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Preface

Mathematical objects of a certain sophistication are frequently accompanied
by higher homotopical structures: Maps between them might be connected by
homotopies that witness the weak commutativity of diagrams, which might then
be connected by higher homotopies expressing coherence conditions among
these witnesses, which might then be connected by even higher homotopies ad
infinitum. The natural habitat for such mathematical objects is not an ordinary
1-category but instead an ∞-category or, more precisely, an (∞, 1)-category,
with the index “1” referring to the fact that the morphisms above the lowest
dimension – the homotopies just discussed – are weakly invertible.

Here the homotopies defining the higher morphisms of an ∞-category are
to be regarded as data rather than as mere witnesses to an equivalence relation
borne by the 1-dimensional morphisms. This shift in perspective is illustrated
by the relationship between two algebraic invariants of a topological space:
the fundamental groupoid, an ordinary 1-category, and the fundamental ∞-
groupoid, an ∞-category in which all of the morphisms are weakly invertible.
The objects in both cases are the points of the ambient topological space, but in
the former, the 1-morphisms are homotopy classes of paths, while in the latter,
the 1-morphisms are the paths themselves and the 2-morphisms are explicit
endpoint-preserving homotopies. To encompass examples such as these, all of
the categorical structures in an ∞-category are weak. Even at the base level of
1-morphisms, composition is not necessarily uniquely defined but is instead
witnessed by a 2-morphism and associative up to a 3-morphism whose boundary
data involves specified 2-morphism witnesses. Thus, diagrams valued in an
∞-category cannot be said to commute on the nose but are instead interpreted
as homotopy coherent, with explicitly specified higher data.

A fundamental challenge in defining∞-categories has to do with giving a pre-
cise mathematical meaning of this notion of a weak composition law, not just for
the 1-morphisms but also for the morphisms in higher dimensions. Indeed, there

xi
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is a sense in which our traditional set-based foundations for mathematics are not
really suitable for reasoning about∞-categories: Sets do not feature prominently
in∞-categorical data, especially when∞-categories are considered in a morally
correct fashion as objects that are only well-defined up to equivalence. When
considered up to equivalence, ∞-categories, like ordinary categories, do not
have a well-defined set of objects. In addition, the morphisms between a fixed
pair of objects in an ∞-category assemble into an ∞-groupoid, which describes
a well-defined homotopy type, though not a well-defined space.1

Precision is achieved through a variety of models of (∞, 1)-categories, which
are Bourbaki-style mathematical structures that represent infinite-dimensional
categories with a weak composition law in which all morphisms above dimen-
sion 1 are weakly invertible. In order of appearance, these include simplicial
categories, quasi-categories (née weak Kan complexes), relative categories,
Segal categories, complete Segal spaces, and 1-complicial sets (née saturated
1-trivial weak complicial sets), each of which comes with an associated array of
naturally occurring examples. The proliferation of models of (∞, 1)-categories
begs the question of how they might be compared. In the first decades of the
twenty-first century, Julia Bergner, André Joyal and Myles Tierney, Dominic
Verity, Jacob Lurie, and Clark Barwick and Daniel Kan built various bridges that
prove that each of the models listed above “has the same homotopy theory” in
the sense of defining the fibrant objects in Quillen equivalent model categories.2

In parallel with the development of models of (∞, 1)-categories and the
construction of comparisons between them, Joyal pioneered and Lurie and many
others expanded a wildly successful project to extend basic category theory
from ordinary 1-categories to (∞, 1)-categories modeled as quasi-categories
in such a way that the new quasi-categorical notions restrict along the standard
embedding 𝒞𝑎𝑡 ↪ 𝒬𝒞𝑎𝑡 to the classical 1-categorical concepts. A natural
question is then, does this work extend to other models of (∞, 1)-categories? And
to what extent are basic∞-categorical notions invariant under change of model?
For instance, (∞, 1)-categories of manifolds are most naturally constructed as
complete Segal spaces, so Kazhdan–Varshavsky [65], Boavida de Brito [34],
and Rasekh [95, 96, 98] have recently endeavored to redevelop some of the
category theory of quasi-categories using complete Segal spaces instead in
order to have direct access to constructions and definitions that had previously
been introduced only in the quasi-categorical model.

For practical, aesthetic, and moral reasons, the ultimate desire of practitioners
1 Grothendieck’s homotopy hypothesis posits that ∞-groupoids up to equivalence correspond to

homotopy types.
2 A recent book by Bergner surveys all but the last of these models and their interrelationships

[15]. For a more whirlwind tour, see [3].
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is to work “model independently,” meaning that theorems proven with any of the
models of (∞, 1)-categories would apply to them all, with the technical details
inherent to any particular model never entering the discussion. Since all models
of (∞, 1)-categories “have the same homotopy theory,” the general consensus is
that the choice of model should not matter greatly, but one obstacle to proving
results of this kind is that, to a large extent, precise versions of the categorical
definitions that have been established for quasi-categories had not been given
for the other models. In cases where comparable definitions do exist in different
models, an ad hoc heuristic proof of model invariance of the categorical notion
in question can typically be supplied, with details to be filled in by experts fluent
in the combinatorics of each model, but it would be more reassuring to have a
systematic method of comparing the category theory of (∞, 1)-categories in
different models via arguments that are somewhat closer to the ground.

Aims

In this text we develop the theory of∞-categories from first principles in a model
independent fashion using a common axiomatic framework that is satisfied by a
variety of models. In contrast with prior “analytic” treatments of the theory of
∞-categories – in which the central categorical notions are defined in reference
to the coordinates of a particular model – our approach is “synthetic,” proceeding
from definitions that can be interpreted simultaneously in many models to which
our proofs then apply. While synthetic, our work is not schematic or hand-wavy,
with the details of how to make things fully precise left to “the experts” and
turtles all the way down.3 Rather, we prove our theorems starting from a short
list of clearly enumerated axioms, and our conclusions are thus valid in any
model of ∞-categories satisfying these axioms.

The synthetic theory is developed in any ∞-cosmos, which axiomatizes the
universe in which ∞-categories live as objects. So that our theorem statements
suggest their natural interpretation, we recast ∞-category as a technical term, to
mean an object in some (typically fixed) ∞-cosmos. Several common models
of (∞, 1)-categories4 are ∞-categories in this sense, but our ∞-categories also
3 A less rigorous “model independent” presentation of ∞-category theory might confront a

problem of infinite regress, since infinite-dimensional categories are themselves the objects of
an ambient infinite-dimensional category, and in developing the theory of the former one is
tempted to use the theory of the latter. We avoid this problem by using a very concrete model for
the ambient (∞, 2)-category of ∞-categories that arises frequently in practice and is designed
to facilitate relatively simple proofs. While the theory of (∞, 2)-categories remains in its
infancy, we are content to cut the Gordian knot in this way.

4 Quasi-categories, complete Segal spaces, Segal categories, and 1-complicial sets (naturally
marked quasi-categories) all define the ∞-categories in an ∞-cosmos.
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include certain models of (∞, 𝑛)-categories5 as well as fibered versions of all
of the above. Thus each of these objects are ∞-categories in our sense and our
theorems apply to all of them.6 This usage of the term “∞-categories” is meant
to interpolate between the classical one, which refers to any variety of weak
infinite-dimensional categories, and the common one, which is often taken to
mean quasi-categories or complete Segal spaces.

Much of the development of the theory of ∞-categories takes place not in the
full ∞-cosmos but in a quotient that we call the homotopy 2-category, the name
chosen because an∞-cosmos is something like a category of fibrant objects in an
enriched model category and the homotopy 2-category is then a categorification
of its homotopy category. The homotopy 2-category is a strict 2-category – like
the 2-category of categories, functors, and natural transformations7 – and in
this way the foundational proofs in the theory of ∞-categories closely resemble
the classical foundations of ordinary category theory except that the universal
properties they characterize, e.g., when a functor between ∞-categories defines
a cartesian fibration, are slightly weaker than in the familiar case of strict 1-
categories.

There are many alternate choices we could have made in selecting the axioms
of an ∞-cosmos. One of our guiding principles, admittedly somewhat contrary
to the setting of homotopical higher category theory, was to allow us to work
as strictly as possible, with the aim of shortening and simplifying proofs. As a
consequence of these choices, the∞-categories in an∞-cosmos and the functors
and natural transformations between them assemble into a 2-category rather than
a bicategory. To help us achieve this counterintuitive strictness, each ∞-cosmos
comes with a specified class of maps between ∞-categories called isofibrations.
The isofibrations have no homotopy-theoretic meaning, as any functor between
∞-categories is equivalent to an isofibration with the same codomain. However,
isofibrations permit us to consider strictly commutative diagrams between ∞-
categories and allow us to require that the limits of such diagrams satisfy a
universal property up to simplicially enriched isomorphism. Neither feature is
5 𝑛-quasi-categories, Θ𝑛-spaces, iterated complete Segal spaces, and 𝑛-complicial sets also

define the ∞-categories in an ∞-cosmos, as do saturated (née weak) complicial sets, a model
for (∞,∞)-categories.

6 There is a sense, however, in which many of our definitions are optimized for those ∞-cosmoi
whose objects are (∞, 1)-categories. A good illustration is provided by the notion of discrete
∞-category introduced in Definition 1.2.26. In the ∞-cosmoi of (∞, 1)-categories, the discrete
∞-categories are the ∞-groupoids. While this is not true for the ∞-cosmoi of
(∞,𝑛)-categories, we nevertheless put this concept to use in certain exotic ∞-cosmoi (see, for
instance, Definition 7.4.1).

7 In fact this is another special case: there is an ∞-cosmos whose objects are ordinary categories
and its homotopy 2-category is the usual category of categories, functors, and natural
transformations. This 2-category is as old as category theory itself, introduced in Eilenberg and
Mac Lane’s foundational paper [42].
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essential for the development of∞-category theory. Similar proofs carry through
to a weaker setting, at the cost of more time spent considering coherence of
higher cells.

In Part I, we define and develop the notions of equivalence and adjunction
between ∞-categories, limits and colimits in ∞-categories, and cartesian and
cocartesian fibrations and their discrete variants, for which we prove a version
of the Yoneda lemma. The majority of these results are developed from the
comfort of the homotopy 2-category. In an interlude, we digress into abstract ∞-
cosmology to give a more careful account of the full class of limit constructions
present in any ∞-cosmos. This analysis is used to develop further examples of
∞-cosmoi, whose objects are pointed ∞-categories, or stable ∞-categories, or
cartesian or cocartesian fibrations in a given ∞-cosmos.8

What is missing from this basic account of the category theory of ∞-catego-
ries is a satisfactory treatment of the “hom” bifunctor associated to an ∞-cate-
gory, which is the prototypical example of what we call a module. An instructive
exercise for a neophyte is the challenge of defining the ∞-groupoid-valued hom
bifunctor in a preferred model. What is edifying is to learn that this construction,
so fundamental to ordinary category theory, is prohibitively difficult.9 In our
axiomatization, any ∞-category in an ∞-cosmos has an associated ∞-category
of arrows, equipped with domain and codomain projection functors that respec-
tively define cartesian and cocartesian fibrations in a compatible manner. Such
modules, which themselves assemble into an ∞-cosmos, provide a convenient
vehicle for encoding universal properties as fibered equivalences. In Part II,
we develop the calculus of modules between ∞-categories and apply this to
define and study pointwise Kan extensions. This will give us an opportunity to
repackage universal properties proven in Part I as part of the “formal category
theory” of ∞-categories.

