X L A
I L
l=—=1 1 1

Since the co-category 1 is 2-terminal, there is a unique 2-cell y inhabiting the
central square above, namely the identity. Thus, the universal property of the

absolute left lifting diagram asserts the existence of a unique 2-cell {: i! = f
forany f: X — A, exactly as provided by Lemma 2.2.5.

N\

— e
\V\

1

ExampLE 2.3.11. In a cartesian closed co-cosmos, an initial elementi: 1 - A
can also be regarded as a limit of the identity functor id4 : A — A.! The
counit € : i! = id4 of the adjunction i —! transposes across the 2-adjunction
A x — = (=)4 of Proposition 1.4.5 to define the limit cone displayed below-left:

A x—1 .4 x—L .4
. 3!
/ lA !l ix lA ~ l 'S e lA
e - / Ue
1 —— A4 1 —— A4 1 —— A4
idgq idg idg

11 This result is extended to co-cosmoi that are not cartesian closed in Proposition 9.4.10.
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The universal property displayed above-right is easiest to verify by transposing
across the 2-adjunction A X — - (=)4 again, where we must establish the

pasting equality
f
7x X Tx X /\
b l b AVEL
1

XXA 12 |[f=XxA 125 A (2.3.12)

nA\A nA\A!/;y

Observe that when we restrict the right-hand side of (2.3.12) along the functor
idyXi: X 2 X X1 - X X A we recover the 2-cell ¢, since €i = id;. This
tells us that given y, we must necessarily define the 2-cell { : f = i! to be the
restriction of ¥ along the functor idy Xi: X — X X A.

From this definition of ¢ and the 2-functoriality of the cartesian product —
which tells us that ery = 4 (X X €) — we have

X XA 1 —L 5 A = XXA=——-——XXA Uz

LS N

By “naturality of whiskering” (see Lemma B.1.3), the right-hand pasted com-
posite can be computed as the vertical composite of 7x(X X €) followed by ¥,
but 7x(X X €) is the identity 2-cell, so this composite is just §. This verifies the
desired pasting equality (2.3.12).

f
X Xx1 X
Tx idy X! dyxi  7Tx
/ m ¥ 7 IXxe \X / ‘
f

Certain limits and colimits in co-categories exist for formal reasons. For exam-
ple, an abstract 2-categorical lemma enables a formal proof of a classical result
from homotopy theory that computes the colimits, typically called geometric
realizations, of “split” simplicial objects. Before proving this, we introduce the
indexing shapes involved.

DEerinTTION 2.3.13 (split augmented (co)simplicial object). The simplex cat-
egory A of finite nonempty ordinals and order-preserving maps introduced
in 1.1.1 defines a full subcategory of the category A, of finite ordinals and
order-preserving maps, which freely appends the empty ordinal “[—1]” as an
initial object. The category A, in turn defines a wide subcategory of a category
A |, which adds an “extra” degeneracy o' : [n + 1] - [n] between each pair
of consecutive ordinals, including o= : [0] » [—1]. The category A, also
defines a wide subcategory of a category A, which adds an “extra” degeneracy
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o™*1: [n+ 1] » [n] on the other side between each pair of consecutive ordi-
nals, including ¢° : [0] »» [—1]. The categories A, and At can be described
in another way: there are faithful embeddings of these categories into A that act
on objects by [n] — [n + 1] and identify A; and At with the subcategories of
finite nonempty ordinals and order-preserving maps that preserve the bottom
and top elements respectively.

Covariant diagrams indexed by A C A, C A, Ay are, respectively, called
cosimplicial objects, coaugmented cosimplicial objects, and split coaugment-
ed cosimplicial objects (in the case of either A or At), while contravariant
diagrams are respectively called simplicial objects, augmented simplicial ob-
jects, and split augmented simplicial objects. When it is useful to disambiguate
between A and At we refer to the former category as a “bottom splitting” and
the latter category as a “top splitting,” but this terminology is not standard.

A cosimplicial object d : 1 — A® in an co-category A admits a coaugmen-
tation or admits a splitting if it lifts along the restriction functors

Lo A
where in the case of a top splitting, A is replaced by A+. The family of cosim-
plicial objects admitting a coaugmentation and splitting is represented by the
generalized element res : A*L -» A®. In any augmented cosimplicial object,
there is a cone over the underlying cosimplicial object whose summit is obtained
by evaluating at [—1] € A, This cone is defined by cotensoring with the unique
natural transformation

Ae—m— A,
! (2.3.14)
\3 ITV/[_;]

that exists because [—1]: 1 — A, is initial (see Lemma 2.2.5).

ProposiTioN 2.3.15 (totalization/geometric realization). Let A be any co-cat-
egory. Every cosimplicial object in A that admits a coaugmentation and a
splitting has a limit, whose limit cone is defined by the coaugmentation. Dually,
every simplicial object in A that admits an augmentation and a splitting has a
colimit, whose colimit cone is defined by the augmentation. That is, there exist
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absolute right and left lifting diagrams

A A

eV[y' lA evV’ lA
JAY . , A"

A A A A A A%
A L res A * res A A L res A + res A

A A

evy V’ lA eVV lA
Y'Y . , At

A A A Al Al A°P
A T res A * res A A T res A * res A

in which the 2-cells are obtained as restrictions of the cotensor of the 2-cell
(2.3.14) into A. Moreover, such limits and colimits are absolute, preserved by
any functor f : A — B of co-categories.

Proof By Example B.5.2, the inclusion A & A admits a right adjoint, which
can automatically be regarded as an adjunction “over 1” since 1 is 2-terminal in
Cat. The initial element [—1] € A, C A defines a left adjoint to the constant
functor:

and the counit of this adjunction restricts along the inclusions A C A, C A to
the 2-cell (2.3.14). For any oco-category A in an co-cosmos K, these adjunctions
are preserved by the 2-functor A eat™ — HK, yielding a diagram

' .............. A
e
IS ‘UAV
AAL v res AA+ res AA
T

By Lemma B.5.1 these adjunctions witness the fact that evaluation at [—1]
and the 2-cell from (2.3.14) define an absolute right lifting of the canonical
restriction functor A2 - A® through the constant diagram functor, as claimed.
The colimit case is proven similarly by applying the composite 2-functor

_\op —
carr 2 eqpr A9, hxK

A similar argument, starting from Example B.5.3, constructs the absolute lifting
diagrams from the top splitting.
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Finally, by 2-functoriality of the simplicial cotensor, any functor f: A — B
commutes with the 2-cells defined by cotensoring with v or its opposite:

f

A—— B B
eV[V lA lA _ CV[V lA
{LAV ‘UAV
A A A A A A A
ARL res A%+ res A A B ARt res - fAL B+ res B

Since the right-hand composite is an absolute right lifting diagram by Lem-
ma 2.3.6, so is the left-hand composite, and thus f: A — B preserves the
totalization of any split coaugmented cosimplicial object in A. O

Exercises

ExERcise 2.3.i. Prove that if an co-category A has binary products then it also
has ternary products (and in fact n-ary products for all n > 1). Show further
that the ternary product functor can be defined from the binary product functor
— X —: AXA — A either as the composite (— X —) X — or as the composite
— X (— X —); that is, show that these composites are naturally isomorphic and
both satisfy the universal property that characterizes ternary products.

ExEercise 2.3.ii. Prove Lemma 2.3.6.

ExEercise 2.3.iii. Re-prove the forwards implication of Lemma 2.3.7 by a pasting
diagram calculation and prove the converse similarly.

Exercise 2.3.iv. Let -l be the category defined by gluing two arrows along
their codomain. Diagrams of shape | are called cospans. Consider either of the
surjective functors 7 : I — 2 that send one of these arrows to an identity. Show
that for any co-category A, the corresponding functor A% : A*> — A+ admits an
absolute right lifting through the constant diagram functor A : A — A<, That
is, show that any oo-category admits pullbacks of cospans in which one of the
two arrows is an identity.

Exercisk 2.3.v (3.5.6). Show that for any functor f : A — B, the identity
A

Al

A—— B

f

defines an absolute right lifting of f through itself if and only if the identity
defines an absolute left lifting of f through itself by proving that each of these
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conditions is equivalent to the assertion that for any co-category X the induced
functor

f. : hFun(X,A) — hFun(X, B)

is fully faithful. A fourth equivalent characterization of what it means for a
functor between co-categories to be fully faithful appears in Corollary 3.5.6.

ExEercisi 2.3.vi. Show that diagrams that are isomorphic to absolute right
lifting diagrams are themselves absolute right lifting: given an absolute right
lifting diagram and natural isomorphisms

B r s 8
— S >
|l cXe B BRI A W, A
o r 7 P

show that the pasted composite is an absolute right lifting diagram.

Conclude that limits and colimits are invariant under natural isomorphism.

2.4 Preservation of Limits and Colimits

A functor f: A — B preserves limits if the image of a limit cone in A also
defines a limit cone in B. In the other direction, a functor f : A — B reflects
limits if a cone in A that defines a limit cone in B is also a limit cone in A. A
functor f : A — B creates limits if whenever a diagram in A admits a limit cone
in B, then there must exist a limit cone in A whose image under f is isomorphic
to the given limit cone in B.

Famously, right adjoint functors preserve limits and left adjoints preserve
colimits. Our aim in this section is to prove this in the co-categorical context and
exhibit the first examples of initial and final functors, in the sense introduced in
Definition 2.4.5. We conclude with a result about the reflection of limits whose
proof relies in a crucial way on a result — that cosmological functors preserve
absolute lifting diagrams — that motivates Chapter 3.

The commutativity of right adjoints and limits is very easily established in the
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case where the co-categories in question admit a// limits of a given shape: under
these hypotheses, the limit functor is right adjoint to the constant diagram functor,
which commutes with all functors between the base co-categories. Since the
left adjoints commute, the uniqueness of adjoints (Proposition 2.1.10) implies
that the right adjoints commute up to isomorphism. This outline gives a hint for
Exercise 2.4.1.

A more delicate argument is needed in the general case, involving, say, the
preservation of a single limit diagram without a priori assuming that any other
limits exist. We appeal to a general lemma about composition and cancelation
of absolute lifting diagrams:

Lemma 2.4.1 (composition and cancelation of absolute lifting diagrams). Sup-
pose (r, p) defines an absolute right lifting of h through f:

/rfp lf

Then (s, o) defines an absolute right lifting of r through g if and only if (s, p - fo)
defines an absolute right lifting of h through fg.

Proof Exercise 2.4.ii. O

THEOREM 2.4.2. Right adjoints preserve limits and left adjoints preserve colim-
is.

The usual argument that right adjoints preserve limits is this: a cone over a J-
shaped diagram in the image of a right adjoint u transposes across the adjunction
f7 4 u’ to a cone over the original diagram, which factors uniquely through the
designated limit cone. This factorization transposes across the adjunction f - u
to define the sought-for unique factorization through the image of the limit cone.
An oco-categorical proof along these lines can be given as well (see Exercise
2.4.iii), but instead we present a slicker packaging of the standard argument. We
use absolute lifting diagrams to express the universal properties of limits and
colimits (Definition 2.3.8) and adjoint transposition (Lemma 2.3.7), allowing us
to suppress consideration of a generic test cone that must be shown to uniquely
factor through the limit cone.

Proof We prove that right adjoints preserve limits. By taking co-duals the
same argument demonstrates that left adjoints preserve colimits.
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Suppose a functor u: A — B in an oo-cosmos K admits a left adjoint
f: B - A with counit e: fu = id4. Our aim is to show that any absolute
right lifting diagram as displayed below-left is carried to an absolute right lifting
diagram as displayed below-right:

A A—%L > B
lmy | ],-HV | | (243)
Up Yo
D— A D— A — B
d d ul

By Proposition 2.1.7, the cotensor (=)’ : X — HX carries the adjunction
f = u to an adjunction f7 < u’ with counit ¢’. In particular, by Lemma 2.3.7,
(u’, €’) defines an absolute right lifting of the identity through f7, which is then
preserved by restriction along the functor d. Thus, by Lemma 2.4.1, the diagram
on the right of (2.4.3) is an absolute right lifting diagram if and only if the pasted
composite displayed below-left defines an absolute right lifting diagram:

A—%2> B B B

limd u
A’ lA . lA A lf ulimd /elimd !
D—A %X ,pB = A A = A

d J . N
& | I'V [ [ [
Jp

Al D—— A == 4 D—— A

As noted in the proof of Lemma 2.3.7, pasting the 2-cell on the right of (2.4.3)
with the counit in this way amounts to transposing the cone u’p across the
adjunction 7/ 4 u’.

We now argue that this transposed cone above-left factors through the limit
cone (limd, p) in a canonical way. From the 2-functoriality of the simplicial
cotensor in its exponent variable, f/A = Af and e/ A = Ac. Hence, the pasting
diagram displayed above-left equals the one displayed above-center, which
equals the diagram above-right. This latter diagram is a pasted composite of
two absolute right lifting diagrams, and is then an absolute right lifting diagram
in its own right by Lemma 2.4.1; this universal property says that any cone
over d whose summit factors through f factors uniquely through the limit cone
(lim d, p) through a map that then transposes along the adjunction f — u. Hence
the diagram on the right-hand side of (2.4.3) is an absolute right lifting diagram
as claimed. O

ProposITION 2.4.4. An equivalence f . A = B preserves, reflects, and creates
limits and colimits.
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Proof By Proposition 2.1.12, equivalences define adjoint functors, so Theorem
2.4.2 implies that equivalences preserve limits. To see that limits are reflected,
consider a J-shaped cone p in A whose image f”p is a limit cone in B. The
inverse equivalence g : B = A carries this to a limit cone g’ f’p in A, which
is naturally isomorphic to the original cone p. By Exercise 2.3.vi, p must also
define a limit cone. Finally to see that limits are created, consider a diagram
d: D — A’ so that fd has a limit cone v in B. Then g’v defines a limit cone for
the diagram gfd in A, and by Exercise 2.3.vi, a limit cone for d may be defined
by composing with the isomorphism gfd = d. U

We turn now to a limit-preservation result of another sort, which can be used to
simplify the calculation of limits or colimits of diagrams with particular shapes.
This simplification comes about by reindexing the diagrams, by restricting
along a functor k : I — J. For certain functors, called “initial” or “final,” this
reindexing preserves and reflects limits or colimits, respectively.

At present, we give a teleological, rather than an intrinsic, description of
these functors. The following definition makes sense for an arbitrary functor in
a cartesian closed co-cosmos or for a map between simplicial sets serving as
indexing shapes in an arbitrary co-cosmos. In Definition 9.4.11 we extend the
adjectives “initial” and “final” to functors between oo-categories in an arbitrary
oo-cosmos and prove that the functors characterized there satisfy the property
described here.

DEerINTTION 2.4.5 (initial and final functor). A functor k: I — Jis final if a
J-shaped cone defines a colimit cone if and only if the restricted I-shaped cone
is a colimit cone and initial if any J-shaped cone defines a limit cone if and only
if the restricted I-shaped cone is a limit cone. That is, k: I — Jis final if and
only if for any co-category A, the square

A=A

| B
AJ AI
Ak
preserves and reflects all absolute left lifting diagrams, and initial if and only if
this squares preserves and reflects all absolute right lifting diagrams.