This work is all “model-agnostic” in the sense of being blind to details about
the specifications of any particular ∞-cosmos. In Part III we prove that the
category theory of ∞-categories is also “model independent” in a precise sense:
all categorical notions are preserved, reflected, and created by any “change-of-
model” functor that defines what we call a cosmological biequivalence. This
model independence theorem is stronger than our axiomatic framework might
initially suggest in that it also allows us to transfer theorems proven using
analytic techniques to all biequivalent ∞-cosmoi. For instance, the four ∞-
8 The impatient reader could skip this interlude and take on faith that any ∞-cosmos begets

various other ∞ without compromising their understanding of what follows – though they
would miss out on some fun.

9 Experts in quasi-category theory know to use Lurie’s straightening–unstraightening construction
[78, 2.2.1.2] or Cisinski’s universal left fibration [28, 5.2.8] and the twisted arrow
quasi-category.
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cosmoi whose objects model (∞, 1)-categories are all biequivalent.10 It follows
that the analytically-proven theorems about quasi-categories from [78] hold for
complete Segal spaces, and vice versa. We conclude with several applications of
this transfer principle. For instance, in the ∞-cosmoi whose objects are (∞, 1)-
categories, we demonstrate that various universal properties are “pointwise-de-
termined” by first proving these results for quasi-categories using analytical
techniques and then appealing to model independence to extend these results to
biequivalent ∞-cosmoi.

The question of the model invariance of statements about ∞-categories is
more subtle than one might expect. When passing an ∞-category from one
model to another and then back, the resulting object is typically equivalent but
not identical to the original, and certain “evil” properties of ∞-categories fail
to be invariant under equivalence: the assertion that an ∞-category has a single
object is a famous example. A key advantage to our systematic approach to
understanding the model independence of ∞-category theory is that it allows
us to introduce a formal language and prove that statement about ∞-categories
expressible in that language are model independent. This builds on work of
Makkai that resolves a similar question about the invariance of properties of a
2-category under biequivalence [82].

Regrettably, space considerations have prevented us from exploring the ho-
motopy coherent structures present in an ∞-cosmos. For instance, a companion
paper [109] proves that any adjunction between ∞-categories in an ∞-cosmos
extends homotopically uniquely to a homotopy coherent adjunction and presents
a monadicity theorem for homotopy coherent monads as a mechanism for ∞-
categorical universal algebra. The formal theory of homotopy coherent monads
is extended further by Sulyma [124] who develops the corresponding theory of
monadic and comonadic descent and Zaganidis [133] who defines and studies
homotopy coherent monad maps. Another casualty of space limitations is an
exploration of a “macrocosm principle” for cartesian fibrations, which proves
that the codomain projection functor from the ∞-cosmos of cartesian fibrations
to the base ∞-cosmos defines a “cartesian fibration of ∞-cosmoi” in a suitable
sense [111]. We hope to return to these topics in a sequel.

The ideal reader might already have some acquaintance with enriched category
theory, 2-category theory, and abstract homotopy theory so that the constructions
and proofs with antecedents in these traditions will be familiar. Because ∞-
categories are of interest to mathematicians with a wide variety of backgrounds,
10 A closely related observation is that the Quillen equivalences between quasi-categories,

complete Segal spaces, and Segal categories constructed by Joyal and Tierney in [64] can be
understood as equivalences of (∞, 2)-categories not just of (∞, 1)-categories by making
judicious choices of simplicial enrichments (see §E.2).
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we review all of the material we need on each of these topics in Appendices A,
B, and C, respectively. Some basic facts about quasi-categories first proven by
Joyal are needed to establish the corresponding features of general ∞-cosmoi
in Chapter 1. We state these results in §1.1 but defer the proofs that require
lengthy combinatorial digressions to Appendix D, where we also introduce 𝑛-
complicial sets, a model of (∞, 𝑛)-categories for any 0 ≤ 𝑛 ≤ ∞. The examples
of ∞-cosmoi that appear “in the wild” can be found in Appendix E, where we
also present general techniques that the reader might use to find ∞-cosmoi of
their own. The final appendix addresses a crucial bit of unfinished business.
Importantly, the synthetic theory developed in the∞-cosmos of quasi-categories
is fully compatible with the analytic theory developed by Joyal, Lurie, and many
others. This is the subject of Appendix F.

We close with the obligatory disclaimer on sizes. To apply the theory devel-
oped here to the ∞-categories of greatest interest, one should consider three
infinite inaccessible cardinals 𝛼 < 𝛽 < 𝛾, as is the common convention [5, 2].
Colloquially, 𝛼-small categories might be called “small,” while 𝛽-small cate-
gories are the default size for ∞-categories. For example, the ∞-categories of
(small) spaces, chain complexes of (small) abelian groups, or (small) homotopy
coherent diagrams are all 𝛽-small. These normal-sized ∞-categories are then
the objects of an ∞-cosmos that is 𝛾-small – “large” in colloquial terms. Of
course, if one is only interested in small simplicial sets, then the ∞-cosmos of
small quasi-categories is 𝛽-small, rather than 𝛾-small, and the theory developed
here equally applies. For this reason, we set aside the Grothendieck universes
and do not refer to these inaccessible cardinals elsewhere.
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BASIC ∞-CATEGORY THEORY
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It is difficult and time-consuming to learn a new language. The standard
advice to “fake it til you make it” is disconcerting in mathematical contexts,
where the validity of a proof hinges upon the correctness of the statements it
cites. The aim in Part I of this text is to develop a substantial portion of the theory
of ∞-categories from first principles, as rapidly and painlessly as possible – at
least assuming that the reader finds classical abstract nonsense to be relatively
innocuous.11

The axiomatic framework that justifies this is introduced in Chapter 1, but the
impatient or particularly time-constrained reader might consider starting directly
in Chapter 2 with the study of adjunctions, limits, and colimits. In adopting
this approach, one must take for granted that there is a well-defined 2-category
of ∞-categories, ∞-functors between them, and ∞-natural transformations
between these. This 2-category is constructed in Chapter 1, where we see that
any ∞-cosmos has a homotopy 2-category and that the familiar models of
(∞, 1)-categories define biequivalent ∞-cosmoi, with biequivalent homotopy
2-categories. To follow the proofs in Chapter 2, it is necessary to understand
the general composition of natural transformations by pasting diagrams. This
and other concepts from 2-category theory are reviewed in Appendix B, which
should be consulted as needed.

The payoff for acquainting oneself with some standard 2-category theory is
that numerous fundamental results concerning equivalences and adjunctions
and limits and colimits can be proven quite expeditiously. We prove one such
theorem, that right adjoint functors between ∞-categories preserve any limits
found in those∞-categories, via a formal argument that is arguably even simpler
than the classical one.

The definitions of adjunctions, limits, and colimits given in Chapter 2 are
optimized for ease of use in the homotopy 2-category of ∞-categories, ∞-func-
tors, and ∞-natural transformations in an ∞-cosmos, but especially in the latter
cases, these notions are not expressed in their most familiar forms. To encode a
limit of a diagram valued in an ∞-category as a terminal cone, we introduce
the powerful and versatile construction of the comma ∞-category built from
a cospan of functors in Chapter 3. We then prove various “representability
theorems” that characterize those comma ∞-categories that are equivalent to
ones defined by a single functor. These general results specialize in Chapter
4 to the expected equivalent definitions of adjunctions, limits, and colimits.
This theory is then applied to study limits and colimits of particular diagram
11 Dan Freed defines the category number of a mathematician to be the largest integer 𝑛 so that

they may ponder 𝑛-categories for half an hour without developing a migraine. Here we require a
category number of 2, which we note is much smaller than ∞!
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shapes, which in turn is deployed to establish an equivalence between various
presentations of the important notion of a stable ∞-category.

The basic theory of ∞-categories is extended in Chapter 5 to encompass co-
cartesian and cartesian fibrations, which can be understood as indexed families
of ∞-categories acted upon covariantly or contravariantly by arrows in the base
∞-category. After developing the theory of the various classes of categorical
fibrations, we conclude by proving a fibrational form of the Yoneda lemma that
will be used to further develop the formal category theory of ∞-categories in
Part II.



1

∞-Cosmoi and Their Homotopy 2-Categories

In this chapter, we introduce a framework to develop the formal category theory
of ∞-categories, which goes by the name of an ∞-cosmos. Informally, an ∞-
cosmos is an (∞, 2)-category – a category enriched over (∞, 1)-categories –
that is equipped with (∞, 2)-categorical limits. In the motivating examples of
∞-cosmoi, the objects are ∞-categories in some model. To focus this abstract
theory on its intended interpretation, we recast “∞-category” as a technical
term, reserved to mean an object of some ∞-cosmos.

Unexpectedly, the motivating examples permit us to use a quite strict inter-
pretation of “(∞, 2)-category with (∞, 2)-categorical limits”: an ∞-cosmos is
a particular type of simplicially enriched category and the (∞, 2)-categorical
limits are modeled by simplicially enriched limits. More precisely, an ∞-cos-
mos is a category enriched over quasi-categories, these being one of the models
of (∞, 1)-categories defined as certain simplicial sets. The (∞, 2)-categorical
limits are defined as limits of diagrams involving specified maps called isofibra-
tions, which have no intrinsic homotopical meaning – since any functor between
∞-categories is equivalent to an isofibration – but allow us to consider strictly
commuting diagrams.

In §1.1, we introduce quasi-categories, reviewing the classical results that are
needed to show that quasi-categories themselves assemble into an ∞-cosmos –
the prototypical example. General ∞-cosmoi are defined in §1.2, where several
examples are given and their basic properties are established. In §1.3, we turn
our attention to cosmological functors between ∞-cosmoi, which preserve all
of the defining structure. Cosmological functors serve dual purposes, on the
one hand providing technical simplifications in many proofs, and then later on
serving as the “change of model” functors that establish the model independence
of ∞-category theory.

Finally, in §1.4, we introduce a strict 2-category whose objects are ∞-catego-
ries, whose 1-cells are the ∞-functors between them, and whose 2-cells define

5
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∞-natural transformations between these. Any ∞-cosmos has a 2-category of
this sort, which we refer to as the homotopy 2-category of the ∞-cosmos. In
fact, the reader who is eager to get on to the development of the category theory
of ∞-categories can skip this chapter on first reading, taking the existence of
the homotopy 2-category for granted, and start with Chapter 2.

1.1 Quasi-Categories

Before introducing an axiomatic framework that allows us to develop ∞-cat-
egory theory in general, we first consider one model in particular: quasi-cat-
egories, which were introduced in 1973 by Boardman and Vogt [21] in their
study of homotopy coherent diagrams. Ordinary 1-categories give examples of
quasi-categories via the construction of Definition 1.1.4. Joyal first undertook
the task of extending 1-category theory to quasi-category theory in [61] and
[63] and in several unpublished draft book manuscripts. The majority of the
results in this section are due to him.