Historically, final functors were called “cofinal” with no obvious name for
the dual notion. Our preferred terminology hinges on the following mnemonic:
the inclusion of an initial element defines an initial functor, while the inclusion
of a terminal (aka final) element defines a final functor. These facts are special
cases of a more general result we now establish, using exactly the same tactics
as deployed to prove Theorem 2.4.2.
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ProrosiTioN 2.4.6. Left adjoints define initial functors and right adjoints define
final functors.

Proof If k - r with counit € : kr = idj;, then cotensoring into A yields an
adjunction
Ar
A’ L Al with counit A° : A"AK = id,s .
Ak
To prove that k is initial we must show that for any cone p : A€ = d as displayed
below-left,

¢ lA ¢ lA lA
Up Up
D—— A D—— A — Al
d d Py

the left-hand diagram is an absolute right lifting diagram if and only if the
right-hand diagram is an absolute right lifting diagram.

By Lemmas 2.3.7 and 2.4.1, the right-hand diagram is an absolute right
lifting diagram if and only if the pasted composite displayed below-left is also
an absolute right lifting diagram.

¢ A A ¢ A
Ip l n l o l«
D—A = A = D— A
we l
\ aAr
AJ

Since A"A = A and A°A = id,, the left-hand side reduces to the right-hand
side, which proves the claim. O

Exercise 2.3.v defines a functor f: A — B between co-categories to be fully
faithful just when

ES

—
<~

A

oy

SN

defines absolute right lifting diagram or equivalently an absolute left lifting
diagram. Modulo a result we borrow from Chapter 3, we show:



2.4 Preservation of Limits and Colimits 83

ProposiTiON 2.4.7. A fully faithful functor f: A — B reflects any limits or
colimits that exist in B.

Proof The statement for limits asserts that for any family of diagrams d : D —
A’ of shape J in A, any functor £ : D — A, and any cone p : A€ = d so that
the whiskered composite with 7 : A7 — B is an absolute right lifting diagram

f

A—— B

A
Up
D—— A" —— B’

d I
then (¢, p) defines an absolute right lifting of d : D — A’ through A: A — A,
By Exercise 2.3.v, to say that f is fully faithful is to say thatid, : A — A defines
an absolute right lifting of f through itself. So by Lemma 2.4.1, the composite
diagram below-left is an absolute right lifting diagram, and by 2-functoriality
of the simplicial cotensor with J, the diagram below-left coincides with the
diagram below-right:

A A
/lf |
AT)B = ¢ AJ

Y, Up ;
il ya
DT>AJ—J>BJ DTAJ—J>BJ

Now if we knew that id,s : A7 — A’ defines an absolute right lifting of f7
through itself — that is, if we know that 7 : A7 — B’ is also fully faithful — then
we could apply Lemma 2.4.1 again to conclude that (¢, p) is an absolute right
lifting of d through A as required. And indeed this is the case: by Corollary 3.5.7,
any cosmological functor, such as (=), preserves absolute lifting diagrams. [

It is worth asking why we have not already proven that cosmological functors
preserve absolute lifting diagrams, since after all, by Lemma 1.4.4, cosmologi-
cal functors induce 2-functors between homotopy 2-categories, which is where
absolute lifting diagrams are defined. But unlike adjunctions, which are defined
by pasting equations in a 2-category, absolute lifting diagrams are defined using
universal quantifiers and hence are not preserved by all 2-functors. However,
the 2-functors that underlie cosmological functors do preserve absolute lifting
diagrams, even when the cosmological functor is “forgetful” or fails to be es-
sentially surjective. This is because the universal property of absolute lifting
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diagrams can be re-expressed internally to the ambient co-cosmos by deploying
the axiomatized limits of 1.2.1(i), at which point their preservation by cosmo-
logical functors is a direct corollary (see Theorem 3.5.3 and Corollary 3.5.7). In
pursuit of results such as these, we now turn our attention to the 2-categorical
properties of the cosmological limits.

Exercises

ExERCISE 2.4.i. Show that any left adjoint f: B — A between co-categories
admitting all J-shaped colimits preserves them in the sense that the square of
functors commutes up to isomorphism.

fJ
BJ , A]

coliml o~ lcolim

B— A

!

ExEeRrcise 2.4.ii. Prove Lemma 2.4.1.

ExERrcisk 2.4.iii. Give a proof of Theorem 2.4.2 that does not appeal to Lemma
2.4.1 by directly verifying that the diagram on the right of (2.4.3) is an absolute
right lifting diagram.

ExEercise2.4.iv. Use Lemma 2.4.1 to give a new proof that adjunctions compose
(Proposition 2.1.9).

ExEercisk 2.4.v. For any composable pairof maps k: I - Jand ¢: J — K,
show that if k and €k are final, then so is €.
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In Chapter 2, we introduce adjunctions between oco-categories and limits of
diagrams valued within an co-category through definitions that are particularly
expedient for establishing the expected interrelationships, as illustrated by the
proof that right adjoints preserve limits. These definitions are 2-categorical in
nature — stated in reference to the co-categories, co-functors, and co-natural
transformations of the homotopy 2-category — but neither clearly articulates
the universal properties of these notions. Definition 2.3.8 does not obviously
express the expected universal property of the limit cone: namely, that a limit
cone over a diagram d defines a terminal element in some co-category of cones
over d. Nor does Definition 2.1.1 explain how an adjunction f - u induces
an equivalence between hom-spaces Hom4(fb,a) ~ Hompg(b,ua).! In this
chapter, we make use of the axiomatized limits in an co-cosmos to exhibit a
general construction that specializes to define both this co-category of cones and
also these hom-spaces. This construction also permits us to represent a functor
between oco-categories as an co-category, in dual “left” or “right” fashions, so
that an adjunction consists of a pair of functors f: B—> Aandu: A — Bso
that the left representation of f is equivalent to the right representation of u over
A X B (see Proposition 4.1.1).

Our vehicle for all of these new definitions is the comma co-category associ-
ated to a cospan:

Hom,(f, 8)

D1 Do
o C/ . \B
RA‘/f

1 A 2-categorical version of this result — exhibiting a bijection between sets of 2-cells — appears as
Lemma 2.3.7, but in an co-category one would expect a similar equivalence of hom-spaces.

85
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Our aim in this chapter is to develop the general theory of comma constructions
from the point of view of the homotopy 2-category of an co-cosmos. Our
first payoff for this work appears in Chapter 4 where we study the universal
properties of adjunctions, limits, and colimits along these lines. The comma
construction also provides the essential vehicle in Part III for establishing the
model independence of the categorical notions we introduce throughout this
text.

There is a standard definition of a “comma object” that can be stated in
any 2-category, defined as a particular weighted limit (see Example A.6.14).
Comma oo-categories do not satisfy this universal property in the homotopy
2-category, however. Instead, they satisfy a somewhat peculiar “weak” variant
of the usual 2-categorical universal property that to our knowledge has not
appeared elsewhere in the literature. The weak universal property is encoded
by something we call a smothering functor, which relates homotopy coherent
and homotopy commutative diagrams of suitable shapes. To introduce these
universal properties in a concrete rather than abstract framework, we start in
§3.1 by considering smothering functors involving homotopy categories of
quasi-categories.

In §3.2, we use a smothering functor to encode the weak universal property
of the co-category of arrows A? associated to an co-category A, considered as
an object in the homotopy 2-category. In §3.3, we briefly study the analogous
weak universal properties associated to the pullback of an isofibration, which
we exploit to prove that the pullback of an equivalence along an isofibration is
an equivalence.

Comma oo-categories are introduced in §3.4 where we describe both their
strict universal properties as simplicially enriched limits as well as their weak
universal properties in the homotopy 2-category. Each have their uses, for in-
stance in describing the induced actions on comma oo-categories of various
types of morphisms between their generating cospans. The weak 2-categorical
universal property is deployed in §3.5 to prove a general representability theorem
that characterizes those comma oco-categories that are right or left represented
by a functor. In Chapter 4, we reap the payoff for this work, achieving the desired
representable characterizations of adjunctions, limits, and colimits as special
cases of these general results.

In §3.6, we tighten the main theorem of §3.5 to say that a comma oco-category
is right represented by a functor if and only if its codomain-projection functor
admits a terminal element, when considered as an object in the sliced co-cosmos.
This result requires a careful analysis of the subtle difference between the homo-
topy 2-category of a sliced co-cosmos and the sliced 2-category of the homotopy
2-category of an co-cosmos. Those readers who would rather stay out of the
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weeds are invited to take note of Definition 3.6.5 and Corollary 3.6.10 but
otherwise skip this section.

3.1 Smothering Functors

Let Q be a quasi-category. Recall from Lemma 1.1.12 that its homotopy category
hQ has

« elements of Q as its objects;

« homotopy classes of 1-simplices of Q as its arrows, where parallel 1-simpli-
ces are homotopic just when they bound a 2-simplex whose remaining outer
edge is degenerate; and

« a composition relation if and only if any chosen 1-simplices representing
the three arrows bound a 2-simplex.

For a 1-category J, it is well-known in classical homotopy theory that the
homotopy category of diagrams h(Q”) is not equivalent to the category (hQ)’ of
diagrams in the homotopy category — except in very special cases, such as when J
is a set (see Lemma 2.3.3). The objects of h(Q”) are homotopy coherent diagrams
of shape J in Q, while the objects of (hQ)’ are mere homotopy commutative
diagrams. There is, however, a canonical comparison functor

h(Q)) — (hQ)’

defined by applying h: QCat — Cat to the evaluation functor Q’ x J — Q
and then transposing; a homotopy coherent diagram is in particular homotopy
commutative.

Our first aim in this section is to better understand the relationship between
the arrows in the homotopy category hQ and the arrows of Q, meaning the
1-simplices in the quasi-category. To study this, we consider the quasi-category
Q? in which the arrows of Q live as elements, where 2 = A[1] is the nerve of
the walking arrow. Our notation deliberately imitates the notation commonly
used for the category of arrows: if C is a 1-category, then C? is the category
whose objects are arrows in C and whose morphisms are commutative squares,
regarded as a morphism from the arrow displayed vertically on the left-hand
side to the arrow displayed vertically on the right-hand side. This notational
conflation suggests our first question: how does the homotopy category of Q>
relate to the category of arrows in the homotopy category hQ?

Lemma 3.1.1. The canonical functor h(Q*) — (hQ)? is

(i) surjective on objects,
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(ii) full, and
(iii) conservative, i.e., reflects invertibility of morphisms,

but not necessarily injective on objects nor faithful.

Proof Surjectivity on objects asserts that every arrow in the homotopy category
hQ is represented by a 1-simplex in Q. This is the conclusion of Exercise
1.1.iii(iii) which outlines the proof of Lemma 1.1.12.

To prove fullness, consider a pair of arrows f and g in Q that form the source
and target of a commutative square in hQ. By (i), we may choose arbitrary

1-simplices representing each morphism in hQ and their common composite:

By Lemma 1.1.12, every composition relation in hQ is witnessed by a 2-simplex
in Q; choosing a pair of such 2-simplices defines a diagram 2 X 2 — Q, which
represents a morphism from f to g in h(Q?), proving fullness.

Surjectivity on objects and fullness of the functor h(Q?) — (hQ)? are special
properties having to do with the diagram shape 2, while conservativity holds
for generic diagram shapes by Corollary 1.1.22. The construction of counterex-
amples illustrating the general failure of injectivity on objects and faithfulness
is left to Exercise 3.1.i, with a hint. O

The properties of the canonical functor h(Q?) — (hQ)? frequently reappear,
so we bestow them with a suggestive name:

DerFintTION 3.1.2 (smothering functor). A functor f: A — B between 1-cate-
gories is smothering if it is surjective on objects, full, and conservative. That
is, a functor is smothering if and only if it has the right lifting property with
respect to the set of functors:

@ T+1 2

[ -]

1 2 [

Various elementary properties of smothering functors are established in Exer-
cise 3.1.ii; here we highlight one worthy of particular attention:

LemmMma 3.1.3 (smothering fibers). Each fiber of a smothering functor is a non-
empty connected groupoid.
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Proof Suppose f: A — Bis smothering and consider the fiber

Ab—)A

[
1—2 .8

over an object b of B. By surjectivity on objects, the fiber is nonempty. Its
morphisms are defined to be arrows between objects in the fiber of b that map
to the identity on b. By fullness, any two objects in the fiber are connected by a
morphism, indeed, by morphisms pointing in both directions. By conservativity,
all the morphisms in the fiber are necessarily invertible. U

The argument used to prove Lemma 3.1.1 generalizes to:

Lemma 3.1.4. IfJ is a I-category that is free on a reflexive directed graph and
Q is a quasi-category, then the canonical functor h(Q”) — (hQ)’ is smothering.

Proof Exercise 3.1.iii. O

Cotensors are one of the cosmological limits axiomatized in Definition 1.2.1.
Other limit constructions listed there also give rise to smothering functors.
Lemma 3.1.5. For any pullback diagram of quasi-categories in which p is an
isofibration

AXE — E

J

p

D o«— wX

— > B

f

the canonical functor h(A >]§ E) - hA >]<3 hE is smothering.
h

Proof Ash: QCat — Cat does not preserve pullbacks, the canonical com-
parison functor of the statement is not an isomorphism. It is however bijective
on objects since the composite functor

o
QCat —— Cat —2 Set

passes to the underlying set of vertices of each quasi-category, and this functor
does preserve pullbacks.

For fullness, note that a morphism in hA X, ghE is represented by a pair of
1-simplicesx: a > @’ inA and € : e — ¢’ in E whose images are homotopic
in B, a condition that implies in particular that f(a) = p(e) and f(a’) = p(e’).
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By Lemma 1.1.9, we can configure this homotopy however we like, and thus we
choose a 2-simplex witness 3 so as to define a lifting problem

/ x
A[2] —— E 5 e = ¢
’7
lp !
0
Al2] —— B 5 PR

fl@) o= fl@)=p(e)

Since p is an isofibration, a solution exists, defining an arrow €: e — ¢’ in E in
the same homotopy class as € so that p(€) = f(a). The pair («, €) now defines
the lifted arrow in h(E Xg A).

Finally, consider an arrow 2 — A)};E whose image in hAh>]<3hE is an isomorph-
ism, which is the case just when the projections to E and A define isomorphisms.
By Corollary 1.1.16, we may choose a homotopy coherent isomorphism | — A
extending the given isomorphism 2 — A. This data presents us with a lifting

problem
2
[

which Exercise 1.1.vi tells us we can solve. This proves that h(A >]§E) — hA >1<3 hE
h

UJX

— A E—»E
T _I

- p

«—~—

B

is conservative and hence also smothering.
A similar argument proves:

Lemma 3.1.6. For any tower of isofibrations between quasi-categories

E, Ey E, E, Ey
the canonical functor h(lim,, E,)) — lim,, hE,, is smothering.
Proof Exercise 3.1.iv. O

Lemma 3.1.7. For any cospan between quasi-categories C £ A <L B consider
the quasi-category defined by the pullback

Hom,(f,g) —— A?
l - l(cod,dom)
CXB—— AXA
gxf
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The canonical functor hHomy(f, g) = Hom4(hf, hg) is smothering.

Proof The codomain of this functor is the category defined by an analogous
pullback in Cat

Hompa(hf,hg) —— (hA)?