Notation 1.1.1 (the simplex category). Let 𝚫 denote the simplex category of
finite nonempty ordinals [𝑛] = {0 < 1 < ⋯ < 𝑛} and order-preserving maps.
These include in particular the

elementary face operators [𝑛 − 1] [𝑛] 0 ≤ 𝑖 ≤ 𝑛

elementary degeneracy operators [𝑛 + 1] [𝑛] 0 ≤ 𝑖 ≤ 𝑛

𝛿𝑖

𝜍𝑖

whose images, respectively, omit and double up on the element 𝑖 ∈ [𝑛]. Every
morphism in 𝚫 factors uniquely as an epimorphism followed by a monomorph-
ism; these epimorphisms, the degeneracy operators, decompose as composites
of elementary degeneracy operators, while the monomorphisms, the face oper-
ators, decompose as composites of elementary face operators.

The category of simplicial sets is the category 𝑠𝒮𝑒𝑡 ≔ 𝒮𝑒𝑡𝚫
op

of presheaves
on the simplex category. We write Δ[𝑛] for the standard 𝑛-simplex the sim-
plicial set represented by [𝑛] ∈ 𝚫, and Λ𝑘[𝑛] ⊂ 𝜕Δ[𝑛] ⊂ Δ[𝑛] for its 𝑘-horn
and boundary sphere, respectively. The sphere 𝜕Δ[𝑛] is the simplicial subset
generated by the codimension-one faces of the 𝑛-simplex, while the horn Λ𝑘[𝑛]
is the further simplicial subset that omits the face opposite the vertex 𝑘.

Given a simplicial set 𝑋, it is conventional to write 𝑋𝑛 for the set of 𝑛-sim-
plices, defined by evaluating at [𝑛] ∈ 𝚫. By the Yoneda lemma, each 𝑛-simplex
𝑥 ∈ 𝑋𝑛 corresponds to a map of simplicial sets 𝑥∶ Δ[𝑛] → 𝑋. Accordingly, we
write 𝑥 ⋅ 𝛿𝑖 for the 𝑖th face of the 𝑛-simplex, an (𝑛 − 1)-simplex classified by
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the composite map

Δ[𝑛 − 1] Δ[𝑛] 𝑋.𝛿𝑖 𝑥

The right action of the face operator defines a map 𝑋𝑛
⋅𝛿𝑖 𝑋𝑛−1. Geometrically,

𝑥 ⋅ 𝛿𝑖 is the “face opposite the vertex 𝑖” in the 𝑛-simplex 𝑥.

Definition 1.1.2 (quasi-category). A quasi-category is a simplicial set 𝐴 in
which any inner horn can be extended to a simplex, solving the displayed lifting
problem:

Λ𝑘[𝑛] 𝐴

Δ[𝑛]

for 𝑛 ≥ 2, 0 < 𝑘 < 𝑛. (1.1.3)

Quasi-categories were first introduced by Boardman and Vogt [21] under the
name “weak Kan complexes,” a Kan complex being a simplicial set admitting
extensions as in (1.1.3) along all horn inclusions 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛. Since any
topological space can be encoded as a Kan complex,1 in this way spaces provide
examples of quasi-categories.

Categories also provide examples of quasi-categories via the nerve construc-
tion.

Definition 1.1.4 (nerve). The category 𝒞𝑎𝑡 of 1-categories embeds fully faith-
fully into the category of simplicial sets via the nerve functor. An 𝑛-simplex
in the nerve of a 1-category 𝐶 is a sequence of 𝑛 composable arrows in 𝐶, or
equally a functor 𝕟+ 𝟙 → 𝐶 from the ordinal category 𝕟+ 𝟙 ≔ [𝑛] with objects
0,… , 𝑛 and a unique arrow 𝑖 → 𝑗 just when 𝑖 ≤ 𝑗.

The map [𝑛] ↦ 𝕟 + 𝟙 defines a fully faithful embedding 𝚫 ↪ 𝒞𝑎𝑡. From
this point of view, the nerve functor can be described as a “restricted Yoneda
embedding” which carries a category 𝐶 to the restriction of the representable
functor hom(−, 𝐶) to the image of this inclusion. More general “nerve-type
constructions” are described in Exercise 1.1.i.

Remark 1.1.5. The nerve of a category 𝐶 is 2-coskeletal as a simplicial set,
meaning that every sphere 𝜕Δ[𝑛] → 𝐶 with 𝑛 ≥ 3 is filled uniquely by an
𝑛-simplex in 𝐶 (see Definition C.5.2). Note a sphere 𝜕Δ[2] → 𝐶 extends to a
1 The total singular complex construction defines a functor from topological spaces to simplicial

sets that is an equivalence on their respective homotopy categories – weak homotopy types of
spaces correspond to homotopy equivalence classes of Kan complexes [93, §II.2]. The left
adjoint constructed by Exercise 1.1.i “geometrically realizes” a simplicial set as a topological
space.
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2-simplex if and only if that arrow along its diagonal edge is the composite of
the arrows along the edges in the inner horn Λ1[2] ⊂ 𝜕Δ[2] → 𝐶. The simplices
in dimension 3 and above witness the associativity of the composition of the
path of composable arrows found along their spine, the 1-skeletal simplicial
subset formed by the edges connecting adjacent vertices. In fact, as suggested
by the proof of Proposition 1.1.6, any simplicial set in which inner horns admit
unique fillers is isomorphic to the nerve of a 1-category (see Exercise 1.1.iv).

We decline to introduce explicit notation for the nerve functor, preferring
instead to identify 1-categories with their nerves. As we shall discover the
theory of 1-categories extends to ∞-categories modeled as quasi-categories in
such a way that the restriction of each ∞-categorical concept along the nerve
embedding recovers the corresponding 1-categorical concept. For instance, the
standard simplex Δ[𝑛] is isomorphic to the nerve of the ordinal category 𝕟 + 1,
and we frequently adopt the latter notation – writing 𝟙 ≔ Δ[0], 𝟚 ≔ Δ[1],
𝟛 ≔ Δ[2], and so on – to suggest the correct categorical intuition.

To begin down this path, we must first verify the implicit assertion that has
just been made:

Proposition 1.1.6 (nerves are quasi-categories). Nerves of categories are quasi-
categories.

Proof Via the isomorphism 𝐶 ≅ cosk2 𝐶 from Remark 1.1.5 and the adjunc-
tion sk2 ⊣ cosk2 of C.5.2, the required lifting problem displayed below-left
transposes to the one displayed below-right:

Λ𝑘[𝑛] 𝐶 ≅ cosk2 𝐶 sk2Λ𝑘[𝑛] 𝐶

Δ[𝑛] sk2 Δ[𝑛]
↭

The functor sk2 replaces a simplicial set by its 2-skeleton, the simplicial subset
generated by the simplices of dimension at most two. For 𝑛 ≥ 4, the inclusion
sk2Λ𝑘[𝑛] ↪ sk2 Δ[𝑛] is an isomorphism, in which case the lifting problems
on the right admit (unique) solutions. So it remains only to solve the lifting
problems on the left in the cases 𝑛 = 2 and 𝑛 = 3.

To that end consider

Λ1[2] 𝐶 Λ1[3] 𝐶 Λ2[3] 𝐶

Δ[2] Δ[3] Δ[3]

An inner hornΛ1[2] → 𝐶 defines a composable pair of arrows in 𝐶; an extension
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to a 2-simplex exists precisely because any composable pair of arrows admits a
(unique) composite.

An inner horn Λ1[3] → 𝐶 specifies the data of three composable arrows in 𝐶,
as displayed in the following diagram, together with the composites 𝑔𝑓, ℎ𝑔, and
(ℎ𝑔)𝑓.

𝑐1

𝑐0 𝑐3

𝑐2

ℎ𝑔𝑓

𝑔𝑓

(ℎ𝑔)𝑓

ℎ
𝑔

Because composition is associative, the arrow (ℎ𝑔)𝑓 is also the composite of
𝑔𝑓 followed by ℎ, which proves that the 2-simplex opposite the vertex 𝑐1 is
present in 𝐶; by 2-coskeletality, the 3-simplex filling this boundary sphere is
also present in 𝐶. The filler for a horn Λ2[3] → 𝐶 is constructed similarly.

Definition 1.1.7 (homotopy relation on 1-simplices). A parallel pair of 1-sim-
plices 𝑓, 𝑔 in a simplicial set 𝑋 are homotopic if there exists a 2-simplex whose
boundary takes either of the following forms2

𝑦 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓𝑓

𝑔 𝑔

(1.1.8)

or if 𝑓 and 𝑔 are in the same equivalence class generated by this relation.

In a quasi-category, the relation witnessed by either of the types of 2-simplex
on display in (1.1.8) is an equivalence relation and these equivalence relations
coincide.

Lemma 1.1.9 (homotopic 1-simplices in a quasi-category). Parallel 1-simplices
𝑓 and 𝑔 in a quasi-category are homotopic if and only if there exists a 2-simplex
of any or equivalently all of the forms displayed in (1.1.8).

Proof Exercise 1.1.ii.

Definition 1.1.10 (the homotopy category [44, §2.4]). By 1-truncating, any
simplicial set 𝑋 has an underlying reflexive directed graph with the 0-simplices
of 𝑋 defining the objects and the 1-simplices defining the arrows:

𝑋1 𝑋0,
⋅𝛿1

⋅𝛿0
⋅𝜍0

2 The symbol “ ” is used in diagrams to denote a degenerate simplex or an identity arrow.
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By convention, the source of an arrow 𝑓 ∈ 𝑋1 is its 0th face 𝑓 ⋅ 𝛿1 (the face
opposite 1) while the target is its 1st face 𝑓 ⋅ 𝛿0 (the face opposite 0). The free
category on this reflexive directed graph has 𝑋0 as its object set, degenerate 1-
simplices serving as identity morphisms, and nonidentity morphisms defined to
be finite directed paths of nondegenerate 1-simplices. The homotopy category
h𝑋 of 𝑋 is the quotient of the free category on its underlying reflexive directed
graph by the congruence3 generated by imposing a composition relation ℎ = 𝑔∘𝑓
witnessed by 2-simplices

𝑥1

𝑥0 𝑥2

𝑔𝑓

ℎ

This relation implies in particular that homotopic 1-simplices represent the same
arrow in the homotopy category.

The homotopy category of the nerve of a 1-category is isomorphic to the
original category, as the 2-simplices in the nerve witness all of the composition
relations satisfied by the arrows in the underlying reflexive directed graph. Indeed,
the natural isomorphism h𝐶 ≅ 𝐶 forms the counit of an adjunction, embedding
𝒞𝑎𝑡 as a reflective subcategory of 𝑠𝒮𝑒𝑡.

Proposition 1.1.11. The nerve embedding admits a left adjoint, namely the
functor which sends a simplicial set to its homotopy category:

𝒞𝑎𝑡 𝑠𝒮𝑒𝑡⊥
h

The adjunction of Proposition 1.1.11 exists for formal reasons (see Exercise
1.1.i), but nevertheless, a direct proof can be enlightening.