.
l l(cod,dom)

hC X hB ——— hA X hA
hgxhf

and the canonical functor factors as
hHom,(f, 8) — h(4%) Xpaxna (hC X hB) — (hA)* Xpaxna (hC X hB)

By Lemma 3.1.5 the first of these functors is smothering. By Lemma 3.1.1 the
second is a pullback of a smothering functor. By Exercise 3.1.ii(i) it follows that
the composite functor is smothering. O

In the sections that follow, we discover that the smothering functors just
constructed express weak universal properties of arrow, pullback, and comma
constructions in the homotopy 2-category of any co-cosmos.

Exercises

Exercisk 3.1.i. Find an explicit example of a quasi-category Q for which the
canonical smothering functor h(Q?) — (hQ)? fails to be injective on objects and
faithful for instance by defining Q to be the total singular complex of a suitable
topological space.

ExEercisg 3.1.ii. Prove that:

(i) Smothering functors are closed under composition, retract, product,
pullback, and limits of towers.
(ii) Surjective equivalences of categories are smothering functors.
(iii) Smothering functors are isofibrations, that is, maps that have the right
lifting property with respectto 1 < 1[.
(iv) Prove that if f and gf are smothering functors, then g is a smothering
functor.?

Exgrcise 3.1.iii. Prove Lemma 3.1.4.

ExEercise 3.1.iv. Prove Lemma 3.1.6.

2 1In fact, it suffices to merely assume that f is surjective on objects and arrows.
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3.2 oco-Categories of Arrows

In this section, we replicate the discussion from the start of §3.1 using an
arbitrary oo-category A in place of the quasi-category Q. The analysis of the
previous section could have been developed natively in this general setting but
at the cost of an extra layer of abstraction and more confusing notation — with a
functor space Fun(X, A) replacing the quasi-category Q.

Recall an element of an co-category is defined to be a functora: 1 — A.
Tautologically, the elements of A are the vertices of the underlying quasi-cat-
egory Fun(1, A) of A. In this section, we define and study an co-category A?
whose elements are the 1-simplices in the underlying quasi-category of A. We
refer to A as the co-category of arrows in A and call its elements simply arrows
of A. In fact, we have tacitly introduced this construction already. Recall 2 is
our preferred notation for the quasi-category A[1], the nerve of the category 2
with a single nonidentity morphism 0 — 1.

DEerintTION 3.2.1 (arrow oo-category). Let A be an co-category. The co-cate-
gory of arrows in A is the simplicial cotensor A? together with the canonical
endpoint evaluation isofibration

(p1,Po)
e

A? = ANl A > A % A

induced by the inclusion dA[1] & A[1]. For conciseness, we write py : A> »
A for the domain evaluation induced by the inclusion 0: 1 < 2 and write
p; . A? > A for the codomain evaluation induced by 1: 1 < 2.

As an object of the homotopy 2-category, the co-category of arrows comes
equipped with a canonical 2-cell that we now construct.

Lemma 3.2.2 (generic arrow). For any oo-category A, the co-category of arrows
A? comes equipped with a canonical 2-cell
Po

A? @ A (3.2.3)

D1

that we refer to as the generic arrow with codomain A.

Proof The simplicial cotensor has a strict universal property described in
Digression 1.2.6: namely A? is characterized by the natural isomorphism

Fun(X, A?) = Fun(X,A) (3.2.4)

By the Yoneda lemma, the data of the natural isomorphism (3.2.4) is encoded
by its “universal element”, which is defined to be the image of the identity at
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the representing object. Here the identity functor id : A> — A® is mapped to
an element of Fun(A*, A)?, a 1-simplex in Fun(42, A), which by Lemma 1.4.3
represents a 2-cell x in the homotopy 2-category.

To see that the source and target of ¥ must be the domain evaluation and co-
domain evaluation functors, defined by cotensoring with the endpoint inclusion
1+ 1 < 2, we use the naturality of the isomorphism (3.2.4) in the cotensor
variable:

Fun(X, A%) =] Fun(X,A)?
(Pl,Po)*l l(cod,dom)
Fun(X,A X A) = Fun(X,A) X Fun(X, A)

1R

The identity functor maps around the top-right composite to the pair of functors
(cod x,dom x) and around the left-bottom composite to the pair (py, pg). O

There is a 2-categorical limit notion that is analogous to Definition 3.2.1,
which constructs, for any object A, the universal 2-cell with codomain A: namely
the (categorical) cotensor with the 1-category 2. Its universal property is anal-
ogous to (3.2.4) but with the hom-categories of the 2-category in place of
the functor spaces (see Definition A.4.1). In the 2-category of categories, the
2-cotensor defines the arrow category.

In the homotopy 2-category, by the Yoneda lemma again, the data (3.2.3)
encodes a natural transformation

hFun(X, A*) = hFun(X, A)?

of categories but this is not a natural isomorphism, nor even a natural equivalence
of categories. However, it does furnish the co-category of arrows with a “weak”
universal property of the following form:

ProposiTion 3.2.5 (the weak universal property of the arrow co-category). The
generic arrow (3.2.3) with codomain A has a weak universal property in the
homotopy 2-category given by three operations:

(i) 1-cell induction: Given a natural transformation over A as below-left

X
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there exists a functor "o : X — A% so that s = py"a’, t = p;"a”, and
a=x"al

(ii) 2-cell induction: Given functors a,a’ : X — A* and natural transfor-
mations 1, and 1y so that

/ ‘L'l \ / TO \
/ \i
there exists a natural transformation 7. a = a’ so that p;7 = 7, and
PoT = Tp-
(iii) 2-cell conservativity: For any natural transformation X

if both pit and pyt are isomorphisms then T is an isomorphism.

Proof LetQ = Fun(X,A) and apply Lemma 3.1.1 to observe that the natural
map of hom-categories

hFun(X, A?) hFun(X,A)?

((Pl)*,m mom)

hFun(X, A) x hFun(X,A)

over hFun(X,A x A) = hFun(X, A) X hFun(X, A) is a smothering functor. Sur-
jectivity on objects is expressed by 1-cell induction, fullness by 2-cell induction,
and conservativity by 2-cell conservativity. O

Note that the functors "a7: X — A? that represent a given natural transfor-
mation « with domain X and codomain A are not unique. However, they are
unique up to “fibered” isomorphisms that whisker with (p;, py) : 4> » A X A
to identities:

ProrosiTiON 3.2.6. Whiskering with (3.2.3) induces a bijection between natural
transformations with domain X and codomain A as displayed below-left

X
t N
A/ F>A
N

ST
N——
¢
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and fibered isomorphism classes of functors X — A* as displayed above-right,
where the fibered isomorphisms are given by invertible 2-cells

so that piy = id; and pyy = id,.

Proof Lemma 3.1.3 proves that the fibers of the smothering functor of Propo-
sition 3.2.5 are connected groupoids. The objects of the fiber over « are functors
X — A? that whisker with the generic arrow x to «, and the morphisms are
invertible 2-cells that whisker with (p;, py) : A*> » A X A to the identity 2-cell
(id;, idg). The action of the smothering functor defines a bijection between the
objects of its codomain and their corresponding fibers. O

Our final task is to observe that the universal property of Proposition 3.2.5
is also enjoyed by any object (e;,ep) : E - A X A that is equivalent to the co-
category of arrows (p, pg) : A*> » AXA in the slice co-cosmos over A X A. We
have special terminology to allow us to concisely express the type of equivalence
we have in mind.

DerintTION 3.2.7 (fibered equivalence). A fibered equivalence over an co-cat-
egory B in an oco-cosmos X is an equivalence

E ——~ S F

NN 3.2.8)
B

in the sliced co-cosmos K;g. We write E ~p F to indicate that the specified
isofibrations with these domains are equivalent over B.

By Proposition 1.2.22(vii), a fibered equivalence is just a map between a
pair of isofibrations over a common base that defines an equivalence in the
underlying oo-cosmos: the forgetful functor K, — X preserves and reflects
equivalences. Note, however, that it does not create them: It is possible for two
oo-categories E and F to be equivalent without there existing any equivalence
compatible with a pair of specified isofibrations E -» B and F - B.

WaRrnING 3.2.9. At this point, there is some ambiguity about the 2-categorical
data that presents a fibered equivalence in an co-cosmos X, related to the ques-
tion posed in Exercise 1.4.vii about the relationship between the 2-categories



96 Comma oo-Categories

H(X ) and (hX),p. But since Proposition 1.2.22(vii) tells us that a mere equiv-
alence in h involving a functor of the form (3.2.8) is sufficient to guarantee
that this as-yet-unspecified 2-categorical data exists, we defer a careful analysis
of this issue to Proposition 3.6.4.

ProrosiTion 3.2.10 (uniqueness of arrow oo-categories). For any isofibration
(e1,e0) : E » A X A that is fibered equivalent to (py, po) : A®> » A X A the
2-cell

encoded by the equivalence e . E = A?® satisfies the weak universal property of
Proposition 3.2.5. Conversely, if the isofibrations (d;,dy) : D » A X A and
(e1,e9) : E » A X A are equipped with 2-cells

do €o
/N /N
D \J}:ﬂ/h A and E xile/h A
dq €1

satisfying the weak universal property of Proposition 3.2.5, then D ~ 4,4 E.

Proof We prove the first statement. By the defining equation of 1-cell induction
€ = xe, where x is the generic arrow (3.2.3). Hence, the functor induced by
pasting with € factors as a composite

hFun(X, E) —=— hFun(X,A?) —— hFun(X, A)?

((m»«h mom)

hFun(X,A) X hFun(X,A)

and our task is to prove that this composite functor is smothering. The first
functor, defined by postcomposing with the equivalence e: E = A%, is an
equivalence of categories, and the second functor is smothering. Thus, the
composite is clearly full and conservative. To see that it is also surjective on
objects, note first that by 1-cell induction any 2-cell

N

t

is represented by a functor "a7: X — A% over A X A. Composing with any
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fibered inverse equivalence e’ to e yields a functor

!

X —*, 4 < S F

w)l,l?o)l /

(t.s) (e1.e0)
AXA

whose image after postcomposing with e is isomorphic to "a over A X A.
Because this isomorphism is fibered in the sense of Proposition 3.2.6, the image
of ¢'Ta 7 under the functor hFun(X, E) — hFun(X, A)? returns the 2-cell a. This
proves that this mapping is surjective on objects and hence defines a smothering
functor as claimed.

The converse is left to Exercise 3.2.ii and proven in a more general context in
Proposition 3.4.11. O

ConvenTioN 3.2.11. On account of Proposition 3.2.10, we extend the appel-
lation “oco-category of arrows” from the strict model constructed in Definition
3.2.1 to any oo-category that is fibered equivalent to it.

Via Lemma 3.1.4, the results of this section extend to corresponding weak
universal properties for the cotensors A’ of an co-category A with a free category
J, as the reader is invited to explore.

Exercises

Exercisk 3.2.i. This exercise revisits the result of Proposition 3.2.6.

(i) Prove that a parallel pair of 1-simplices f,g: x — yin a quasi-category
Q are homotopic if and only if they are isomorphic as elements of Q* via
an isomorphism that projects to an identity along (p;, pg) : Q% » QX Q.
(ii) Conclude that a parallel pair of 1-arrows in the functor space between
two oco-categories X and A in any co-cosmos represent the same nat-
ural transformation if and only if they are isomorphic as elements of
Fun(X,A)* = Fun(X, A%) via an isomorphism whose domain and codo-
main components are an identity.
(iii) Conclude that a parallel pair of 1-arrows in Fun(X, A), which may be
encoded as functors X — A?, represent the same natural transformation
if and only if they are connected by a fibered isomorphism:

X/\)AQ

\ 2/(Pl Po)

AXA
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Exercise 3.2.ii. Prove the converse implication of Proposition 3.2.10.

ExEercrsk 3.2.iii. Extend the results of Propositions 3.2.5 and Proposition 3.2.6
to describe the weak universal property of the cotensor A’ of an co-category A
by a category J that is freely generated from some reflexive directed graph.

3.3 Pullbacks of Isofibrations

Pullbacks and limits of towers of isofibrations in an co-cosmos also have weak
2-dimensional universal properties in the homotopy 2-category, though we
generally exploit the strict universal properties of the simplicially enriched limits
instead. However, the weak 2-dimensional universal property of pullbacks can
be used to prove that equivalences pull back along isofibrations to equivalences,
which in turn is used to establish the equivalence invariance of pullbacks in an
00-COSMOS.

Prorosition 3.3.1 (the weak universal property of the pullback). The pullback
of an isofibration along a functor in an co-cosmos

AXE -2 E
B

T
A—— B

f

has a weak universal property in the homotopy 2-category given by three opera-
tions:

(i) I-cell induction: Commutative squares pe = fa over the cospan under-
lying a pullback diagram factor uniquely through the pullback square

AXE E

i%

>+

p

—»B

(ii) 2-cell induction: Given functors x,x' : X — A X E and natural transfor-
B

mations a . qx = qx' and € : gx = gx’ so that pe = fa, there exists a
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natural transformation T > X = x' so that qT = & and gt = €.

X gx X X
% \W
! g
\o\ e F " TAXE—SE
qx x , lp ql r lp
A——B A——B
f f

(iii) 2-cell conservativity: For any X @ A >§ E if both qt and gt

!

are isomorphisms then T is an isomorphism.
Proof Apply Lemma 3.1.5 to the pullback diagram of quasi-categories

Fun(X,A x E) 25 Fun(X, E)
B

A,

Fun(X,A) - Fun(X, B)
to observe that the natural map of hom-categories

hFun(X,A x E) —— hFun(X,A) X _ hFun(X,E)
B hFun(X,B)

is a bijective-on-objects smothering functor. Bijectivity on objects is expressed
by 1-cell induction, fullness by 2-cell induction, and conservativity by 2-cell
conservativity. O

DiGression 3.3.2 (weakly cartesian squares). A commutative square between
parallel isofibrations is weakly cartesian if the induced map to the pullback is
an equivalence:

F—2—

A T E
q .,. a lp
3
A T) B

Weakly cartesian squares also satisfy 2-cell induction and 2-cell conservativity
as well as a modified form of the 1-cell induction property, where the essentially
unique induced functor commutes strictly over B and up to an isomorphism over
E that projects along p to the identity [110, 3.5.4].



100 Comma oo-Categories

It follows from the weak 2-categorical universal property of the pullback that
oo-cosmoi are right proper, meaning that the pullback of any equivalence along
an isofibration defines an equivalence.

Prorosition 3.3.3. In any oo-cosmos, the pullback of an equivalence along an
isofibration is an equivalence.

F—2.F
af © e
AfB

Proof By Proposition 2.1.12, we may choose an adjoint equivalence inverse
to f and pick invertible 2-cells o : idy = f~!f and B: ff~! = idp satisfying
the triangle equalities in the homotopy 2-category.> Now since the map p is an
isofibration, we may use Proposition 1.4.9 to lift the isomorphism Bp : ff~'p =
p along p to define an isomorphism € : e = idg with codomainidg: E — E.
By construction pe = ff~!p, so by 1-cell induction the pair (f~!p, e) induces
amapg~!: E— Fsothatqg™! = f~!pand gg=! = e. In this way we obtain
an isomorphism ¢ : gg~! = idg with pe = Bp.