Proof For any simplicial set 𝑋, there is a natural map from 𝑋 to the nerve of
its homotopy category h𝑋; since nerves are 2-coskeletal, it suffices to define
the map sk2 𝑋 → h𝑋, and this is given immediately by the construction of
Definition 1.1.10. Note that the quotient map 𝑋 → h𝑋 becomes an isomorphism
upon applying the homotopy category functor and is already an isomorphism
whenever 𝑋 is the nerve of a category. Thus the adjointness follows from Lemma
B.4.2 or by direct verification of the triangle equalities.

The homotopy category of a quasi-category admits a simplified description.

Lemma 1.1.12 (the homotopy category of a quasi-category). If 𝐴 is a quasi-cat-
egory then its homotopy category h𝐴 has
3 A binary relation ∼ on parallel arrows of a 1-category is a congruence if it is an equivalence

relation that is closed under pre- and post-composition: if 𝑓 ∼ 𝑔 then ℎ𝑓𝑘 ∼ ℎ𝑔𝑘.
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• the set of 0-simplices 𝐴0 as its objects
• the set of homotopy classes of 1-simplices 𝐴1 as its arrows
• the identity arrow at 𝑎 ∈ 𝐴0 represented by the degenerate 1-simplex
𝑎 ⋅ 𝜎0 ∈ 𝐴1

• a composition relation ℎ = 𝑔 ∘ 𝑓 in h𝐴 between the homotopy classes of
arrows represented by any given 1-simplices 𝑓, 𝑔, ℎ ∈ 𝐴1 if and only if there
exists a 2-simplex with boundary

𝑎1

𝑎0 𝑎2

𝑔𝑓

ℎ

Proof Exercise 1.1.iii.

Definition 1.1.13 (isomorphism in a quasi-category). A 1-simplex in a quasi-
category is an isomorphism4 just when it represents an isomorphism in the
homotopy category. By Lemma 1.1.12 this means that 𝑓∶ 𝑎 → 𝑏 is an iso-
morphism if and only if there exists a 1-simplex 𝑓−1∶ 𝑏 → 𝑎 together with a
pair of 2-simplices

𝑏 𝑎

𝑎 𝑎 𝑏 𝑏

𝑓−1 𝑓𝑓 𝑓−1

The properties of the isomorphisms in a quasi-category are most easily proved
by arguing in a closely related category where simplicial sets have the additional
structure of a “marking” on a specified subset of the 1-simplices; maps of
these so-called marked simplicial sets must then preserve the markings (see
Definition D.1.1). For instance, each quasi-category has a natural marking,
where the marked 1-simplices are exactly the isomorphisms (see Definition
D.4.5). Since the property of being an isomorphism in a quasi-category is
witnessed by the presence of 2-simplices with a particular boundary, every
map between quasi-categories preserves isomorphisms, inducing a map of the
corresponding naturally marked quasi-categories. Because marked simplicial
sets seldom appear outside of the proofs of certain combinatorial lemmas about
the isomorphisms in quasi-categories, we save the details for Appendix D.

Let us now motivate the first of several results proven using marked techniques.
A quasi-category 𝐴 is defined to have extensions along all inner horns. But
when the initial or final edges, respectively, of an outer horn Λ0[2] → 𝐴 or
4 Joyal refers to these maps as “isomorphisms” while Lurie refers to them as “equivalences.” We

prefer, wherever possible, to use the same term for ∞-categorical concepts as for the analogous
1-categorical ones.
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Λ2[2] → 𝐴 map to isomorphisms in 𝐴, then a filler

𝑎1 𝑎1

𝑎0 𝑎2 𝑎0 𝑎2

ℎ𝑓−1

∼

𝑔∼𝑓

ℎ

𝑔−1ℎ

ℎ

should intuitively exist. The higher-dimensional “special outer horns” behave
similarly:

Proposition 1.1.14 (special outer horn filling). Any quasi-category 𝐴 admits
fillers for those outer horns

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ[𝑛] Δ[𝑛]

𝑔 ℎ

for 𝑛 ≥ 1

in which the edges 𝑔|{0,1} and ℎ|{𝑛−1,𝑛} are isomorphisms.5

The proof of Proposition 1.1.14 requires clever combinatorics, due to Joyal,
and is deferred to Proposition D.4.6. Here, we enjoy its myriad consequences.
Immediately:

Corollary 1.1.15. A quasi-category is a Kan complex if and only if its homo-
topy category is a groupoid.

Proof If the homotopy category of a quasi-category is a groupoid, then all of
its 1-simplices are isomorphisms, and Proposition 1.1.14 then implies that all
inner and outer horns have fillers. Thus, the quasi-category is a Kan complex.
Conversely, in a Kan complex, all outer horns can be filled and in particular
fillers for the horns displayed in Definition 1.1.13 can be used to construct left
and right inverses for any 1-simplex, which can be rectified to a single two-sided
inverse by Lemma 1.1.12.

A quasi-category contains 𝐴 a canonical maximal sub Kan complex 𝐴≃,
the simplicial subset spanned by those 1-simplices that are isomorphisms. Just
as the arrows in a quasi-category 𝐴 are represented by simplicial maps 𝟚 → 𝐴
whose domain is the nerve of the free-living arrow, the isomorphisms in a
quasi-category can be represented by diagrams 𝕀 → 𝐴 whose domain, called the
homotopy coherent isomorphism, is the nerve of the free-living isomorphism:

5 In the case 𝑛 = 1, no condition is needed on the horns; degenerate 1-simplices define the
required lifts.
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Corollary 1.1.16. An arrow 𝑓 in a quasi-category 𝐴 is an isomorphism if and
only if it extends to a homotopy coherent isomorphism

𝟚 𝐴

𝕀

𝑓

Proof If 𝑓 is an isomorphism, the map 𝑓∶ 𝟚 → 𝐴 lands in the maximal sub
Kan complex contained in 𝐴:

𝟚 𝐴≃ ⊂ 𝐴

𝕀

𝑓

By Exercise 1.1.v, the inclusion 𝟚 ↪ 𝕀 can be expressed as a sequential compos-
ite of pushouts of outer horn inclusions. Since 𝐴≃ is a Kan complex, this shows
that the required extension exists and in fact lands in 𝐴≃ ⊂ 𝐴.

The category of simplicial sets, like any category of presheaves, is cartesian
closed. By the Yoneda lemma and the defining adjunction, an 𝑛-simplex in the
exponential 𝑌𝑋 corresponds to a simplicial map 𝑋 × Δ[𝑛] → 𝑌, and its faces
and degeneracies are computed by precomposing in the simplex variable. Our
next aim is to show that the quasi-categories define an exponential ideal in the
simplicially enriched category of simplicial sets: if 𝑋 is a simplicial set and 𝐴 is
a quasi-category, then 𝐴𝑋 is a quasi-category. We deduce this as a corollary of
the “relative” version of this result involving certain maps called isofibrations
that we now introduce.

Definition 1.1.17 (isofibration). A simplicial map 𝑓∶ 𝐴 → 𝐵 between quasi-
categories is an isofibration if it lifts against the inner horn inclusions, as
displayed below-left, and also against the inclusion of either vertex into the
free-living isomorphism 𝕀.

Λ𝑘[𝑛] 𝐴 𝟙 𝐴

Δ[𝑛] 𝐵 𝕀 𝐵

𝑓 𝑓

To notationally distinguish the isofibrations, we depict them as arrows “↠” with
two heads.

Proposition 1.1.14 is subsumed by its relative analogue, proven as Theorem
D.5.1:
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Proposition 1.1.18 (special outer horn lifting). Any isofibration between quasi-
categories 𝑓∶ 𝐴 ↠ 𝐵 admits lifts against those outer horns

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ[𝑛] 𝐵 Δ[𝑛] 𝐵

𝑔

𝑓

ℎ

𝑓

𝑘 ℓ

for 𝑛 ≥ 1

in which the edges 𝑔|{0,1}, ℎ|{𝑛−1,𝑛}, 𝑘|{0,1}, and ℓ|{𝑛−1,𝑛} are isomorphisms.

Observation 1.1.19.

(i) For any simplicial set 𝑋, the unique map 𝑋 → 1 whose codomain
is the terminal simplicial set is an isofibration if and only if 𝑋 is a
quasi-category.

(ii) Any collection of maps, such as the isofibrations, that is characterized
by a right lifting property is automatically closed under composition,
product, pullback, retract, and (inverse) limits of towers (see Lemma
C.2.3).

(iii) Combining (i) and (ii), if 𝐴 ↠ 𝐵 is an isofibration, and 𝐵 is a quasi-cate-
gory, then so is 𝐴.

(iv) The isofibrations generalize the eponymous categorical notion. The
nerve of any functor 𝑓∶ 𝐴 → 𝐵 between categories defines a map of
simplicial sets that lifts against the inner horn inclusions. This map then
defines an isofibration if and only if given any isomorphism in 𝐵 and
specified object in𝐴 lifting either its domain or codomain, there exists an
isomorphism in 𝐴with that domain or codomain lifting the isomorphism
in 𝐵.

Much harder to establish is the stability of the isofibrations under the formation
of “Leibniz6 exponentials” as displayed in (1.1.21). This is proven in Proposition
D.5.2.

Proposition 1.1.20. If 𝑖∶ 𝑋 ↪ 𝑌 is a monomorphism and 𝑓∶ 𝐴 ↠ 𝐵 is an
6 The name alludes to the Leibniz rule in differential calculus, or more specifically to the

identification of the domain of the Leibniz product of Lemma D.3.1 with the boundary of the
prism (see Definition C.2.8 and Remark D.3.2).
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isofibration, then the induced Leibniz exponential map 𝑖 ⋔̂ 𝑓

𝐴𝑌

• 𝐴𝑋

𝐵𝑌 𝐵𝑋

𝑖⋔̂𝑓
𝐴𝑖

𝑓𝑌 ⌟
𝑓𝑋

𝐵𝑖

(1.1.21)

is again an isofibration.7

Corollary 1.1.22. If 𝑋 is a simplicial set and 𝐴 is a quasi-category, then 𝐴𝑋

is a quasi-category. Moreover, a 1-simplex in 𝐴𝑋 is an isomorphism if and only
if its components at each vertex of 𝑋 are isomorphisms in 𝐴.

Proof The first statement is a special case of Proposition 1.1.20 (see Exercise
1.1.vii), while the second statement is proven similarly by arguing with marked
simplicial sets (see Corollary D.4.19).

Definition 1.1.23 (equivalences of quasi-categories). A map 𝑓∶ 𝐴 → 𝐵 be-
tween quasi-categories is an equivalence if it extends to the data of a “homotopy
equivalence” with the free-living isomorphism 𝕀 serving as the interval: that is,
if there exist maps 𝑔∶ 𝐵 → 𝐴,

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

ev0

ev1

𝛽

𝑓𝑔 ev0

ev1

We write “∼ ” to decorate equivalences and 𝐴 ≃ 𝐵 to indicate the presence of
an equivalence 𝐴 ∼ 𝐵.