Now by 2-cell induction and conservativity of Proposition 3.3.1, to define an
isomorphism idp & g~!g, it suffices to exhibit a pair of isomorphisms

aq: q=f'fq=f"'pg=qg7'g and 'g:g=gglg

so that faq = pe~'g. This latter equation holds because pe~'g = B~!pg =
B~ fq = faq by the triangle equality f - fa = id  for the adjoint equivalence
f = f~L. Thus, we may lift the data of an inverse equivalence to f to define an
inverse equivalence to its pullback g. O

As a consequence of right properness, pullback is an equivalence invariant
construction in any co-cosmos.

ProrosiTtion 3.3.4. Given a diagram of isofibrations and equivalences in any
00-COSMOS

oy

f
«

hS

g
—

Q

p

Q|<%
D>I(L
wl(?

—— “«—
g I

the induced map C X4 B — C x4 B between the pullbacks of the horizontal
rows is again an equivalence.

3 Tt is for this reason that we work with the weak 2-categorical universal property of the pullback
rather than the simplicially enriched universal property.
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Proof By factoring via Lemma 1.2.19, we can replace the map g by an isofi-
bration. By the 2-of-3 property and the right properness of Proposition 3.3.3,
the pullback of this isofibration along the equivalence p is equivalent to the map

g
RN
C--s>P——>» A CXB--+-»PXB—»B
y A A
(R O A
C—sP—A C = P A
~__
g

By right properness again, the pullback of P - A along f is equivalent to the
pullback of g: C — A along f and similarly for the lower-horizontal maps. So
without loss of generality, we may assume that the maps g and g of the statement
are isofibrations and the left-hand square is a pullback.

Under these new hypothesis, the top, bottom, and front faces of the cube are
pullback squares:

CxB——> B
AR
C 8 A Y q

4 i
[I CxB—|— B
A |p
R
C—— A
g

so by pullback composition and cancelation, the back face is a pullback square as
well. Now the induced map C X4 B — C X 4 Bis the pullback of the equivalence
q along an isofibration and hence is an equivalence by Proposition 3.3.3. [

Exercises

Exercise 3.3.i. Use Proposition 3.3.1 to prove that for any isofibration and
parallel pair of isomorphic functors

E

<~
=

A =la’ B

their pullbacks are equivalent over A.
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Exercisk 3.3.ii. State and prove an analogous result to Proposition 3.3.1 that
describes the weak 2-categorical universal property of limits of towers of isofi-
brations.

Exercisk 3.3.iii. Use the result of Exercise 3.3.ii to prove that a natural equiv-
alence between towers of isofibrations induces an equivalence between their
limits by adapting the construction given in the proofs of Propositions 3.3.3 and
3.3.4.

3.4 The Comma Construction

The comma co-category is defined by restricting the domain and codomain of
the co-category of arrows A? along a pair of specified functors with codomain
A.

DEerInITION 3.4.1 (cOomma oo-category). Let C £ 4 L B be a diagram of
oo-categories. The comma oco-category is constructed as a pullback of the
simplicial cotensor A* along g X f

Hom(f,g) — A%

(Plypo)l - l(Pl’Po)

CXB— AXA
gxf

(3.4.2)

This construction equips the comma co-category with a specified isofibration
(p1, po) : Homy(f,g) » C X B and a canonical natural transformation

Hom,(f, &)

N
o i B (3.4.3)
N7
A
in the homotopy 2-category called the comma cone.

By the universal property (3.4.2), an element (a,b,c): 1 — Homu(f,g)
of the comma oo-category is a triple where b and c are elements of B and C,
respectively, and o : fb — gc is an arrow in A with domain fb and codomain

gc.

ExampLE 3.4.4. The co-category of arrows arises as a special case of the comma
construction applied to the identity span. This provides us with alternate notation
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for the generic arrow of (3.2.3), which may be regarded as a particular instance
of a comma cone.

Homy
Pi/ , \fo
N 7

A A

&
A

The following proposition encodes the homotopical properties of the comma
construction.

ProposiTion 3.4.5 (maps between commas). A commutative diagram

g f

C— A<——RB

(O
ct.aL 3
induces a map between the comma oo-categories

omp(q,r)

Homy (f, g)H """ > Hom4(f,8)

(Pl’Po)l l(pl,pw

cxB—"21 , CxB

Moreover, if p, q, and r are all isofibrations, all trivial fibrations, or all equiva-
lences then the induced map is again an isofibration, trivial fibration, or equiva-
lence, respectively.

Proof The map of cospans gives rise to a commutative diagram

C B gxf AXA (p1,P0) ye

RSN
rxq pXp L 2
N p

CXB— AXA «—— A
gxf (P1:po)

in which the dotted map is the Leibniz tensor of the monomorphism 1+ 1 < 2
with p. If p, q, and r are isofibrations or trivial fibrations, then this map and the
four other downwards pointing maps are all isofibrations or trivial fibrations,
respectively, by axiom 1.2.1(ii) and Lemma 1.2.14. By Proposition C.1.12, the
map Hom,(q, r) is again a isofibration or trivial fibration (see Exercise 3.4.i).
In the case where p, g, and r are equivalences, Lemma 1.2.15 implies that the
maps r X g, p X p, and p?* are as well, so Proposition 3.3.4 applies to prove that
Hom(q, r) is an equivalence. O
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There is a 2-categorical limit notion that is analogous to Definition 3.4.1,
which constructs the universal 2-cell inhabiting a square over a specified cospan.
In Cat this universal property characterizes the comma category, from which
we borrow the name. As with the case of co-categories of arrows, comma
oco-categories do not satisfy this 2-universal property strictly. Instead:

ProrosiTioN 3.4.6 (the weak universal property of the comma co-category). The
comma cone (3.4.3) has a weak universal property in the homotopy 2-category
given by three operations:

(i) I-cell induction: Given a natural transformation over C £ A 41 Bas
below-left
X
X c ira—l b
b
RN Hom,(f,8)

N RN
4 N

there exists a functor "a7: X — Homy(f,g) so that b = py"a™, ¢ =
pi ol and o = ¢pra’.

(ii) 2-cell induction: Given functors a,a’ : X - Homu(f, g) and natural
transformations 1, and 1y so that

) X ) X
7 o N\ RN
Homa(f,g) = Homa(f,g)  Homa(f,8) = Homa(f.g)

p\’l/ \f:"/\/
\/ \/

there exists a natural transformation 7. a = a' so that p;7 = 7, and

v
N

PoT = To-
a
(iii) 2-cell conservativity: For any X @ Hom,(f,g) if both pit

al

and pyt are isomorphisms then T is an isomorphism.

Proof The cosmological functor Fun(X, —) : K — QCat carries the pullback
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(3.4.2) to a pullback

Fun(X, Hom,4(f, g))
Al
Homg,n(x,4)(Fun(X, f), Fun(X, g)) — Fun(X,A)*

l(PlvPO)
Fun(X,A) X Fun(X,A)

.

(p1,Po)l

Fun(X, €) X Fun(X, B) o)

of quasi-categories. Now Lemma 3.1.7 demonstrates that the canonical 2-cell
(3.4.3) induces a natural map of hom-categories

hFun(X, Hom4(f,g)) — Hompeyn(x,4)(hFun(X, f), hFun(X;, g))

((pl)*,(po)*)\ Ad,dom)

hFun(X, C) x hFun(X, B)

over hFun(X, C X B) = hFun(X, C) X hFun(X, B) that is a smothering functor.
The properties of 1-cell induction, 2-cell induction, and 2-cell conservativity fol-
low from surjectivity on objects, fullness, and conservativity of this smothering
functor, respectively. O

The functors "a™: X — Homy(f, g) induced by a fixed natural transforma-
tion a: fb = gc are unique up to fibered isomorphism over C X B.

ProrosiTioN 3.4.7. Whiskering with the comma cone (3.4.3) induces a bijection
between natural transformations as displayed below-left

X X
7N c/[\bg
C B «“\> rgl
) >~ L
N " Homa(f,2)

/=
and fibered isomorphism classes of maps of spans from C to B as displayed
above-right, where the fibered isomorphisms are given by invertible 2-cells

c%(l)ﬁ‘B
Hom,(f,g8)

so that p1y = id, and poy = id,.
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Proof Lemma 3.1.3 proves that the fibers of the smothering functor of Propo-
sition 3.4.6 are connected groupoids. The objects of the fiber over « are functors
X — Homy(f, g) that whisker with the comma cone ¢ to a, and the morphisms
are invertible 2-cells that whisker with

(P15 Po) - Homu(f,8) —>» C X B

to the identity 2-cell (id,, id). The action of the smothering functor defines a
bijection between the objects of its codomain and their corresponding fibers. [

Oplax maps of cospans in the homotopy 2-category also induce maps of
comma oo-categories:

OBsEeRrvATION 3.4.8. By 1-cell induction a diagram

c—t,al B
’l by lp B lq
8 f
induces a map between comma oo-categories as displayed below-right:
Homa(f,8) Homa(f,8)
P1
/ , \ oy LBy
C bl B Hom 4 ( f
C =« A B
N i”/f \ /

that is well-defined and functorial up to fibered isomorphism (see Exercise
3.4.ii).

One of many uses of comma oco-categories is to define the internal mapping
spaces between two elements of an co-category A. This is one motivation for
our notation “Homy.”

DerintTION 3.4.9 (mapping space). The mapping space between two elements
X,y : 1 > A of an co-category is the comma co-category Homy (x, y) defined
by the pullback diagram

Homy (x,y) LAY

(Plypo)l - l(Pl,Po)

1— AXA
.x)
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Mapping spaces are discrete in the sense of Definition 1.2.26:

Prorosrtion 3.4.10 (mapping spaces are discrete). For any pair of elements
x,y: 1 > A of an co-category A, the mapping space Homy4(x, y) is discrete.

Proof We must show that the functor space Fun(X,Hom,4(x,y)) is a Kan
complex for any oo-category X. This is so just when hFun(X, Hom,4(x, y)) is
a groupoid, i.e., when any 2-cell with codomain Hom 4 (x, y) is invertible. By
2-cell conservativity, a 2-cell with codomain Hom,4(x, y) is invertible just when
its whiskered composite with the isofibration (p;, pg) : Hom4(x,y) » 1 X 1 is
an invertible 2-cell, but in fact this whiskered composite is an identity since 1 is
2-terminal. O

The weak universal property of Proposition 3.4.6 characterizes comma oo-
categories up to fibered equivalence (see Definition 3.2.7) over C X B.

Proposrtion 3.4.11 (uniqueness of comma oco-categories). For any isofibration
(e1,e9): E » C X B that is fibered equivalent to Homy(f,g) » C X B the
2-cell

E
ei/e\\io
c ¢ B
Ay

A

encoded by the equivalence e:. E = Homu(f,g) satisfies the weak univer-
sal property of Proposition 3.4.6. Conversely, if (di,dy): D » C X B and
(e1,€9) : E » C X Bare equipped with 2-cells

d b d e E e
LN SN
c ¢ B ad Cc L B

N N

A A

(3.4.12)

satisfying the weak universal property of Proposition 3.4.6, then D ~cyg E.

Proof The proof of the first statement proceeds exactly as in the special case
of Proposition 3.2.10. We prove the converse, solving Exercise 3.2.ii.
Consider a pair of 2-cells (3.4.12) satisfying the weak universal properties
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enumerated in Proposition 3.4.6. 1-cell induction supplies a map of spans

D

di/D dO dl E\L,ra_‘ do

AN /f c ¢ B
A g\ /f

A

Exchanging the roles of § and ¢ yields a second map of spans "¢ : E — D with
the property that €"6"e™ = € and 6"¢ 6™ = §. By Proposition 3.4.7 it follows
that "d"¢™ = idg over C X Band "¢ 8™ = idp over C X B. This defines the
data of a fibered equivalence D ~ E.* O

As is our convention for co-categories of arrows, it is convenient extend
the appellation “comma oo-category” from the strict model constructed in
Definition 3.4.1 to any oco-category that is fibered equivalent to it and refer to its
accompanying 2-cell as the “comma cone.” For example, in §4.2, we introduce
multiple models for the co-category of cones over a fixed simplicial set indexed
diagram, which are useful in developing various equivalent formulations of the
universal property of limits.

Exercises

ExEercisi 3.4.i (C.1.12). Complete the proof of Proposition 3.4.5 by observing
that the map Hom,,(q, r) factors as a pullback of the Leibniz cotensor of dA[1] <
A[1] with p followed by a pullback of r X q.

ExEercisk 3.4.ii. Use Proposition 3.4.7 to justify the functoriality up to isomorph-
ism of the comma construction in oplax morphisms described in Observation
3.4.38.

ExEercisk 3.4.iii. Exercises 3.4.1 and 3.4.ii illustrate the relative advantages and
disadvantages of strict simplicial and weak 2-categorical universal properties of
the comma co-category construction: the former gives a strictly functorial action
but only of strictly commutative maps of cospans, while the latter gives an action
of oplax transformations of cospans that is only functorial up to isomorphism.
Mediating between these two constructions, use Lemma 1.2.19 and Proposition

4 As alluded to in Warning 3.2.9, there is a slight ambiguity in the 2-categorical data that encodes
a fibered equivalence. Proposition 3.6.4 provides a small boost to finish this proof.
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1.4.9 to rectify a pseudo-commutative diagram

c—2.aL B

rl >y lpguﬁ lq

C— A«——B
g 7

into an equivalent strictly commutative diagram and prove that the induced map
Homp(q, r) is equivalent to 8 | .

ExEercise 3.4.iv. Show that the functor between comma oo-categories induced
by a diagram

cS2.aL 3
rll =y le =B Zlq
g f

in which $ and y are isomorphisms and p, g, and r are equivalences defines an
equivalence over r X q.

Bly 5o~
Hom,(f,8) -<» Homa(f,8)
(Pl,Po)l l(Pl’Po)

CxXxB—=—— CxB
rxq

3.5 Representable Comma oo-Categories

Definition 3.4.1 constructs a comma oo-category for any cospan. In the special
cases where one of the legs of the cospan is an identity, this provides two dual
mechanisms to encode a functor between co-categories as an co-category itself.

DerintTION 3.5.1 (left and right representations). Any functor f : A — Badmits
a left representation and a right representation as a comma co-category,
displayed below-left and below-right:

Homg(f, B) Homg(B, f)

e N e N

B<—A A—)B
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where we save space by depicting the left comma cone over f displayed above-
left and the right comma cone over f displayed above-right as inhabiting
triangles rather than squares.

By Proposition 3.4.11, the weak universal property of the comma cone char-
acterizes the comma span up to fibered equivalence over the product of the
codomain objects. Thus:

DEerintTION 3.5.2. Given a cospan C £ A L B, the comma oo-category
Hom,(f,g) » C X Bis left representable if there exists a functor €: B — C
so that

Homy (f, 8) ~cxp Home (¥, C)

and right representable if there exists a functor r : C — B so that
Hom, (£, 8) ~cxp Homp(B, ).

In this section, we prove a representability theorem: a comma oo-category
Hom,(f, g) is right representable if and only if g : C — A admits an absolute
right lifting along f : B — A, in which case the representing functorr: C — B
defines the postulated lifting. We prove this result over the course of three
theorems, each strengthening the previous statement.