Remark 1.1.24. If 𝑓∶ 𝐴 → 𝐵 is an equivalence of quasi-categories, then the
functor h𝑓∶ h𝐴 → h𝐵 is an equivalence of categories, where the data displayed
above defines an equivalence inverse h𝑔∶ h𝐵 → h𝐴 and natural isomorphisms
7 Degenerate cases of this result, taking 𝑋 = ∅ or 𝐵 = 1, imply that the other six maps in this

diagram are also isofibrations (see Exercise 1.1.vii).
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encoded by the composite8 functors

h𝐴 h(𝐴𝕀) (h𝐴)𝕀 h𝐵 h(𝐵𝕀) (h𝐵)𝕀h𝛼 h𝛽

Definition 1.1.25. A map 𝑓∶ 𝑋 → 𝑌 between simplicial sets is a trivial
fibration if it admits lifts against the boundary inclusions for all simplices

𝜕Δ[𝑛] 𝑋

Δ[𝑛] 𝑌

∼ 𝑓 for 𝑛 ≥ 0 (1.1.26)

We write “∼ ” to decorate trivial fibrations.

Remark 1.1.27. The simplex boundary inclusions 𝜕Δ[𝑛] ↪ Δ[𝑛] “cellularly
generate” the monomorphisms of simplicial sets (see Definition C.2.4 and Lem-
ma C.5.9). Hence the dual of Lemma C.2.3 implies that trivial fibrations lift
against any monomorphism between simplicial sets. In particular, it follows that
any trivial fibration 𝑋 ∼ 𝑌 is a split epimorphism.

The notation “∼ ” is suggestive: the trivial fibrations between quasi-categories
are exactly those maps that are both isofibrations and equivalences. This can be
proven by a relatively standard although rather technical argument in simplicial
homotopy theory, appearing as Proposition D.5.6.

Proposition 1.1.28. For a map 𝑓∶ 𝐴 → 𝐵 between quasi-categories the fol-
lowing are equivalent:

(i) 𝑓 is a trivial fibration
(ii) 𝑓 is both an isofibration and an equivalence
(iii) 𝑓 is a split fiber homotopy equivalence: an isofibration admitting a

section 𝑠 that is also an equivalence inverse via a homotopy 𝛼 from id𝐴
to 𝑠𝑓 that composes with 𝑓 to the constant homotopy from 𝑓 to 𝑓.

𝐴 + 𝐴 𝐴

𝐴 × 𝕀 𝐴 𝐵

(id𝐴,𝑠𝑓)

𝑓≀

𝜋

𝛼

𝑓
∼

As a class characterized by a right lifting property, the trivial fibrations are
also closed under composition, product, pullback, limits of towers, and contain
8 Note that h(𝐴𝕀) ≇ (h𝐴)𝕀 in general. Objects in the latter are homotopy classes of isomorphisms

in 𝐴, while objects in the former are homotopy coherent isomorphisms, given by a specified
1-simplex in 𝐴, a specified inverse 1-simplex, together with an infinite tower of coherence data
indexed by the nondegenerate simplices in 𝕀.
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the isomorphisms. The stability of these maps under Leibniz exponentiation is
proven along with Proposition 1.1.20 in Proposition D.5.2.

Proposition 1.1.29. If 𝑖∶ 𝑋 → 𝑌 is a monomorphism and 𝑓∶ 𝐴 → 𝐵 is an
isofibration, then if either 𝑓 is a trivial fibration or if 𝑖 is in the class cellularly
generated by the inner horn inclusions and the map 𝟙 ↪ 𝕀 then the induced
Leibniz exponential map

𝐴𝑌 𝐵𝑌 ×𝐵𝑋 𝐴𝑋
𝑖⋔̂𝑓

a trivial fibration.

To illustrate the utility of these Leibniz stability results, we give an “internal”
or “synthetic” characterization of the Kan complexes.

Lemma 1.1.30. A quasi-category 𝐴 is a Kan complex if and only if the map
𝐴𝕀 ↠ 𝐴𝟚 induced by the inclusion 𝟚 ↪ 𝕀 is a trivial fibration.

Note that Proposition 1.1.20 implies that 𝐴𝕀 ↠ 𝐴𝟚 is an isofibration.

Proof The lifting property that characterizes trivial fibrations transposes to
another lifting property, displayed below-right

𝜕Δ[𝑛] 𝐴𝕀

Δ[𝑛] 𝐴𝟚

↭

𝜕Δ[𝑛] × 𝕀 ∪
𝜕Δ[𝑛]×𝟚

Δ[𝑛] × 𝟚 𝐴

Δ[𝑛] × 𝕀

that asserts that 𝐴 admits extensions along maps formed by taking the Leibniz
product – also known as the pushout product – of a simplex boundary inclusion
𝜕Δ[𝑛] ↪ Δ[𝑛] with the inclusion 𝟚 ↪ 𝕀. By Exercise 1.1.v(ii) the inclusion
𝟚 ↪ 𝕀 is a sequential composite of pushouts of left outer horn inclusions. By
Corollary D.3.11, a key step along the way to the proofs of Propositions 1.1.20
and 1.1.29, it follows that the Leibniz product is also a sequential composite
of pushouts of left and inner horn inclusions. If 𝐴 is a Kan complex, then the
extensions displayed above right exist, and, by transposing, the map 𝐴𝕀 ↠ 𝐴𝟚 is
a trivial fibration.

Conversely, if 𝐴𝕀 ∼ 𝐴𝟚 is a trivial fibration then in particular it is surjective
on vertices. Thus every arrow in 𝐴 is an isomorphism, and Corollary 1.1.15
tells us that 𝐴 must be a Kan complex.

Digression 1.1.31 (the Joyal model structure). The category of simplicial sets
bears a Quillen model structure, in the sense of Definition C.3.1, whose fibrant
objects are exactly the quasi-categories and in which all objects are cofibrant.
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Between fibrant objects, the fibrations, weak equivalences, and trivial fibrations
are precisely the isofibrations, equivalences, and trivial fibrations just introduced.
Proposition 1.1.28 proves that the trivial fibrations are the intersection of the
fibrations and the weak equivalences. Propositions 1.1.20 and 1.1.29 reflect
the fact that the Joyal model structure is a cartesian closed model category,
satisfying the additional axioms of Definition C.3.10.

We decline to elaborate further on the Joyal model structure for quasi-cate-
gories since we have highlighted all of the features that we need. The results
enumerated here suffice to show that the category of quasi-categories defines an
∞-cosmos, a concept to which we now turn.

Exercises
Exercise 1.1.i ([103, §1.5]). Given any cosimplicial object 𝐶∶ 𝚫 → ℰ valued
in any category ℰ, there is an associated nerve functor 𝑁𝐶 defined by:

ℰ 𝑠𝒮𝑒𝑡

𝐸 hom(𝐶−, 𝐸)

𝑁𝐶 𝚫

ℰ 𝑠𝒮𝑒𝑡

𝐶 よ

𝑁𝐶

⊥
lanよ𝐶

By construction 𝑛-simplices in𝑁𝐶𝐸 correspond to maps𝐶𝑛 → 𝐸 in ℰ. Show that
if ℰ is cocomplete, then 𝑁𝐶 has a left adjoint defined as the left Kan extension of
the functor 𝐶 along the Yoneda embeddingよ∶ 𝚫 ↪ 𝑠𝒮𝑒𝑡. This gives a second
proof of Proposition 1.1.11.

Exercise 1.1.ii (Boardman–Vogt [21]). Consider the set of 1-simplices in a
quasi-category with initial vertex 𝑎 and final vertex 𝑏.

(i) Prove that the relation defined by 𝑓 ∼ 𝑔 if and only if there exists a

2-simplex with boundary
𝑏

𝑎 𝑏

𝑓

𝑔

is an equivalence relation.

(ii) Prove that the relation defined by 𝑓 ∼ 𝑔 if and only if there exists a

2-simplex with boundary
𝑎

𝑎 𝑏

𝑓

𝑔

is an equivalence relation.

(iii) Prove that the equivalence relations defined by (i) and (ii) are the same.

This proves Lemma 1.1.9.
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Exercise 1.1.iii. Consider the free category on the reflexive directed graph

𝐴1 𝐴0,
⋅𝛿1

⋅𝛿0
⋅𝜍0

underlying a quasi-category 𝐴.

(i) Consider the binary relation that identifies sequences of composable
1-simplices with common source and common target whenever there
exists a simplex of 𝐴 in which the sequences of 1-simplices define two
paths from its initial vertex to its final vertex. Prove that this relation is
stable under pre- and post-composition with 1-simplices and conclude
that its transitive closure is a congruence: an equivalence relation that
is closed under pre- and post-composition.9

(ii) Consider the congruence relation generated by imposing a composition
relation ℎ = 𝑔 ∘ 𝑓 witnessed by 2-simplices

𝑎1

𝑎0 𝑎2

𝑔𝑓

ℎ

and prove that this coincides with the relation considered in (i).
(iii) In the congruence relations of (i) and (ii), prove that every sequence

of composable 1-simplices in 𝐴 is equivalent to a single 1-simplex.
Conclude that every morphism in the quotient of the free category by
this congruence relation is represented by a 1-simplex in 𝐴.

(iv) Prove that for any triple of 1-simplices 𝑓, 𝑔, ℎ in 𝐴, ℎ = 𝑔 ∘ 𝑓 in the
homotopy category h𝐴 of Definition 1.1.10 if and only if there exists a
2-simplex with boundary

𝑎1

𝑎0 𝑎2

𝑔𝑓

ℎ

This proves Lemma 1.1.12.

Exercise 1.1.iv. Show that any quasi-category in which inner horns admit
unique fillers is isomorphic to the nerve of its homotopy category.

Exercise 1.1.v. Let 𝕀 be the nerve of the free-living isomorphism.
9 Given a congruence relation on the hom-sets of a 1-category, the quotient category can be

formed by quotienting each hom-set (see [81, §II.8]).
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(i) Prove that 𝕀 contains exactly two nondegenerate simplices in each di-
mension.

(ii) Inductively build 𝕀 from 𝟚 by expressing the inclusion 𝟚 ↪ 𝕀 as a sequen-
tial composite of pushouts of left outer horn inclusions10 Λ0[𝑛] ↪ Δ[𝑛],
one in each dimension starting with 𝑛 = 2.11

Exercise 1.1.vi. Prove the relative version of Corollary 1.1.16: for any isofi-
bration 𝑝∶ 𝐴 ↠ 𝐵 between quasi-categories and any 𝑓∶ 𝟚 → 𝐴 that defines an
isomorphism in 𝐴 any homotopy coherent isomorphism in 𝐵 extending 𝑝𝑓 lifts
to a homotopy coherent isomorphism in 𝐴 extending 𝑓.

𝟚 𝐴

𝕀 𝐵

𝑓

𝑝

Exercise 1.1.vii. Specialize Proposition 1.1.20 to prove the following:

(i) If 𝐴 is a quasi-category and 𝑋 is a simplicial set then 𝐴𝑋 is a quasi-cate-
gory.

(ii) If 𝐴 is a quasi-category and 𝑋 ↪ 𝑌 is a monomorphism then 𝐴𝑌 ↠ 𝐴𝑋

is an isofibration.
(iii) If 𝐴 ↠ 𝐵 is an isofibration and 𝑋 is a simplicial set then 𝐴𝑋 ↠ 𝐵𝑋 is an

isofibration.

Exercise 1.1.viii. Anticipating Lemma 1.2.17:

(i) Prove that the equivalences defined in Definition 1.1.23 are closed under
retracts.

(ii) Prove that the equivalences defined in Definition 1.1.23 satisfy the 2-of-3
property.

Exercise 1.1.ix. Prove that if 𝑓∶ 𝑋 ∼ 𝑌 is a trivial fibration between quasi-cat-
egories then the functor h𝑓∶ h𝑋 ∼ h𝑌 is a surjective equivalence of categories.

1.2 ∞-Cosmoi

In §1.1, we presented “analytic” proofs of a few of the basic facts about quasi-
categories. The category theory of quasi-categories can be developed in a similar
10 By the duality described in Definition 1.2.25, the right outer horn inclusions Λ𝑛[𝑛] ↪ Δ[𝑛]

can be used instead.
11 This decomposition of the inclusion 𝟚 ↪ 𝕀 reveals which data extends homotopically uniquely

to a homotopy coherent isomorphism. For instance, the 1- and 2-simplices of Definition 1.1.13
together with a single 3-simplex that has these as its outer faces with its inner faces degenerate.
Homotopy type theorists refer to this data as a half adjoint equivalence [125, §4.2].
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style, but we aim instead to develop the “synthetic” theory of infinite-dimen-
sional categories, so that our results apply to many models at once. To achieve
this, our strategy is not to axiomatize what infinite-dimensional categories are,
but rather to axiomatize the categorical “universe” in which they live.

The definition of an ∞-cosmos abstracts the properties of the category of
quasi-categories together with the isofibrations, equivalences, and trivial fibra-
tions introduced in §1.1.12 First, the category of quasi-categories is enriched
over the category of simplicial sets – the set of morphisms from 𝐴 to 𝐵 coin-
cides with the set of vertices of the simplicial set 𝐵𝐴 – and moreover these
hom spaces are all quasi-categories. Second, certain limit constructions that
can be defined in the underlying unenriched category of quasi-categories satisfy
universal properties relative to this simplicial enrichment, with the usual iso-
morphism of sets extending to an isomorphism of simplicial sets. And finally,
the isofibrations, equivalences, and trivial fibrations satisfy properties that are
familiar from abstract homotopy theory, forming a category of fibrant objects
à la Brown [23] (see §C.1). In particular, the use of isofibrations in diagrams
guarantees that their strict limits are equivalence invariant, so we can take ad-
vantage of up-to-isomorphism universal properties and strict functoriality of
these constructions while still working “homotopically.”

As explained in Digression 1.2.13, there are a variety of models of infinite-
dimensional categories for which the category of “∞-categories,” as we call
them, and “∞-functors” between them is enriched over quasi-categories and
admits classes of isofibrations, equivalences, and trivial fibrations satisfying
analogous properties. This motivates the following axiomatization:

Definition 1.2.1 (∞-cosmos). An ∞-cosmos 𝒦 is a category that is enriched
over quasi-categories,13 meaning in particular that

• its morphisms 𝑓∶ 𝐴 → 𝐵 define the vertices of a quasi-category denoted
Fun(𝐴, 𝐵) and referred to as a functor space,

that is also equipped with a specified collection of maps that we call isofibrations
and denote by “↠” satisfying the following two axioms:

(i) (completeness) The quasi-categorically enriched category 𝒦 possesses
a terminal object, small products, pullbacks of isofibrations, limits of
countable towers of isofibrations, and cotensors with simplicial sets, each

12 Metaphorical allusions aside, our ∞-cosmoi resemble the fibrational cosmoi of Street [117].
13 This is to say 𝒦 is a simplicially enriched category (see Digression 1.2.4) whose hom spaces

are all quasi-categories.
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of these limit notions satisfying a universal property that is enriched
over simplicial sets.14

(ii) (isofibrations) The isofibrations contain all isomorphisms and any map
whose codomain is the terminal object; are closed under composition,
product, pullback, forming inverse limits of towers, and Leibniz coten-
sors with monomorphisms of simplicial sets; and have the property that
if 𝑓∶ 𝐴 ↠ 𝐵 is an isofibration and 𝑋 is any object then Fun(𝑋, 𝐴) ↠
Fun(𝑋, 𝐵) is an isofibration of quasi-categories.

For ease of reference, we refer to the simplicially enriched limits of diagrams
of isofibrations enumerated in (i) as the cosmological limit notions.

Definition 1.2.2. In an ∞-cosmos 𝒦, a morphism 𝑓∶ 𝐴 → 𝐵 is

• an equivalence just when the induced map 𝑓∗∶ Fun(𝑋, 𝐴) ∼ Fun(𝑋, 𝐵) on
functor spaces is an equivalence of quasi-categories for all 𝑋 ∈ 𝒦, and

• a trivial fibration just when 𝑓 is both an isofibration and an equivalence.

These classes are denoted by “∼ ” and “∼ ”, respectively.

Put more concisely, one might say that an ∞-cosmos is a “quasi-categorically
enriched category of fibrant objects” (see Definition C.1.1 and Example C.1.3).

Convention 1.2.3 (∞-category, as a technical term). Henceforth, we recast
∞-category as a technical term to refer to an object in an arbitrary ambient ∞-
cosmos. Similarly, we use the term ∞-functor – or more commonly the elision
“functor” – to refer to a morphism 𝑓∶ 𝐴 → 𝐵 in an ∞-cosmos. This explains
why we refer to the quasi-category Fun(𝐴, 𝐵) between two ∞-categories in an
∞-cosmos as a “functor space”: its vertices are the (∞-)functors from 𝐴 to 𝐵.

Digression 1.2.4 (simplicial categories, §A.2). A simplicial category 𝒜 is
given by categories 𝒜𝑛, with a common set of objects and whose arrows are
called 𝑛-arrows, that assemble into a diagram𝚫op → 𝒞𝑎𝑡 of identity-on-objects
functors

⋯𝒜3 𝒜2 𝒜1 𝒜0

⋅𝛿0

⋅𝛿1

⋅𝛿2

⋅𝛿3

⋅𝜍1

⋅𝜍0

⋅𝜍2

⋅𝛿1

⋅𝛿2

⋅𝛿0
⋅𝜍0

⋅𝜍1 ⋅𝛿1

⋅𝛿0
⋅𝜍0 ≕ 𝒜 (1.2.5)

The category 𝒜0 of 0-arrows is the underlying category of the simplicial
category 𝒜, which forgets the higher dimensional simplicial structure.
14 We elaborate on these simplicially enriched limits in Digression 1.2.6.
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The data of a simplicial category can equivalently be encoded by a simp-
licially enriched category with a set of objects and a simplicial set 𝒜(𝑥, 𝑦)
of morphisms between each ordered pair of objects: an 𝑛-arrow in 𝒜𝑛 from 𝑥
to 𝑦 corresponds to an 𝑛-simplex in 𝒜(𝑥, 𝑦) (see Exercise 1.2.i). Each endo-
hom space contains a distinguished identity 0-arrow (the degenerate images of
which define the corresponding identity 𝑛-arrows) and composition is required
to define a simplicial map

𝒜(𝑦, 𝑧) × 𝒜(𝑥, 𝑦) 𝒜(𝑥, 𝑧)∘

the single map encoding the compositions in each of the categories 𝒜𝑛 and
also the functoriality of the diagram (1.2.5). The composition is required to be
associative and unital, in a sense expressed by the commutative diagrams of
simplicial sets

𝒜(𝑦, 𝑧) × 𝒜(𝑥, 𝑦) × 𝒜(𝑤, 𝑥) 𝒜(𝑥, 𝑧) × 𝒜(𝑤, 𝑥)

𝒜(𝑦, 𝑧) × 𝒜(𝑤, 𝑦) 𝒜(𝑤, 𝑧)

id×∘

∘×id

∘

∘

𝒜(𝑥, 𝑦) 𝒜(𝑦, 𝑦) × 𝒜(𝑥, 𝑦)

𝒜(𝑥, 𝑦) × 𝒜(𝑥, 𝑥) 𝒜(𝑥, 𝑦)

id𝑦× id

idid× id𝑥 ∘

∘

On account of the equivalence between these two presentations, the terms
“simplicial category” and “simplicially enriched category” are generally taken
to be synonyms.15

In particular, the underlying category 𝒦0 of an ∞-cosmos 𝒦 is the category
whose objects are the∞-categories in𝒦 and whose morphisms are the 0-arrows,
i.e., the vertices in the functor spaces. In all of the examples to appear in what
follows, this recovers the expected category of ∞-categories in a particular
model and functors between them.

Digression 1.2.6 (simplicially enriched limits, §A.4-A.5). Let𝒜 be a simplicial
category. The cotensor of an object 𝐴 ∈ 𝒜 by a simplicial set𝑈 is characterized
by a natural isomorphism of simplicial sets

𝒜(𝑋, 𝐴𝑈) ≅ 𝒜(𝑋, 𝐴)𝑈 (1.2.7)
15 The phrase “simplicial object in 𝒞𝑎𝑡” is reserved for the more general yet less common notion

of a diagram 𝚫op → 𝒞𝑎𝑡 that is not necessarily comprised of identity-on-objects functors.
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Assuming such objects exist, the simplicial cotensor defines a bifunctor

𝑠𝒮𝑒𝑡op ×𝒜 𝒜

(𝑈,𝐴) 𝐴𝑈

in a unique way making the isomorphism (1.2.7) natural in 𝑈 and 𝐴 as well.
The other simplicial limit notions postulated by axiom 1.2.1(i) are coni-

cal, which is the term used for ordinary 1-categorical limit shapes that sat-
isfy an enriched analog of the usual universal property (see Definition A.5.2).
Such limits also define limits in the underlying category, but the usual univer-
sal property is strengthened. By applying the covariant representable functor
𝒜(𝑋,−)∶ 𝒜0 → 𝑠𝒮𝑒𝑡 to a limit cone (lim𝑗∈𝐽 𝐴𝑗 → 𝐴𝑗)𝑗∈𝐽 in 𝒜0, we obtain a
natural comparison map

𝒜(𝑋, lim
𝑗∈𝐽

𝐴𝑗) lim
𝑗∈𝐽

𝒜(𝑋, 𝐴𝑗). (1.2.8)

We say that lim𝑗∈𝐽 𝐴𝑗 defines a simplicially enriched limit if and only if (1.2.8)
is an isomorphism of simplicial sets for all 𝑋 ∈ 𝒜.

The general theory of enriched categories is reviewed in Appendix A.

Preview 1.2.9 (flexible weighted limits in ∞-cosmoi). The axiom 1.2.1(i)
implies that any ∞-cosmos 𝒦 admits all flexible limits, a much larger class of
simplicially enriched “weighted” limits (see Definition 6.2.1 and Proposition
6.2.8).

We quickly introduce the three examples of ∞-cosmoi that are most easily
absorbed, deferring more sophisticated examples to the end of this section. The
first of these is the prototypical ∞-cosmos.