The first theorem characterizes those natural transformations

r lf
Yp

that define absolute right lifting diagrams as those that induce fibered equiv-
alences Homg(B, 1) ~cyp Homu(f,g) between comma oo-categories. The
second theorem proves that a functor r defines an absolute right lifting of g
through f just when Homy (f, g) is right represented by r; the difference is that
no natural transformation p: fr = g need be provided. The final theorem
gives a general right representability criterion that can be applied to construct a
right representation to Homy4 (f, g) without a priori specifying the representing
functor r. Dual results characterize left representable comma oo-categories.

THEOREM 3.5.3. The triangle below-left defines an absolute right lifting diagram
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if and only if the induced functor below-right

Homg(B, 1)
Hompg(B,r) o Ly .
B D1 ) Po Hom (f g)
ruplf"’c/?—)Bz /A\
C—4 DN
A \ /
(3.5.4)

defines a fibered equivalence Homg(B, 1) ~cypg Hom(f, g).

In [123], Street and Walters interpret the equivalence Homg(B,r) ~cxp
Hom 4 (f, g) encoding an absolute right lifting diagram as asserting that “f is
left adjoint to r relative to g.” This notion of relative adjunction, first studied by
Ulmer [126], should be compared with the definitions of adjunction given in
Lemma 2.3.7 and Proposition 4.1.1.

Proof Suppose that (7, p) defines an absolute right lifting of g through f, and
consider the unique factorization of the comma cone under Hom 4 (f, g) through
p displayed by the left-hand pasting equality:

HomA(f g)
Homy(f,8) Homy(f,8) o
/ \ V g \p(: HomB(B r)
B~ cC r— B~
\ / \ / C r—> B
g < f
(3.5.5)

By 1-cell induction, the natural transformation ¢ factors through the right comma
cone over r as displayed above-center. Substituting (3.5.4) into the bottom
portion of the above-right diagram, we see that yz : Hom4(f,g) = Hom,(f,g)
is a functor that factors the comma cone for Hom 4 (f, ) through itself. Applying
the universal property of Proposition 3.4.7, it follows that there is a fibered
isomorphism yz = idyom , (f,¢) Over C X B.

To prove that zy & idyemg(s,r) it suffices to argue similarly that the right
comma cone over r restricts along zy to itself. Since (7, p) is absolute right
lifting, it suffices to verify the equality ¢zy = ¢ after pasting below with p. But
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now reversing the order of the equalities in (3.5.5) and (3.5.4) we have

which is exactly what we wanted to show. Thus, we see that if (r, p) is an
absolute right lifting of g through f, then the induced map (3.5.4) defines a
fibered equivalence Homg(B, 1) ~ Hom4(f, g).

Now, conversely, suppose the functor y defined by (3.5.4) is a fibered equiva-
lence and let us argue that (r, o) is an absolute right lifting of g through f. By
Proposition 3.4.11, the natural transformation displayed on the left-hand side
of the equality in (3.5.4) inherits the weak universal property of a comma cone
from Homy (f, g). So Proposition 3.4.7 supplies a bijection displayed below-left

X X
v N N x
c 2 B(* C/ a\B o Vi\\b
NS AR C———B

A Homg(B,r)

between 2-cells over the cospan and fibered isomorphism classes of maps of
spans that is implemented, from center to left, by whiskering with the 2-cell
PD1 - fo: fpo= gp; in the center of (3.5.4). Proposition 3.4.7 also applies to
the right comma cone ¢ over r : C — B giving us a second bijection, displayed
above-center-right between the same fibered isomorphism classes of maps of
spans and 2-cells over r. This second bijection is implemented, from center to
right, by pasting with the right comma cone ¢ : py = rp;. Combining these
yields a bijection between the 2-cells displayed on the right and the 2-cells
displayed on the left implemented by pasting with p, which is precisely the
universal property that characterizes absolute right lifting diagrams. O

As a special case of this result:
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CoroLLARY 3.5.6. The following are equivalent, and define what it means for a
functor f: A — B between oo-categories to be fully faithful:

(i) The identity defines an absolute right lifting diagram:
A

Al

A —— B

f
(ii) The identity defines an absolute left lifting diagram:

A

Al

A —— B

f

(iii) For any oco-category X the induced functor
fi : hFun(X,A) - hFun(X, B)

is a fully faithful functor of 1-categories.
(iv) The functor induced by the identity 2-cell idy defines a fibered equiva-
lence A =~ 4, 4 Homg(f, f).

A,'Z
Dp1 Do
A / ¢ "f> A
N
Homg(f, f)

Proof The statement (iii) is an unpacking of the meaning of both (i) and (ii).
Theorem 3.5.3 specializes to prove (i)<(iv) or dually (ii)<(@iv). O

It is not surprising that postcomposition with a fully faithful functor of co-
categories induces a fully faithful functor of hom-categories in the homotopy
2-category, and in particular between the homotopy categories (see Definition
1.4.11). What is less apparent is that this condition is strong enough to capture
the oo-categorical notion of fully faithfulness, when certainly it would not
be enough to merely require that the functor hf : hA — hB is fully faithful.
The unexpected power of condition (iii) is that its statement quantifies over all
generalized elements a : X — A of A, in contrast to the objects of hA which
are limited to the elements a: 1 — A. This provides a retroactive justification
for our work in the homotopy 2-category.

Theorem 3.5.3 has another important consequence cited in the proof of Propo-
sition 2.4.7.
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CoroLLARY 3.5.7. Cosmological functors preserve absolute lifting diagrams.

Proof Consider a cosmological functor F: K — £ together with an absolute
right lifting diagram in X

r lf
e

By Theorem 3.5.3, the induced functor of (3.5.4) defines a fibered equivalence
vy : Homg(B,r) = Hom,4(f,g) over C X B.

Since cosmological functors preserve the simplicial limits and isofibrations of
(3.4.2), F carries y to a functor Fy : Homgg(FB, Fr) - Homg,4(F f,Fg) over
FC x FB. By Lemma 1.3.2, this functor is again a fibered equivalence. Since
cosmological functors define 2-functors, this functor satisfies a pasting equation

HomFB(FB F}')
HomFB(FB Fr) Z' Fy

y ¢ Yi omFA(Ff Fg)
Do
\ Fp / i \

in £. By Theorem 3.5.3, this fibered equivalence witnesses the fact that

FB

S b

FC —— FA
Fg

defines an absolute right lifting diagram in £. O

Having proven Theorem 3.5.3 our immediate aim is to strengthen it to show
that a fibered equivalence Homg(B,r) ~cxp Hom4(f, g) implies thatr: C —
B defines an absolute right lifting of g through f without a previously specified
2-cellp: fr=>g.

THEOREM 3.5.8. Given a trio of functorsr: C - B, f: B—>A,andg: C - A
there is a bijection between natural transformations as displayed below-left and
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fibered isomorphism classes of maps of spans as displayed below-right

Homg(B,r)
B p1 Po
y 4o lf i ¢ / Y \ B
C—> A ;1\ /;)
& Hom,(f,2)

=
that is constructed by pasting with the right comma cone over r and then applying
1-cell induction to factor through the comma cone for Hom4(f, g).

Homg(B, 1) iy

D1 v Do

D1 DPo

/ % \B _ fl;mA(fi)pi

Ri./f C i B
A

C

Moreover, a natural transformation p . fr = g displays r as an absolute right
lifting of g through f if and only if the corresponding map y : Homg(B,r) —
Hom,(f, g) is an equivalence.

The second clause is the statement of Theorem 3.5.3, so it remains only to
prove the first. We show the claimed construction is a bijection by exhibiting its
inverse, the construction of which involves a rather mysterious lemma whose
significance will gradually become apparent.

LemmMma 3.5.9. For any functor f . A — B, the codomain projection functor
p1 : Homg(B, f) » A from its right representation admits a right adjoint right
inversed i = "id ;™ induced from the identity 2-cell idy, defining an adjunction
over A whose counit is an identity and whose unit 7). id = ip; satisfies the
5 A functor admits a right adjoint right inverse just when it is the left adjoint in an adjunction
whose counit is invertible (see §B.4). When the original functor is an isofibration, as is the case
here, any right adjoint right inverse adjunction can be upgraded to one in which the counit is an

identity, which can then be upgraded further to a fibered adjunction (see Definition 3.6.5 and
Lemma 3.6.9).



116 Comma oo-Categories

conditions ni = id;, p1n = id,,, and pon = ¢.

A D1
A b 7 A <ﬁ Homg(B, f)
N = frmen\ < XA
A——B e N ! A
f

A

This lemma figures prominently in the proof of the Yoneda lemma in §5.7 and
is also the main ingredient in a “cheap” version of the Yoneda lemma appearing
as Corollary 3.5.11.

Proof This adjunction is constructed via the weak universal properties of the
right comma cone over f. The identity 2-cell id s induces a functor i := Tid 7
over the right comma cone over f as displayed in the statement. Note that
p1i = idy4, so we may take the counit to be the identity 2-cell. Since ¢i = idy,
we have a pasting equality:

Homg(B, f)
;y
. Homg(B, f) A ¢
"N K R
Homg(B, f) = Homg(B, f) = Homg(B, f)
A N VRN
A— B A— B

f f

which induces a 2-cell 7 : id = ip; with defining equations p;n = idp, and
pPon = ¢. The first of these conditions provides one triangle equality; for the
other, we must verify that »i = id;. By 2-cell conservativity, %i is an isomorphism
since py7i = id4 and poni = idy are both invertible. By naturality of whiskering,
we have

: 1
Ip1nt
and since p;n = id,, the bottom edge is an identity. So i - i = i and since 7i
is an isomorphism cancelation implies that 7i = id; as required. O

One interpretation of Lemma 3.5.9 is best revealed through a special case:
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CoroLLARY 3.5.10. For any element b. 1 — B, the identity at b defines a
terminal element in Homg(B, b).

Proof By Lemma 3.5.9, the codomain projection — which in this case reduces
to the unique functor ! : Homg(B, b) — 1 — admits a right adjoint right inverse
induced from its identity 2-cell. Thus, by Definition 2.2.1, this right adjoint
identifies a terminal element "id,7: 1 — Hompg(B, b) corresponding to the
identity morphism idp, : b — b in the homotopy category hB. L

The general version of Lemma 3.5.9 has a similar interpretation: id; induces
a terminal element in Homg(B, f) “over A,” that is, in the sliced co-cosmos (see
Definition 3.6.8 and Example 3.6.12).

Proof of Theorem 3.5.8 It remains to construct an inverse to the function in
the statement that takes a natural transformation fr = g and produces a fibered
isomorphism class of functors Homg(B,r) — Homy,(f,g) over C X B. Our
construction makes use of the right adjoint right inverse i : C — Hompg(B, r) of
Lemma 3.5.9. Given a functor Homg(B, ¥) = Hom,(f, g), restrict along i, and
paste with the comma cone for Hom,4(f, g) to define a natural transformation
fr=>g

Starting from a natural transformation p : fr = g, the composite of these
two functions constructs the natural transformation displayed below-left

C
AN
Homg(B, r) c—' 5B
[N - NE
C r—— B A
)
N

5N

which equals the above-center pasted composite by the definition of y from
p, and equals the above-right composite since ¢i = id,. Thus, when a natural
transformation p : fr = gis encoded as a map y : Homg(B,r) - Hom,(f,g)
over C X B, and then re-converted into a natural transformation, the original
natural transformation p is recovered.

For the converse, starting with a map z : Homg(B,r) — Hom,(f,g) over
C X B, the composite of these two functions constructs an isomorphism class
of maps of spans w displayed below-left by applying 1-cell induction for the
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comma cone for Hom,(f, g) to the composite natural transformation pasted
below-center:

HomB(B, r) HomB(Ba r)
Pll Pll
¢
Hompg(B,r) cC = Ccn
i i i
/ e \ l P l

Hompg(B, 1)

7t Homy(f,8) 7%
VORI VN

PrHom, (f,8) P8

Homg(B, 1)

/1N

Pt Homu(f,8) P

N

¢ ¢

C - B C - B
N NS

A A
By Lemma 3.5.9, there exists a natural transformation z : id = ip; so that
Do = ¢ — this gives the pasting equality above center — and p;7 = id, which

tells us that the right-hand pasting diagram reduces to ¢z. Proposition 3.4.7 now
implies that w = z over C X B. O

A dual version of Theorem 3.5.8 represents natural transformations g = f¢
as fibered isomorphism classes of maps Homg(¢, B) — Hom (g, f) over B x C.
Specializing these results to the case where one of f or g is the identity, we
immediately recover a “cheap” form of the Yoneda lemma:

CoroLLARY 3.5.11. Given a parallel pair of functors, f,g: A — B, there
are bijections between natural transformations as displayed below-center and
fibered isomorphism classes of maps between their left and right representations
as comma oo-categories, as displayed below-left and below-right:

Homg(g, B) Homg(B, f)
D1 Do f D1 Do
B/ lra’>A W{A@B]W A/ lra>3
Pwl\ /;0 g Pwl\ /;0

Homg(f,B) N Homg(B, g)

that are constructed by pasting with the left comma cone over g and right comma
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cone over f, respectively:
Homp(g, B)

ot

Homg(g, B)

P1
= Homg(f,B)
B /<—§ \ VJ;_ Yi
W Be— A

f

PA——

Homg(B, f)
Homg(B, f)

P1 i Po
¢ = Homg(B, g)
/ f—>\ B y ]; Yi
T RN

g

and then applying 1-cell induction to factor through the left comma cone over f
in the former case or the right comma cone over g in the latter. O

Combining the results of this section, we prove one final representability
theorem that allows us to recognize when a comma oo-category is right rep-
resentable in the absence of a predetermined representing functor. This result
specializes to give existence theorems for adjoint functors and for limits and
colimits in the next chapter.

THEOREM 3.5.12. The comma oo-category Hom4(f, g) associated to a cospan

cta <L Bis right representable if and only if its codomain projection functor
admits a right adjoint right inverse

Homa(f,8)
D1 ,7‘ Do
124
c-i B

in which case the composite pyi . C — B defines the representing functor and
the natural transformation encoded by the functori: C — Homy(f, g) defines
an absolute right lifting of g through f.

Proof Suppose that the comma Hom,(f, g) is represented on the right by a
functor r: C — B. By Lemma 3.5.9, p; : Homg(B,r) » C admits a right
adjoint right inverse i’, which composes with the fibered equivalence to define a
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right adjoint right inverse for the equivalent functor p; : Homy,(f,g) - C.
i
C =i - Homg(B,r) —=—— Homu(f,g)

N 7
(p1,po) (p1:00)
'S

A

(ide.r) CxB

Note that r = pgi, and by the construction in the proof of Theorem 3.5.8,
the functor i: C — Homy(f,g) encodes an absolute right lifting diagram
p . rf = g. Thus, it remains only to prove the converse.