Proposition 1.2.10 (the ∞-cosmos of quasi-categories). The full subcategory
𝒬𝒞𝑎𝑡 ⊂ 𝑠𝒮𝑒𝑡 of quasi-categories defines an ∞-cosmos in which the isofibra-
tions, equivalences, and trivial fibrations coincide with the classes already
bearing these names.

Proof The subcategory 𝒬𝒞𝑎𝑡 ⊂ 𝑠𝒮𝑒𝑡 inherits its simplicial enrichment from
the cartesian closed category of simplicial sets: by Proposition 1.1.20, whenever
𝐴 and 𝐵 are quasi-categories, Fun(𝐴, 𝐵) ≔ 𝐵𝐴 is again a quasi-category.

The cosmological limits postulated in 1.2.1(i) exist in the ambient category of
simplicial sets.16 For instance, the defining universal property of the simplicial
cotensor (1.2.7) is satisfied by the exponentials of simplicial sets. Moreover,
16 Any category of presheaves is cartesian closed, complete, and cocomplete – a “cosmos” in the

sense of Bénabou.
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since the category of simplicial sets is cartesian closed, each of the conical limits
is simplicially enriched in the sense discussed in Digression 1.2.6 (see Exercise
1.2.ii and Proposition A.5.4).

We now argue that the full subcategory of quasi-categories inherits all these
limit notions and at the same time establish the stability of the isofibrations
under the formation of these limits. In fact, this latter property helps to prove
the former. To see this, note that a simplicial set is a quasi-category if and only
if the map from it to the point is an isofibration. More generally, if the codomain
of any isofibration is a quasi-category then its domain must be as well. So if any
of the maps in a limit cone over a diagram of quasi-categories are isofibrations,
then it follows that the limit is itself a quasi-category.

Since the isofibrations are characterized by a right lifting property, Lemma
C.2.3 implies that the isofibrations contains all isomorphism and are closed
under composition, product, pullback, and forming inverse limits of towers. In
particular, the full subcategory of quasi-categories possesses these limits. This
verifies all of the axioms of 1.2.1(i) and 1.2.1(ii) except for the last two: Leibniz
closure and closure under exponentiation (−)𝑋. These last closure properties
are established in Proposition 1.1.20, and in fact by Exercise 1.1.vii, the former
subsumes the latter . This completes the verification of the ∞-cosmos axioms.

It remains to check that the equivalences and trivial fibrations coincide with
those maps defined by 1.1.23 and 1.1.25. By Proposition 1.1.28 the latter co-
incidence follows from the former, so it remains only to show that the equiva-
lences of 1.1.23 coincide with the representably defined equivalences: those
maps of quasi-categories 𝑓∶ 𝐴 → 𝐵 for which 𝐴𝑋 → 𝐵𝑋 is an equivalence
of quasi-categories in the sense of Definition 1.1.23. Taking 𝑋 = Δ[0], we
see immediately that representably defined equivalences are equivalences, and
the converse holds since the exponential (−)𝑋 preserves the data defining a
simplicial homotopy.

Two further examples fit into a common paradigm: both arise as full sub-
categories of the ∞-cosmos of quasi-categories and inherit their ∞-cosmos
structures from this inclusion (see Lemma 6.1.4). But it is also instructive,
and ultimately takes less work, to describe the resulting ∞-cosmos structures
directly.

Proposition 1.2.11 (the ∞-cosmos of categories). The category 𝒞𝑎𝑡 of 1-cate-
gories defines an ∞-cosmos whose isofibrations are the isofibrations: functors
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satisfying the displayed right lifting property:

𝟙 𝐴

𝕀 𝐵

𝑓

The equivalences are the equivalences of categories and the trivial fibrations
are surjective equivalences: equivalences of categories that are also surjective
on objects.

Proof It is well-known that the 2-category of categories is complete (and in
fact also cocomplete) as a 𝒞𝑎𝑡-enriched category (see Definition A.6.17 or [67]).
The categorically enriched category of categories becomes a quasi-categori-
cally enriched category by applying the nerve functor to the hom-categories
(see §A.7). Since the nerve functor is a right adjoint, it follows formally that
these 2-categorical limits become simplicially enriched limits. In particular, as
proscribed in Proposition A.7.8, the cotensor of a category 𝐴 by a simplicial set
𝑈 is defined to be the functor category 𝐴h𝑈. This completes the verification of
axiom (i).

Since the class of isofibrations is characterized by a right lifting property,
Lemma C.2.3 implies that the isofibrations are closed under all of the limit
constructions of 1.2.1(ii) except for the last two, and by Exercise 1.1.vii, the
Leibniz closure subsumes the closure under exponentiation.

To verify that isofibrations of categories 𝑓∶ 𝐴 ↠ 𝐵 are stable under forming
Leibniz cotensors with monomorphisms of simplicial sets 𝑖∶ 𝑈 ↪ 𝑉, we must
solve the lifting problem below-left

𝟙 𝐴h𝑉 h𝑈 × 𝕀 ∪h𝑈 h𝑉 𝐴

𝕀 𝐵h𝑉 ×𝐵h𝑈 𝐴h𝑈 h𝑉 × 𝕀 𝐵

𝑠

𝑗 h𝑖⋔̂𝑓 ↭

⟨𝛼,𝑠⟩

h𝑖×̂𝑗 𝑓𝛾

⟨𝛽,𝛼⟩ 𝛽

𝛾

which transposes to the lifting problem above-right, which we can solve by hand.
Here the map 𝛽 defines a natural isomorphism between 𝑓𝑠∶ h𝑉 → 𝐵 and a
second functor. Our task is to lift this to a natural isomorphism 𝛾 from 𝑠 to
another functor that extends the natural isomorphism 𝛼 along h𝑖∶ h𝑈 → h𝑉.
Note this functor h𝑖 need not be an inclusion, but it is injective on objects, which
is enough.

We define the components of 𝛾 by cases. If an object 𝑣 ∈ h𝑉 is equal to 𝑖(𝑢) for
some 𝑢 ∈ h𝑈 define 𝛾𝑖(ᵆ) ≔ 𝛼ᵆ; otherwise, use the fact that 𝑓 is an isofibration
to define 𝛾𝑣 to be any lift of the isomorphism 𝛽𝑣 to an isomorphism in 𝐴 with
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domain 𝑠(𝑣). The data of the map 𝛾∶ h𝑉 × 𝕀 → 𝐴 also entails the specification
of the functor h𝑉 → 𝐴 that is the codomain of the natural isomorphism 𝛾.
On objects, this functor is given by 𝑣 ↦ cod(𝛾𝑣). On morphisms, this functor
defined in the unique way that makes 𝛾 into a natural transformation:

(𝑘∶ 𝑣 → 𝑣′) ↦ 𝛾𝑣′ ∘ 𝑠(𝑘) ∘ 𝛾−1𝑣 .

This completes the proof that 𝒞𝑎𝑡 defines an ∞-cosmos. Since the nerve
of a functor category, such as 𝐴𝕀, is isomorphic to the exponential between
their nerves, the equivalences of categories coincide with the equivalences of
Definition 1.1.23. It follows that the equivalences in the∞-cosmos of categories
coincide with equivalences of categories, and since the surjective equivalences
are the intersection of the equivalences and the isofibrations, this completes the
proof.

Proposition 1.2.12 (the ∞-cosmos of Kan complexes). The category 𝒦𝑎𝑛 of
Kan complexes defines an∞-cosmos whose isofibrations are the Kan fibrations:
maps that lift against all horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤
𝑛.

The proof proceeds along the lines of Lemma 6.1.4. We show that the subcat-
egory of Kan complexes inherits an ∞-cosmos structure by restricting structure
from the ∞-cosmos of quasi-categories.

Proof By Proposition 1.1.18, an isofibration between Kan complexes is a
Kan fibration. Conversely, since the homotopy coherent isomorphism 𝕀 can
be built from the point 𝟙 by attaching fillers to a sequence of outer horns, all
Kan fibrations define isofibrations. This shows that between Kan complexes,
isofibrations and Kan fibrations coincide. So to show that the category of Kan
complexes inherits an ∞-cosmos structure by restriction from the ∞-cosmos of
quasi-categories, we need only verify that the full subcategory 𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡
is closed under all of the limit constructions of axiom 1.2.1(i). For the conical
limits, the argument mirrors the one given in the proof of Proposition 1.2.10,
while the closure under cotensors is a consequence of Corollary D.3.11, which
implies that the Kan complexes also define an exponential ideal in the category
of simplicial sets. The remaining axiom 1.2.1(ii) is inherited from the analogous
properties established for quasi-categories in Proposition 1.2.10.

We mention a common source of ∞-cosmoi found in nature to build intuition
for readers familiar with Quillen’s model categories, a popular framework for
abstract homotopy theory, but reassure newcomers that model categories are
not needed outside of Appendix E where these results are proven.
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Digression 1.2.13 (a source of ∞-cosmoi in nature). As explained in §E.1,
certain easily described properties of a model category imply that the full subcat-
egory of fibrant objects defines an ∞-cosmos whose isofibrations, equivalences,
and trivial fibrations are the fibrations, weak equivalences, and trivial fibrations
between fibrant objects. Namely, any model category that is enriched as such
over the Joyal model structure on simplicial sets in which all fibrant objects are
cofibrant presents an∞-cosmos (see Proposition E.1.1). This model-categorical
enrichment over quasi-categories can be defined when the model category is
cartesian closed and equipped with a right Quillen adjoint to the Joyal model
structure on simplicial sets whose left adjoint preserves finite products (see
Corollary E.1.4). In this case, the right adjoint becomes the underlying quasi-
category functor (see Proposition 1.3.4(ii)) and the ∞-cosmoi so-produced is
cartesian closed (see Definition 1.2.23). The∞-cosmoi listed in Example 1.2.24
all arise in this way.

The following results are consequences of the axioms of Definition 1.2.1.
To begin, observe that the trivial fibrations enjoy the same stability properties
satisfied by the isofibrations.

Lemma 1.2.14 (stability of trivial fibrations). The trivial fibrations in an ∞-cos-
mos define a subcategory containing the isomorphisms and are stable under
product, pullback, and forming inverse limits of towers. Moreover, the Leibniz
cotensors of any trivial fibration with a monomorphism of simplicial sets is a
trivial fibration as is the Leibniz cotensor of an isofibration with a map in the
class cellularly generated by the inner horn inclusions and the map 𝟙 ↪ 𝕀, and
if 𝐸 ∼ 𝐵 is a trivial fibration then so is Fun(𝑋, 𝐸) ∼ Fun(𝑋, 𝐵).

Proof We prove these statements in the reverse order. By axiom 1.2.1(ii) and
the definition of the trivial fibrations in an ∞-cosmos, we know that if 𝐸 ∼ 𝐵
is a trivial fibration then Fun(𝑋, 𝐸) ∼ Fun(𝑋, 𝐵) is both an isofibration and an
equivalence, and hence by Proposition 1.1.28 a trivial fibration. For stability
under the remaining constructions, we know in each case that the maps in
question are isofibrations in the∞-cosmos; it remains to show only that the maps
are also equivalences. The equivalences in an ∞-cosmos are defined to be the
maps that Fun(𝑋, −) carries to equivalences of quasi-categories, so it suffices to
verify that trivial fibrations of quasi-categories satisfy the corresponding stability
properties. For the Leibniz stability properties, this is established in Proposition
1.1.29, while the remaining properties are covered by Lemma C.2.3.