To that end, suppose we are given a right adjoint right inverse adjunction
p; 1 i. Unpacking the definition, this provides an adjunction

P1
o HomA(f 2)

\/

over C whose counit is an identity and whose unit 7 : id = ip; satisfies the
conditions #i = id; and p;7 = idp,. By Theorem 3.5.8, to construct the fibered
equivalence Homg(B, ) ~cxg Hom4(f, g) with r := pyi, it suffices to demon-
strate that the natural transformation defined by restricting the comma cone for
Hom,(f, g) along i

defines an absolute right lifting diagram.
By 1-cell induction any natural transformation y : fb = gc induces a functor
™ x7 as displayed below-left:

b b

TN /_\
_3(_) Hom(f, g) B X Hom,(f,g) = Homy(f,g) v B
\ e \ b 2 el '
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Inserting the triangle equality p;n = id,, as displayed above-right constructs
the desired factorization pon™x': b = rc of y through ¢i.

In fact, given any natural transformation 7 : b = rc that defines a factoriza-
tion of y : fb = gc through ¢i, the pair (id,, 1) satisfies the compatibility con-
dition of Proposition 3.4.6(ii), inducing a natural transformation t: "y = ic
so that id, = p;7 and 7y = py7. We argue that the natural transformation 7 is
unique, proving that the factorization py7 : b = rc is also unique.

To see this, note that the adjunction p; - i over C exhibits the right adjoint
as a terminal element of the object p; : Hom4(f,g) - C in the strict slice of
the homotopy 2-category over C.° It follows, as in Lemma 2.2.5, that for any
object ¢: X — C and any morphism "y7: X — Homu(f,g) over C, there
exists a unique natural transformation "y = ic over C. Thus, there is a unique
natural transformation 7: "y = ic with the property that p;7 = id., and so
the factorization py7 : b = rc of y through ¢i must also be unique. O

In the next section, we discover that Theorem 3.5.12 may be expressed more
concisely as the assertion that a comma oo-category Hom4(f, g) in an oo-cos-
mos X is right representable precisely when its codomain projection functor
p1: Homy(f,g) - C admits a terminal element as an object of the sliced
o0-cosmos K¢ (see Corollary 3.6.10). Dually, Hom 4 (f, g) is left representable
just when its domain projection functor admits an initial element as an object of
the sliced co-cosmos Kg. There is a small gap between this statement and the
version proven in Theorem 3.5.12 having to do with the discrepancy between the
homotopy 2-category of the sliced co-cosmos K¢ and the slice of the homotopy
2-category hJ over C. This is the subject to which we now turn.

Exercises

Exercise 3.5.i. Anticipate Proposition 4.1.1 by exploring how one might encode
the existence of an adjunction f - u between a given opposing pair of functors
using comma co-categories.

ExEercisk 3.5.ii. Extend the result of Exercise 2.3.vi to show that for any equiv-
alence of cospans

Qy = 0
oql lm
e
\W 114 T\
o = ™

6 An object is a functor of co-categories ¢ : X — C, a 1-cell is a functor between the domain
oo-categories defining a strictly commutative triangle, and a 2-cell is a natural transformation
between such functors that whiskers to define an identity 2-cell with codomain C.
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there exists an absolute right lifting of g through f if and only if there exists an
absolute right lifting of g through f.

Exercise 3.5.iii ([124, 3.7]). Use Theorem 3.5.3 and Corollary 3.5.6(iv) to
prove that a fully faithful functor f : A — B reflects all limits or colimits that
exist in A. Why does this argument not also show that f: A — B preserves
them?

3.6 Fibered Adjunctions and Fibered Equivalences

In Proposition 3.2.10, we discovered that the co-category A of arrows in A
together with its codomain and domain evaluation functors (py, pg) : A* -
A X A satisfies a weak universal property in the homotopy 2-category that
characterizes it up to equivalence over A X A. Similarly, Proposition 3.4.11
tells us that the comma oo-category associated to a given pair of functors with
common codomain is characterized up to fibered equivalence, as defined in
Definition 3.2.7.

Asnoted in Warning 3.2.9 there is some ambiguity regarding the 2-categorical
data required to specify a fibered equivalence that we now address head-on.
The issue is that, for an oo-category B in an co-cosmos K, the homotopy 2-
category §(Kp) of the sliced oo-cosmos (see Proposition 1.2.22 and Definition
1.4.1) is not isomorphic to the 2-category (§X),p of isofibrations, functors, and
2-cells over B in the homotopy 2-category hX. However, there is a canonical
comparison functor relating these 2-categories that satisfies a property we now
introduce:

DeFintTION 3.6.1 (smothering 2-functor). A 2-functor F: A — B is smother-
ing if it is
« surjective on objects;
« full on 1-cells: for any pair of objects A,A’ in A and 1-cell k: FA — FA'
in B, there exists f : A - A’ in A with Ff = k;
« full on 2-cells: for any parallel pair of 1-cells f,g: A —» A’ in.A and 2-cell
Ff
FA @ FA' in B, there exists a2-cella: f = gin A with Fa = f3;
Fg
and
« conservative on 2-cells: for any 2-cell a in A if Fa is invertible in B then o

is invertible in A.

This is to say, a smothering 2-functor is a surjective-on-objects 2-functor that
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is “locally smothering,” meaning that the action on hom-categories is by a
smothering functor, as codified in Definition 3.1.2.

The prototypical example of a smothering 2-functor solves Exercise 1.4.vii.

ProposiTioN 3.6.2. Let B be an co-category in an oo-cosmos K. There is a
canonical 2-functor

H(Kp) — (hXK);p

from the homotopy 2-category of the sliced co-cosmos K g to the 2-category of
isofibrations, functors, and 2-cells over B in YK and this 2-functor is smothering.

This follows more or less immediately from Lemma 3.1.5 but we spell out
the details nonetheless.

Proof The 2-categories §(K ;) and (§X),p have the same objects — isofibra-
tions with codomain B — and the same 1-cells — functors between the domains
that commute with these isofibrations — so the canonical mapping may be defined
to act as the identity on underlying 1-categories.

By the definition of the sliced co-cosmos given in Proposition 1.2.22, a 2-cell
between functors f,g: E - Ffromp: E » Btoq: F - Bis a homotopy
class of 1-simplices in the quasi-category defined by the pullback of simplicial
sets below-left

Fung(E,F) — Fun(E, F) (hFun),g(E,F) — hFun(E, F)

ek

1 T) FUn(E,B) 1 T) hFUn(E,B)

Unpacking, a 2-cell a: f = g is represented by a 1-simplex a: f — gin
Fun(E, F) that whiskers with q to the degenerate 1-simplex on the vertex p €
Fun(E, B), and two such 1-simplices represent the same 2-cell if and only if they
bound a 2-simplex of the form displayed in (1.1.8) that also whiskers with q to
the degenerate 2-simplex on p.

By contrast, a 2-cell in (§X),5 is a morphism in the category defined by the
pullback of categories above-right. Such 2-cells are represented by 1-simplices
a: f — ginFun(E, F) that whisker with g to 1-simplices in Fun(E, B) that are
homotopic to the degenerate 1-simplex on p, and two such 1-simplices represent
the same 2-cell if and only if they are homotopic in Fun(E, F).

Applying the homotopy category functor h: QCat — Cat to the above-left
pullback produces a cone over the above-right pullback, inducing a canonical
map

h(Fung(E, F)) — (hFun),g(E, F),
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which is the action on hom-categories of the canonical 2-functor §(K,g) —
(h%),g. By Lemma 3.1.5, this canonical map defines a bijective-on-objects
smothering functor. Thus, we have defined a 2-functor §(K,;5) — (hX),p that
is bijective on 0- and 1-cells and locally smothering, as claimed. O

Smothering 2-functors are not strictly speaking invertible, but nevertheless
2-categorical structures from the codomain can be lifted to the domain.

LemMma 3.6.3. Smothering 2-functors reflect and create equivalences.

Proof For any smothering 2-functor F: A — B and l-cell f: A - Bin
A, it Ff: FA = FBis an equivalence in B, then by fullness on 1-cells, an
equivalence inverse g’ : FB = FAto Ff liftstoa 1-cellg: B — A in A. By
fullness on 2-cells, the isomorphisms idg4 = g’ o Ff and Ff o g’ = idgp also
lift to A and by conservativity on 2-cells these lifted 2-cells are also invertible.
This proves that equivalences are reflected. To see that they are created, note
thatany f': FA > FBin B liftstoa l-cell f : A — B, which is an equivalence
by the construction just given. O

Applying Lemma 3.6.3 to the smothering 2-functor
h(K)p) — (hXK)p

we resolve the ambiguity about the 2-categorical data of a fibered equivalence.

ProrosiTiOoN 3.6.4 (fibered equivalence data). Let B be an co-category in an
co-cosmos K.

(i) Any equivalence in (hX),g lifts to an equivalence in §(K,g). That is,
fibered equivalences over B may be specified by defining an opposing
pairof l-cells f . E — Fand g . F — E over B together with invertible
2-cells idg = gf and fg = idp that lie over B in K.

(i) Moreover, if f: E — F is a map between isofibrations over B that
admits an not-necessarily fibered equivalence inverse g . F — E with
not-necessarily fibered 2-cells idg = gf and fg = idp, then this data is
isomorphic to a genuine fibered equivalence.

Thus, the forgetful 2-functor H)(K,g) — (§XK),;p = YK reflects equivalences.

Proof The first statement is proven by Lemma 3.6.3 and Proposition 3.6.2.
The second statement, which asserts that the forgetful 2-functor (§X),g — HhK
reflects equivalences, is left as Exercise 3.6.i, and requires only the 2-categorical
lifting property of isofibrations (see Proposition 1.4.9). O
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This gives a 2-categorical proof of Proposition 1.2.22(vii), that for any oco-
category B in an oo-cosmos X, the forgetful functor X,z — X preserves and
reflects equivalences. The smothering 2-functor §(K,;5) — (HX),p can also be
used to lift adjunctions that are fibered 2-categorically over B to adjunctions in
the sliced co-cosmos K p.

DEerintTION 3.6.5 (fibered adjunction). A fibered adjunction over an co-cate-
gory B in an co-cosmos X is an adjunction in the sliced co-cosmos K p.

f
E/—\

L>F
\ u /
B
We write f —g u to indicate that specified functors over B are adjoint over B.

LemMmA 3.6.6 (pullback and projection of fibered adjunctions).

(i) A fibered adjunction over B pulls back along any functor k. A — B to
define a fibered adjunction over A.

(ii) A fibered adjunction over A can be composed with any isofibration”
p: A - Bto define a fibered adjunction over B.

Proof For any co-cosmos X, pullback along k : A — B defines a cosmological
functor k* : K5 — X4, by Proposition 1.3.4(v), which descends to a 2-
functor k* : h(K;5) = H(K, ) that carries fibered adjunctions over B to fibered
adjunctions over A. This proves (i).

Composition with an isofibration p : A - B also defines a 2-functor of slices
Py« H(K;4) = H(K,p). Thus, composition with an isofibration carries a fibered
adjunction over A to a fibered adjunction over B, proving (ii). U

In analogy with Lemma 3.6.3:

Lemwma 3.6.7. If F: A — B is a smothering 2-functor, then any adjunction in
B may be lifted to an adjunction in A. In particular, any adjunction in the slice
2-category (hX),p of an oo-cosmos X lifts to a fibered adjunction over B.

Proof Exercise 3.6.iii. O

Combining Definitions 3.6.5 and 2.2.1, we obtain notions of fibered initial
and terminal elements.

7 We require p to be an isofibration due to our convention that the objects in sliced co-cosmoi are
isofibrations over a fixed base.
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DEerInTTION 3.6.8. Given an isofibration p : E » B, we say that E admits an
initial element over B or admits a terminal element over B if there exists a
fibered left or right adjoint, respectively, to the unique functor from p to idg
over B:

i p
————————— — ] >
BQ/*E E__ 1 7 B
p t
N\’ / N4
B B

That is, E admits an initial or terminal element over B just when p: E - B
admits an initial or terminal element when considered as an object of the sliced
00-cOSmos over B.

The next result shows that fibered initial or terminal elements exist just when
the isofibration p : E - B admits a left adjoint right inverse or a right adjoint
right inverse, respectively.

LemMmA 3.6.9. Let p: E » B be any isofibration that admits a right adjoint
right inverse ' . B — E. Then r' is isomorphic to a functor r that defines a
fibered adjunction:

Thus, an isofibration p . E » B admits a right adjoint right inverse if and only
if E admits a terminal element over B.

Proof Since an isofibration p: E - B in an co-cosmos X defines an isofi-
bration in the homotopy 2-category §X, the invertible counit €’ : pr’ = idg of
the adjunction p - 7’ lifts to define a functor r : B — E together with a natural
isomorphism y : ' = r so that py = ¢’ and pr = idg:

B E B = E
e p

)

IR
Il
<
“«—
=

By the construction left to the reader in Exercise 2.1.ii, p = r with unit# = yp-n’
defined by composing the original unit 7’ with y and with counit € := ¢’ - py~!
In particular, since py = €', the counit € is the identity 2-cell, and consequently
one of the triangle equality composites reduces to the assertion that pn = idp,.
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This constructs a right adjoint to p considered as a functor in (§X),g. By
Lemma 3.6.7, this adjunction lifts along the smothering 2-functor of Proposition
3.6.2 to define a fibered adjunction over B of the desired form in §(K,5) (see Ex-
ercise 3.6.iii). Definition 3.6.8 interprets the fibered adjunction just constructed
as defining a terminal element in E over B. O

With this observation, Theorem 3.5.12 may be summarized more compactly
as follows:

CoroLLARY 3.6.10. For any cospan C LAY\ L B, the comma oo-category
Hom4(f, g) is right representable if and only if Hom4(f, g) admits a terminal
element over C — in which case the representing functor defines an absolute
right lifting of g through f. U

ReMARK 3.6.11. In an co-cosmos of (o0, 1)-categories, the representability the-
orem can be improved still further to say that Hom4(f, g) is right representable
if and only if, for all elements ¢ : 1 — C, the oo-category Hom4 (f, gc) has a ter-
minal element (see Corollary 12.2.8). The proof requires “analytic” techniques,
in contrast with the purely synthetic reasoning in this chapter.

ExampLE 3.6.12. By Lemmas 3.5.9 and 3.6.9, for any functor f : A — B, there
is a fibered adjunction

D1

AT , Homg(B, f)

- J‘ —
&
b1

A

which asserts that Tid;7: A — Homg(B, f) defines a terminal element in
Homg(B, f) over A.

By Lemma 3.6.6(i), we may pull back the fibered adjunction along any element
a: 1 — A to obtain an adjunction that identifies a terminal element in the fiber

\ Homg(B, fa) — Homg(B, f)

1% 1 3 Homg(B, fa) l - lpl

1 —2—— A

generalizing the result of Corollary 3.5.10.

ExampLE 3.6.13 (the fibered adjoints to composition). For any co-category
A, the adjoints to the “composition” functor o : A* x A*> — A? constructed in

Lemma 2.1.14 are constructed by composing a triple of adjoint functors that are
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fibered over the endpoint evaluation functors

0

AG
1L
1 + 1 A3 A51  — 142
\i/
(0,2) (0,1) - =
(p2,P0) A (P1,p0)
3 — 51 AXA

O'l

with an adjoint equivalence involving a functor A® =» A? X A2, which also lies
over A X A. Lemma 3.6.9 and its dual implies that these adJ01nt equivalences
can be lifted to fibered adjoint equivalences over A X A, and now both adjoint
triples and hence the composite adjunctions are also fibered:

(_’iddom(—))

Y L

AT~ 1 —
(idcod(—)’_)
(p2:p0) (p1,P0)

AXA

This fibered adjunction, which allows us to work at the co-cosmos level rather
than purely in the homotopy 2-category, figures in the proof of a result that
allows us to convert limit and colimit diagrams into right and left Kan extension
diagrams (see Proposition 4.3.4).

ProrosiTiON 3.6.14. A cospan as displayed below-left admits an absolute right
lifting if and only if the cospan displayed below-right admits an absolute right

lifting

B Homyu(f,A)
A P
;:// l f f/, lpl
7 e 7 le

in which case the 2-cell € is necessarily an isomorphism and the pair (i, €) can
be chosen to be ("p7,idg).

Proof By Theorem 3.5.12 and Corollary 3.6.10, to verify the existence state-
ment it suffices to show that Hom,4(f, g) admits a terminal element over C if
and only if Hom4(p;, g) admits a terminal element over C.

From the defining pullback (3.4.2) that constructs the comma oco-category
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Hom 4 (p;, &), we see that Hom 4 (py, g) = Homy (A, 8) X4 Homy(f, A).

Homa(p;,8) —— Homu(A,8) —— A?

(Pl:PO)l - (pl,po)l - l(pl,po)

CxHomA(f,A) TIH) CxXA T) AXA

g - |-
Hom,(f,A) — A

Thus, by Lemma 3.6.6, the composition-identity fibered adjunction of Example
3.6.13 pulls back along the functors g X f: C X B - A X A to define a fibered
adjunction

(= idclom( ))

Hom,(p;,8) = Homy (4, g) X Homy, (f,A) °—> Homy(f,8)

(]dcod( ) -)
(P1,po) (P1.po)

CXxB

which then composes with the projection 7: C X B - C to give a fibered
adjunction over C

]~
Homy (ps,8) °—> Homy(f,8)

A

between the codomain projection for Hom,4 (p;, g) and the codomain projection
for Homy, (f, g), considered as objects of the sliced co-cosmos over C. Since we
have right adjoints pointing in both directions, by Theorem 2.4.2, a terminal
element on either side is carried by the appropriate right adjoint to a terminal
element on the other side. This proves the equivalence of the absolute right
lifting conditions conditions.

Now we assume that either and thus both absolute right liftings exist. Ob-
serve that the rightmost adjoint (idgoq(—), —) : Hom4(f,g) — Homy(py,g) is
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characterized up to fibered isomorphism by the pasting equality:

HomA(f 2)
. (id Lod( » 4 HomA(f,g)¢
AN
pHomA(Pli = ¢ = Homa(f.A)
! \ /
i HomA(fA) Ex e
g P1
A

where "¢7: Homy(f,g) — Homy(f,A) is the functor that encodes the fac-
torization of the comma cone for Hom,4(f, g) through the comma cone for
Hom,(f,A). By Theorem 3.5.12, the functor "p™: C — Hom,(f, g) defines
a right adjoint right inverse to p; : Homy4(f,g) - C. Thus, by the argument
just given, the composite of "p™ and (id.,q(—), —) defines a right adjoint right
inverse to p; : Homy(py,g) - C, encoding the data of an absolute right lifting
of g through p;, necessarily isomorphic to the pair (i, €). The pasting equalities

C
réj C
HOmA(f 2) réj ron Homu(f,A)
(eoa-r=) N\ o Hom4(f,8) p/';I lPI
p1 Yﬂ =7 "
HomA(pl’g) g

p1 = Homy(f,A)
/ >O:‘T‘A (f,A) \ A
NOA !

A

demonstrate that this absolute right lifting diagram is given by ("p7,idg) as
claimed. O

The following example hints at one application of Proposition 3.6.14.

ExampLE 3.6.15. The left representation of a functor A/ : AV — AU induced
by cotensoring with a map of simplicial sets f: U — Vis itself definable as a
cotensor with the simplicial set formed by attaching V to the domain end of the
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cylinder U X 2 via the map f:

Hom,y (A7, A) = Acone(H) &, qUx S e
(pl,po)l i l(pl,po) [ ] l
AT XAV ——— AT x AV U x2 — cone(f)

id xAS

Proposition 3.6.14 establishes a correspondence between absolute right lifting
problems

v Acone()
A . R
r . lAf L lpl
e e

under which a single functor i : D — A®(f) js used to encode the data of both
the functor

ri=D i Acnne(f) Po AV
and the natural transformation

rp-| =D i Acone(f) ¢ AUX2

Exercises
Exercise 3.6.i. Let B be an object in a 2-category and consider a map

f

E—F

N
B

between isofibrations over B. Prove that if f is an equivalence in the ambient
2-category then f is also an equivalence in the slice 2-category of isofibrations
over B, 1-cells that form commutative triangles over B, and 2-cells that lie over
B in the sense that they whisker with the codomain isofibration to the identity
2-cell on the domain isofibration.

Exercisk 3.6.ii. Under the correspondence of Corollary 3.5.11, show that the
following are equivalent:

(i) a: f = gis an isomorphism.
(ii) The functor "o, : Homg(B, f) — Homg(B, g) defines a fibered equiv-
alence over A X B.
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(iii) The functor "a*7: Homp(g, B) = Homg(f, B) defines a fibered equiv-
alence over B X A.

ExEercise 3.6.iii. Let F: A — B be a smothering 2-functor. Use Lemma 2.1.11
to show that any adjunction in B can be lifted to an adjunction in A. Demonstrate
furthermore that if we have previously specified a lift of the objects, 1-cells,
and either the unit or counit of the adjunction in B, then there is a lift of the
remaining 2-cell that combines with the previously specified data to define an
adjunction in A. This proves a more precise version of Lemma 3.6.7.

ExEercise 3.6.iv. Extend the proof of Proposition 3.6.14 to prove that a square
preserves the absolute right lifting (v, p) if and only if the induced square pre-
serves the absolute right lifting (i, €):

a b’ ! !
B—2 B Hom (£, A) 2 ®Ptom .. (£, 4)
;:"/ lf lf’ i/’/) lpl lpl
7 e L Ye
Cm Ao A clr—a _ A
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Adjunctions, Limits, and Colimits II

In Chapter 2, we develop the basic theory of adjunctions between co-categories
and limits and colimits of diagrams valued in oo-categories by characterizing
these notions in terms of absolute lifting diagrams in the homotopy 2-category
of co-categories, functors, and natural transformations in an co-cosmos. While
absolute lifting diagrams are expedient for proving theorems relating adjunc-
tions, limits, and colimits, they do not obviously express the familiar universal
properties associated to these notions. In this chapter, we use the comma oo-
categories of Chapter 3 as a vehicle to give precise expressions to these universal
properties and prove that new characterizations of adjunctions, limits, and col-
imits are equivalent to the previous definitions. In fact, many of the main results
in this section are mere special cases of the general theorems characterizing
representable comma oco-categories.

Using the theory of comma co-categories, in §4.1 we quickly prove a variety of
results describing the universal property of adjunctions. In particular, Theorem
3.5.8 specializes in Proposition 4.1.1 to characterize adjoint pairs of functors
f:B—-Aandu: A — Bviaa “transposing equivalence”

HomA(f’A) ~AxB HomB(B’ u)’

while Corollary 3.6.10 specializes in Proposition 4.1.6 to give a criterion that
guarantees that a left or right adjoint to a given functor exists.

In an interlude in §4.2, we introduce the co-category of cones over or under a
diagram as a comma oo-category. When the indexing shape for the diagrams is
given by a simplicial set, an equivalent model can be built from Joyal’s join and
slice constructions. The co-categories of cones over or under a diagram feature
prominently in the study of the universal properties of limits and colimits in
§4.3. There we see that Theorem 3.5.8 specializes to prove Proposition 4.3.1,
characterizing a limit of a diagram as a right representation for the co-category

133
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of cones, while Corollary 3.6.10 specializes in Proposition 4.3.2 to characterize
a limit cone as a terminal element in the co-category of cones.

Since the proofs of the main results in this chapter appear in Chapter 3 where
they are developed in a more general setting, we are able to focus our efforts
here on applications. In §4.4 we introduce pointed oco-categories, which have a
zero element that is both initial and terminal, and show how this may be used to
construct the loops I suspension adjunction. Pointed co-categories that admit
fiber and cofiber sequences, which define a common family of exact triangles,
are called stable. While exploring the properties of stable co-categories, we
encounter a number of equivalent characterizations, enumerated in Theorem
4.4.12.

The fibered equivalences that characterize adjunctions, limits, and colimits
can be understood as oo-categorical analogues of Eilenberg and Mac Lane’s
famous natural equivalences [42]. To express this “naturality,” we observe that
arrows in the base co-categories act covariantly functorially on the fibers of the
codomain projection functor and contravariantly functorially on the fibers of
the domain projection functor associated to a comma oo-category. This is the
subject of Chapter 5.

4.1 The Universal Property of Adjunctions

An adjunction between an opposing pair of functors can equally be encoded
by a “transposing equivalence” between their left and right representations as
comma oo-categories.

ProposiTioN 4.1.1 (adjunction as fibered equivalence). An opposing pair of
functorsu: A - Band f: B — A define an adjunction f - u if and only if
Hom,(f,A) ~4xp Homp(B, w).

This is a special case of Theorem 3.5.8, so no further argument is required,
but we proffer a short proof nevertheless to review the results proven in §3.5.

Proof If f - u, then its counit € : fu = id4 defines an absolute right lifting
diagram by Lemma 2.3.7. By Theorem 3.5.8, the functor induced by the left-hand
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pasted composite

Homg(B, u) Homp(B, u)
/ \ ) p/re - )ﬂ\
':—’ B B ' Hom,(f,A)
\: A [ \i

A<—

defines a fibered equivalence Homg(B, 1) 245 Hom4(f,A). We interpret this
result as asserting that in the presence of an adjunction f — u, the right comma
cone over u transposes to define the left comma cone over f.!

Conversely, from a fibered equivalence Homg(B, u) ~4,5 Homy4(f,A), The-
orem 3.5.8 tells us that one can extract a 2-cell that defines an absolute right
lifting diagram

B
e
le

A

A

which by Lemma 2.3.7 then defines the counit of an adjunction f - u. O

OBSERVATION 4.1.2 (the transposing equivalence). To justify referring to the
induced functor

Te- f(=)7: Homg(B,u) = Homy(f,A)

as a transposing equivalence, recall that the transpose of a 2-cell y : b= ua
across the adjunction f — u is computed by the left-hand pasting diagram below:

p
B "Hom,(f,4)

¢
Nig o preN
A%B

L If desired, an inverse equivalence can be constructed by applying the dual of Theorem 3.5.8 to
the absolute left lifting diagram presented by the unit.
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By the weak universal property of the right comma cone over u, the 2-cell
x is represented by the induced functor "y : X — Hompg(B, u), which then
composes with the transposing equivalence to define a functor "e - f(y)7: X —
Hom 4 (f, A) that represents the transpose of y, by the pasting diagram equalities
from right to left. This observation also justifies our notation, in which we name
the fibered equivalence "¢ - f(—)7 after the formula for adjoint transposition.

CoroLLARY 4.1.3. An pair of functorsu: A — Band f: B — A define an
adjunction f - u if and only if there is an equivalence Hom(fb, a) ~xyy
Homg(b, ua) for any pair of generalized elementsa: X — Aandb: Y — B.

Proof When f - u, pullback alonga X b: X XY — A X B defines a cos-
mological functor that carries the equivalence Hom4(f, A) ~445 Homg(B, u)
of Proposition 4.1.1 to an equivalence Hom,4(fb, a) ~xxy Homg(b, ua). The
converse is proven by the special case where the generalized elements are the
identity functors id4 and idg. O

Remark 4.1.4. In particular, the equivalence of Proposition 4.1.1 pulls back to
define an equivalence of internal mapping spaces, introduced in Definition 3.4.9.
In Corollary 12.2.15, we see that in an co-cosmos of (o0, 1)-categories a natural
transformation € : fu = id, defines the counit of an adjunction if and only
if the map Te - f(=)7: Homg(B,u) — Hom,(f,A) defines equivalences of
internal mapping spaces Homg(b, ua) ~ Homy, (fb, a) for any pair of elements
a:1->Aandb: 1- B.

Comma co-categories also provide a vehicle for expressing the universal
properties of unit and counit transformations.

ProrosiTiON 4.1.5 (the universal property of units and counits). Consider an
adjunction
f
B 1 A

1

-l with unit 7 . idg = uf and counite: fu=idy,.
u

Then for each element a: 1 — A, the component €, defines a terminal element
of Homu(f, a), and for each element b : 1 — B, the component 1y, defines an
initial element of Homg(b, u).

Proof The fibered equivalence Homy, (f, A) ~4xp Homg(B, 1) of Proposition
4.1.1 pulls back, by Corollary 4.1.3, to define equivalences

Hom,(f, a) ~g Homg(B, ua) and Hom,(fb,A) ~4 Homg(b, u).

By Corollary 3.5.10, id,, induces a terminal element in Hompg(B, ua) and by
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Lemma 2.2.7 its image across the equivalence Homg(B, ua) = Homu(f,a)
is again a terminal element. By Observation 4.1.2 this element represents the
transposed 2-cell: the component of the counit € at the element a. O

The universal property of unit and counit components captured in Proposition
4.1.5 gives the main idea behind the adjoint functor theorems. In an co-cosmos
of (o0, 1)-categories, a functor f : B — A admits a right adjoint just when for
eachelementa: 1 — A, the co-category Homy4(f, a) admits a terminal element
(see Corollary 12.2.7).2 The image of this terminal element under the domain
projection functor p, : Hom4(f,a) - B defines the element ua : 1 — B and
the comma cone defines the component of the counit at a. The universal property
of the counit components is then used to extend the mapping on elements to a
functoru: A — B.

An analogous result that is true in a generic co-cosmos is obtained by replacing
the quantifier “for each element a : 1 — A” with “for each generalized element
a: X — A in which case the meaning of “terminal element” should be
enhanced to “terminal element over X’ (see Definition 3.6.8). Since every
generalized element factors through the universal generalized element, namely
the identity functor at A, it suffices to prove:

ProposiTION 4.1.6. A functor f: B — A admits a right adjoint if and only if
Hom4(f,A) admits a terminal element over A. Dually, f : B — A admits a left
adjoint if and only if Hom4 (A, f) admits an initial element over A.

Proof By Proposition 4.1.1, f: B — A admits a right adjoint if and only if
the comma co-category Hom 4 (f, A) is right representable, which by Corollary
3.6.10 is the case just when Hom,4 (f, A) admits a terminal element over A. [

The same suite of results from §3.5-§3.6 specialize to theorems that encode
the universal properties of limits and colimits. Before exploring these, we first
construct the co-category of cones over or under a diagram.

Exercises

ExEercisk 4.1.i (4.3.13). Specialize Proposition 4.1.1 to the case of adjunctions

1@14 and 1@14
! t

2 Recall from Example 2.3.11 that a terminal element is a colimit of the identity functor. The
technical conditions in Freyd’s general adjoint functor theorem and special adjoint functor
theorem are deployed to reduce this large colimit to a small colimit and guarantee its existence
(see [104, §4.6] for a 1-categorical exposition of these results). Analogous theorems have been
proven in the (o0, 1)-categorical context by Nguyen, Raptis, and Schrade [88].
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to discover an alternate characterization of initial and terminal elements.

ExERcisE 4.1.ii. For any parallel pair of fully specified adjunctions
f
B 1 A

—d - with unit 7 : idg = uf and counite: fu = idy,and

with unit ' : idg = u'f’ and counit¢’ : f'u’ = id, .

there is a bijection between natural transformations a: f'= fand 8: u= v’
as a special case of the mates correspondence (see Definition B.3.3). Argue
that the transposing equivalence of Proposition 4.1.1 is natural with respect
to precomposing with a 2-cell «: f’ = f or postcomposing with its mate
B: u = u (see Corollary 3.5.11) by proving that there is a fibered natural
isomorphism over A X B between the functors:

Hom(f,A) —“ Homyu(f’,A)
ru(—)-n“lz eru’(—)-n”

HomB(B, u) ? HomB(B, u')

4.2 oo-Categories of Cones

The comma co-category construction can be used to define the co-category of
cones over or under a given diagram. Since these co-categories feature centrally
in the description of the universal properties of limits and colimits, we present a
few equivalent models for this construction.

A cone over a diagram d: 1 — A’ with summit a: 1 — A is a natural
transformation AAa = d, where A : A — A’ is the constant diagram functor of
Definition 2.3.1. This motivates the following definition.

DErINITION 4.2.1 (the co-category of cones). Letd: 1 — A’ be a J-shaped
diagram in an co-category A. The co-category of cones over d is the comma
oo-category Homs(A, d) from the constant diagram functor A to d, while the
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co-category of cones under d is the comma co-category Homs(d, A).

HomAJ(A, d) HomAJ(d,A)

D1 Po D1 DPo
1 v , N L - » N 1
N s N
Al Al

By replacing the diagram leg of the cospans, Definition 4.2.1 can be modified
to allow d : D — A’ to be a family of diagrams. In the universal case, where d is
the identity functor id s : A’ — A7, this defines the co-category Hom 4s(A, A7)
of cones over or under any diagram of shape J.

In the case where the indexing shape J is a simplicial set (as opposed to an
oo-category in a cartesian closed co-cosmos), there is another model of the
oo-category of cones over or under a diagram that may be constructed using
the simplicial join construction first developed by Ehlers and Porter [40]. The
equivalence of models is a consequence of the equivalence between the join
operation and the so-called “fat join” introduced by Joyal [63, §9]. As Lemma
4.2.3 reveals, a particular instance of the fat join construction gives the shape of
the cones appearing in Definition 4.2.1. We now introduce these notions.

DeriniTION 4.2.2 (fat join). The fat join of simplicial sets I and J is the simplicial
set constructed by the following pushout:

iz

IxHUOIxJ) —> I11J
[ o
IX2XJ —— IoJ
from which it follows that
ToDp=LU( [ LxJ) 1,
[n]-[1]

Note there is a natural map I oJ - 2 induced by the projection 77 : IX2XJ > 2
so that I is the fiber over 0 and J is the fiber over 1:
IHJ—— IoJ
Lo
T+1—— 2
(0,1

The oco-categories of cones over or under any J-shaped diagram can be re-
described as follows.
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Lemma 4.2.3. For any simplicial set J and co-category A in an oco-cosmos XK,
we have natural isomorphisms

Homus(A,AT) = A" and ~ Homys(A',A) = AT,

Proof The simplicial cotensor A : s8et? — K carries the pushout of Defi-
nition 4.2.2 to the pullback squares that define the left and right representations
of A: A — A’ as a comma co-category:

Aﬂo] (A])2 AJoll (A])2
A . D
l l(Pl,po) l l(Pl,Po)
Al xA —— Al x A AxA —— AT x A
id XA AXid

DermntTION 4.2.4 (join, D.2.6). The join of simplicial sets I and J is the simplicial
setI % J

INJ —— I%J
l 4 l with (I %J), :=L, 0 ( J] Inker X ) L,
0,1) 0<k<n
1+l —— 2
and with the vertices of these n-simplices oriented so that there is a canonical
map I *J — 2 so that I is the fiber over 0 and J is the fiber over 1 (see Definitions
D.2.2 and D.2.6 or the original sources [40] and [61, §3] for more details).

The join functor — x J: sSet — sSet preserves connected colimits but not
the initial object or other coproducts, but cocontinuity is achieved by replacing
the codomain by the slice category under J: the functor — % J : sSet — 7/sSet
preserves all colimits (see Lemma D.2.7). Contextualized in this way, the join
admits a right adjoint, defined by Joyal’s slice construction, which carries a
simplicial map f : J — X to a simplicial set traditionally denoted by X; s.

ProrosiTion 4.2.5 (join - slice adjunction). The join functors admit right
adjoints defined by the natural bijections:

Tk—
1
sSet @ HgSet { Aln] — "x } = N
= IxAln] — X
sSet @ I/ sSet { Aln] — X }:: NG
== AlnlxJ — X

Proof The simplicial set X); is defined to have n-simplices corresponding to
maps A[n] * J — X under J, with the right action by the simplicial operators
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[m] — [n] given by precomposition with A[m] — A[n]. Since the join functor
— % J: sSet - 1/sSet preserves colimits, this extends to a bijection between
maps I — Xj and maps I * J — X under J that is natural in land ink : J —
X. O

NoraTtion 4.2.6. For any simplicial set J, we write
JUi=1%J and JP =T %1

and write T for the cone vertex of J< and L for the cone vertex of J> contributed
by the terminal simplicial set 1. These simplicial sets are equipped with canonical
inclusions

JOe—J—s

As the terminology suggests, the join and fat join constructions define equiv-
alent indexing shapes, in the following sense.

ProrosiTioN 4.2.7 (join vs fat join). For any simplicial sets I and J and any
oo-category A, there is a natural equivalence

)

AI Ly

AI *J AI oJ

Proof There is a canonical map of simplicial sets

iy

IxHUIx)) XX ruJg

[ N

Ix2xJ IoJ >IxJ
\2

that commutes with the inclusions of the fibers I L1J and lies over the projections
to 2. An n-simplex in I ¢ J that does not lie in either fiber is given by the data of
atriple (a: [n] » [1],0 € I,,, T € J,). The dashed map carries this simplex to
the pair (olfo,... .k} € Ik> Tl{k+1,...,n} € Jn—k—1) representing an n-simplex of IxJ,
where k € [n] is the maximal vertex in «~1(0). Proposition D.6.3, or Lurie’s
[78, 4.2.1.2], prove that this map induces a natural equivalence Q™*’/ = QI°/
of quasi-categories over Q7 x Q. Taking Q to be the functor space Fun(X, A)
proves the claimed equivalence for general co-categories. L
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CoroLLARY 4.2.8. For any simplicial set J and co-category A, there are comma
squares

/YI /\
\/ \/

which pull back over a family of diagrams d: D — A’ to define equivalent
models for the co-categories of cones over or under d.

(4.2.9)

Homas(A,d) ~ A;g — A° Homus(d,A) ~ ¥4 — A"
l - lres l - lres
DxA — A xA AXD —— Ax A
dxid id Xd

Proof Proposition 4.2.7 constructs fibered equivalences A"/ ~ 47, 4 A’* and
ATV~ a5 AT By Lemma 4.2.3, A" and A’°" are comma oco-categories.
Thus, Proposition 3.4.11 implies that the fibered equivalences equip A’ “ and
A’" with comma cones, satisfying the weak universal property of Proposition
3.4.6. The natural transformations in (4.2.9) are represented by the horizontal
composites

LN L,

which yield natural transformations upon cotensoring into A:

Aevt res
Po Po
qu (A])2 Al 14]D (A])Z Al
P P
res Aev)

The fibered equivalences pullback to define equivalent models for the co-cate-
gories of cones over or under a fixed family of diagrams d. O
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WARNING 4.2.10. In the statement of Corollary 4.2.8 and elsewhere it is con-
venient to borrow Joyal’s slice notation for the fibers of the restriction maps
over a diagram d : 1 — A’. This usage is justified by Proposition D.6.4, which
proves that A;y ~,4 Homs(A, d) and 4/A ~, Homys(d, A) in the co-cosmos of
quasi-categories. Note, however, that in the co-cosmos of quasi-categories the
strict fibers are not isomorphic to Joyal’s slice quasi-categories (see Exercise
4.2.ii) but are merely equivalent to them.

Exercises

Exercise 4.2.i. Compute A[n] % A[m] and A[n] ¢ A[m] and define a section
Aln] % A[m] — A[n] o A[m]
to the map constructed in the proof of Proposition 4.2.7.

ExERcIsE 4.2.ii. Compute the fiber of A * » Al overd: 1 - A’ in the co-
cosmos of quasi-categories and prove that this quasi-category is not isomorphic
to A/d-

Exercisk 4.2.iii ([63, 3.5]). The category of simplicial sets, as a category
of presheaves, is locally cartesian closed, meaning that the pullback functor
associated to any map f : U — V has a right adjoint I1; called the dependent
product or pushforward.

Show that the join I % J can be defined as an object of sSet/, as the dependent
productof I4+!: I+J - 1+4+1alongl+1< 2.

4.3 The Universal Property of Limits and Colimits

To describe the universal properties of limits and colimits we return to the general
context of Definition 2.3.1, simultaneously considering diagrams valued in an
oo-category that are indexed by either a simplicial set or another co-category,
in the case where the ambient co-cosmos is cartesian closed. As was the case
for Proposition 4.1.1, Theorem 3.5.8 specializes immediately to the setting of
Definition 2.3.8 to prove:
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ProrosiTion 4.3.1 (co/limits represent cones). A family of diagrams d . D —
A’ admits a limit if and only if the co-category of cones Hom 4s(A, d) over d is
right representable

Hom (A, d) ~pya Homy (A, €),

in which case the representing functor € . D — A defines the limit functor.
Dually, a family of diagrams d: D — A’ admits a colimit if and only if the
oo-category of cones Homys(d, A) under d is left representable

HomAJ(d, A) = AxD HomA(C, A),
in which case the representing functorc . D — A defines the colimit functor. [

Corollary 3.6.10 specializes to tell us that such representations can be encoded
by terminal or initial elements, a result which is easiest to interpret for a single
diagram rather than a family of diagrams.

ProposITION 4.3.2 (limits as terminal cones). A diagramd: 1 — A’ of shape
Jin an co-category A

(i) admits a limit if and only if the co-category Hom41(A, d) of cones over
d admits a terminal element, in which case the terminal element defines
a limit cone, and

(it) admits a colimit if and only if the co-category Hom4i(d, A) of cones
under d admits an initial element, in which case the initial element
defines the colimit cone. O

The uniqueness of limit and colimit cones up to isomorphism follows by
applying Lemma 2.2.3. Alternatively, this can be proven from the absolute
lifting diagram characterization (see Exercise 2.3.vi).

Remark 4.3.3. Corollary 3.6.10 applies equally to say that a family of diagrams
d: D — A’ admits a limit just when Hom 4s(A, d) admits a terminal element
over D and admits a colimit just when Hom 4s(d, A) admits an initial element
over D.

For aesthetic reasons, we state the following two results for diagrams indexed
by simplicial sets so that we may deploy more elegant notation that may be
easier to interpret. As Exercise 4.3.ii reveals, there is no mathematical reason to
restrict to this special case.’

3 Indeed, the proof in fact uses the codomain projection functor p; : Hom,7(A, A7) » A7 in
place of the equivalent isofibration res : AT AT , and thus the plainer argument applies
equally in the case of diagrams indexed by oo-categories J in cartesian closed co-cosmoi that
may or may not have a join operation available for indexing shapes.
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ProposiTioN 4.3.4. An co-category A admits a limit of a family of diagrams
d: D — A’ indexed by a simplicial set J if and only if there exists an absolute
right lifting of d through the restriction functor

A"

rand lres
Je

D—d)AJ

When these equivalent conditions hold, € is necessarily an isomorphism and
may be chosen to be the identity.

Proof By Definition 2.3.8, a family of diagrams d admits a limit if and only
if it admits an absolute right lifting through A: A — A’. By Proposition
3.6.14, this absolute lifting exists if and only if d admits an absolute right lifting
through codomain projection functor p; : Homs(A, A’) » A’, in which case
the natural isomorphism of this latter absolute right lifting diagram is invertible.
By Corollary 4.2.8, the restriction functor res : A’" - A’ is equivalent to this
codomain projection functor, so Exercise 3.5.ii implies that absolute right liftings
of d through p; are equivalent to absolute right liftings of d through res. If this
absolute lifting diagram is inhabited by an invertible 2-cell, the isomorphism
lifting property of the isofibration proven in Proposition 1.4.9 can be used to
replace the functor ran : D — A’" with an isomorphic functor, yielding a strictly
commutative triangle that remains an absolute right lifting diagram by Exercise
2.3.vi. O

Proposition 4.3.4 specializes to give a structured characterization of those
oo-categories that admit all limits or all colimits of a particular shape (see
Definition 2.3.2).

CoroLLARY 4.3.5. An oo-category A admits all limits indexed by a simplicial
set J if and only if the restriction functor below-left admits a fibered right adjoint
over A’, and A admits all colimits indexed by a simplicial set J if and only if the
restriction functor below-right admits a fibered left adjoint over A’.

res lan
< D gemTTT Tl
AT LA Al A
ran res

Proof By Proposition 4.3.4 and Lemma 2.3.7, A admits all J-shaped limits
if and only if the functor res : A’ - A’ admits a right adjoint right inverse.
Since the restriction functor is an isofibration, Lemma 3.6.9 applies to rectify
the right adjoint right inverse into a fibered adjunction. U
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We now apply the general theory we have developed to particular indexing
shapes.

DEerintTION 4.3.6 (tensors and cotensors). Let K be a simplicial set and let
a: 1 — Abe an element of an co-category A. The tensor K @ a of a by K is
the colimit of the constant K-indexed diagram valued at a, while the cotensor
a¥ of a by K is the limit of the same diagram. Thus, the tensor and cotensor
functors can be defined by the absolute lifting diagrams:

A A
A K 7

Ke- - l A =) lA
gy L up

By Theorem 3.5.3, these absolute lifting diagrams define fibered equivalences
Hom (K ® —, A) 2454 Homux(4, A) 4,4 Homy (4, (—)F)

which compose to define the fibered equivalence encoding an adjunction between
the tensor and cotensor functors:

(=¥
By Corollary 4.1.3, the fibered equivalences that express the universal prop-

erties of tensors and cotensors pullback over elements a,x : 1 — A to define
equivalences of mapping spaces:

Hom, (K ® a, x) ~ Hom,x(Aa, Ax) = Homy(a,x)¥  and

Hom 4 (x, aX) ~ Hom4x(Ax, Aa) = Hom, (x, a)X.

DEeFintTION 4.3.7 (Span and cospan). A span in an oo-category A is a diagram
indexed by the simplicial set [~ := A°[2] formed by gluing two 1-simplices
along their domain vertices. Dually, a cospan in A is a diagram indexed by
the simplicial set - := A2?[2] formed by gluing two 1-simplices along their
codomain vertices. Cospans and spans in an co-category 