By a Yoneda-style argument, the “homotopy equivalence” characterization
of the equivalences in the ∞-cosmos of quasi-categories of Definition 1.1.23
extends to an analogous characterization of the equivalences in any ∞-cosmos:
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Lemma 1.2.15 (equivalences are homotopy equivalences). A map 𝑓∶ 𝐴 → 𝐵
between ∞-categories in an ∞-cosmos 𝒦 is an equivalence if and only if it ex-
tends to the data of a “homotopy equivalence” with the free-living isomorphism
𝕀 serving as the interval: that is, if there exist maps 𝑔∶ 𝐵 → 𝐴

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼
∼ ev0

∼ ev1

𝛽

𝑓𝑔

∼ ev0

∼ ev1

(1.2.16)

in the ∞-cosmos.

Proof By hypothesis, if 𝑓∶ 𝐴 → 𝐵 defines an equivalence in the ∞-cosmos
𝒦 then the induced map on post-composition 𝑓∗∶ Fun(𝐵, 𝐴) ∼ Fun(𝐵, 𝐵) is an
equivalence of quasi-categories in the sense of Definition 1.1.23. Evaluating the
inverse equivalence ̃𝑔∶ Fun(𝐵, 𝐵) ∼ Fun(𝐵, 𝐴) and homotopy ̃𝛽 ∶ Fun(𝐵, 𝐵) →
Fun(𝐵, 𝐵)𝕀 at the 0-arrow id𝐵 ∈ Fun(𝐵, 𝐵), we obtain a 0-arrow 𝑔∶ 𝐵 → 𝐴
together with an isomorphism 𝛽∶ 𝕀 → Fun(𝐵, 𝐵) from the composite 𝑓𝑔 to id𝐵.
By the defining universal property of the cotensor (1.2.7), this isomorphism
internalizes to define the map 𝛽∶ 𝐵 → 𝐵𝕀 in𝒦 displayed on the right of (1.2.16).

Now the hypothesis that 𝑓 is an equivalence also provides an equivalence of
quasi-categories 𝑓∗∶ Fun(𝐴, 𝐴) ∼ Fun(𝐴, 𝐵), and the map 𝛽𝑓∶ 𝐴 → 𝐵𝕀 repre-
sents an isomorphism in Fun(𝐴, 𝐵) from 𝑓𝑔𝑓 to 𝑓. Since 𝑓∗ is an equivalence, we
conclude from Remark 1.1.24 that id𝐴 and 𝑔𝑓 are isomorphic in the quasi-cate-
gory Fun(𝐴, 𝐴): explicitly, such an isomorphism may be defined by applying the
inverse equivalence ̃ℎ∶ Fun(𝐴, 𝐵) → Fun(𝐴, 𝐴) and composing with the compo-
nents at id𝐴, 𝑔𝑓 ∈ Fun(𝐴, 𝐴) of the isomorphism 𝛼̃∶ Fun(𝐴, 𝐴) → Fun(𝐴, 𝐴)𝕀

from idFun(𝐴,𝐴) to ̃ℎ𝑓∗. Now by Corollary 1.1.16 this isomorphism is represented
by a map 𝕀 → Fun(𝐴, 𝐴) from id𝐴 to 𝑔𝑓, which internalizes to a map 𝛼∶ 𝐴 → 𝐴𝕀

in 𝒦 displayed on the left of (1.2.16).
The converse is easy: the simplicial cotensor construction commutes with

Fun(𝑋, −), so a homotopy equivalence (1.2.16) induces a homotopy equivalence
of quasi-categories as in Definition 1.1.23.

Lemma 1.2.17. The equivalences in an ∞-cosmos are closed under retracts
and satisfy the 2-of-3 property: given a composable pair of functors and their
composite, if any two of these are equivalences so is the third.

By the representable definition of equivalences and functoriality, Lemma
1.2.17 follows easily from the corresponding results for equivalences between
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quasi-categories (see Exercise 1.1.viii). But for sake of completeness, we prove
the general cosmological result without relying on this base case, subsuming
Exercise 1.1.viii.

Proof Let 𝑓∶ 𝐴 ∼ 𝐵 be an equivalence equipped with the data of (1.2.16)
and consider a retract diagram

𝐶 𝐴 𝐶

𝐷 𝐵 𝐷

ᵆ

ℎ

∼𝑓
𝑣

ℎ

𝑠 𝑡

By Lemma 1.2.15, to prove that ℎ∶ 𝐶 → 𝐷 is an equivalence, it suffices to
construct the data of an inverse homotopy equivalence. To that end define
𝑘∶ 𝐷 → 𝐶 to be the composite 𝑣𝑔𝑠 and then observe from the commutative
diagrams

𝐶

𝐴 𝐶 𝐴 𝐵 𝐷

𝐶 𝐴 𝐴𝕀 𝐶𝕀 𝐷 𝐵 𝐵𝕀 𝐷𝕀

𝐷 𝐵 𝐴 𝐶 𝐵 𝐷

ℎ

𝑣 𝑓

𝑣
𝑡

ᵆ

ℎ 𝑓

𝛼

ev0

ev1

𝑣𝕀

ev0

ev1

𝑠

𝑘

𝑔

𝛽 𝑡𝕀

ev1

ev0

ev1

ev0

𝑠

𝑘

𝑔 𝑣 𝑡

that 𝑣𝕀𝛼𝑢∶ 𝐶 → 𝐶𝕀 and 𝑡𝕀𝛽𝑠∶ 𝐷 → 𝐷𝕀 define the required homotopy coherent
isomorphisms.

Via Lemma 1.2.15, the 2-of-3 property for equivalences follows from the fact
that the set of isomorphisms in a quasi-category is closed under composition.
Homotopy coherent isomorphisms in a quasi-category represent isomorphisms
in the homotopy category, whose composite in the homotopy category is then
an isomorphism, which can be lifted to a representing homotopy coherent
isomorphism by Corollary 1.1.16.17 We now apply this to the homotopy coherent
isomorphisms in the functor spaces of an ∞-cosmos that form part of the data
of an equivalence of ∞-categories.
17 In fact, by Example D.5.5, homotopy coherent isomorphisms can be composed directly, but we

do not need this here.
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To prove that equivalences are closed under composition, consider a compos-
able pair of equivalences with their inverse equivalences

𝐴 𝐵 𝐶

∼𝑓 ∼𝑔

∼
𝑘

∼
ℎ

The equivalence data of Lemma 1.2.15 defines isomorphisms 𝛼∶ id𝐴 ≅ 𝑘𝑓 ∈
Fun(𝐴, 𝐴) and 𝛾∶ id𝐵 ≅ ℎ𝑔 ∈ Fun(𝐵, 𝐵), the latter of which whiskers to define
𝑘𝛾𝑓∶ 𝑘𝑓 ≅ 𝑘ℎ𝑔𝑓 ∈ Fun(𝐵, 𝐵). Composing these, we obtain an isomorphism
id𝐴 ≅ 𝑘ℎ𝑔𝑓 ∈ Fun(𝐴, 𝐴), witnessing that 𝑘ℎ defines a left equivalence inverse
of 𝑔𝑓. The other isomorphism is constructed similarly.

To prove that the equivalences are closed under right cancelation, consider a
diagram

𝐴 𝐵 𝐶∼𝑓 𝑔

∼
𝑘

∼ℓ

with 𝑘 an inverse equivalence to 𝑓 and ℓ and inverse equivalence to 𝑔𝑓. We
claim that 𝑓ℓ defines an inverse equivalence to 𝑔. One of the required isomor-
phisms id𝐶 ≅ 𝑔𝑓ℓ is given already. The other is obtained by composing three
isomorphisms in Fun(𝐵, 𝐵)

id𝐵 𝑓𝑘 𝑓ℓ𝑔𝑓𝑘 𝑓ℓ𝑔.≃

𝛽−1

≃

𝑓𝛿𝑘

≃

𝑓ℓ𝑔𝛽

The proof of stability of equivalence under left cancelation is dual.

The trivial fibrations admit a similar characterization as split fiber homotopy
equivalences.

Lemma 1.2.18 (trivial fibrations split). Every trivial fibration admits a section

𝐸

𝐵 𝐵

∼ 𝑝𝑠

that defines a split fiber homotopy equivalence

𝐸 𝐸𝕀 𝐸 × 𝐸

𝐵 𝐵𝕀

𝛼

(id𝐸,𝑠𝑝)

𝑝 𝑝𝕀
(ev0,ev1)

Δ
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and conversely any isofibration that defines a split fiber homotopy equivalence
is a trivial fibration.

Proof If 𝑝∶ 𝐸 ∼ 𝐵 is a trivial fibration, then by the final stability property of
Lemma 1.2.14, so is 𝑝∗∶ Fun(𝑋, 𝐸) ∼ 𝐹𝑢𝑛(𝑋, 𝐵) for any ∞-category 𝑋. By
Definition 1.1.25, we may solve the lifting problem below-left

∅ = 𝜕Δ[0] Fun(𝐵, 𝐸) 𝟙 + 𝟙 Fun(𝐸, 𝐸)

𝟙 = Δ[0] Fun(𝐵, 𝐵) 𝕀 𝟙 Fun(𝐸, 𝐵)
∼ 𝑝∗

(id𝐸,𝑠𝑝)

∼ 𝑝∗𝑠

id𝐵 !

𝛼

𝑝

to find a map 𝑠∶ 𝐵 → 𝐸 so that 𝑝𝑠 = id𝐵, and then solve the lifting problem
above-right to construct the desired fibered homotopy. The converse is immediate
from Lemma 1.2.15.

A classical construction in abstract homotopy theory proves the following:

Lemma 1.2.19 (Brown factorization lemma). Any functor 𝑓∶ 𝐴 → 𝐵 in an
∞-cosmos may be factored as an equivalence followed by an isofibration, where
this equivalence is constructed as a section of a trivial fibration.

𝑃𝑓

𝐴 𝐵

𝑝

∼𝑞

𝑓

∼ 𝑠
(1.2.20)

Moreover, 𝑓 is an equivalence if and only if the isofibration 𝑝 is a trivial fibration.

Proof The displayed factorization is constructed by the pullback of an isofi-
bration formed by the simplicial cotensor of the inclusion 𝟙 + 𝟙 ↪ 𝕀 into the
∞-category 𝐵.

𝐴𝕀

𝐴 𝑃𝑓 𝐵𝕀

𝐴 × 𝐵 𝐵 × 𝐵

𝑓𝕀

∼
𝑠

Δ

(𝐴,𝑓)
(𝑞,𝑝)

⌟
(ev0,ev1)

𝑓×𝐵

Note the map 𝑞 is a pullback of the trivial fibration ev0∶ 𝐵𝕀 ∼ 𝐵 and is hence a
trivial fibration. Its section 𝑠, constructed by applying the universal property of
the pullback to the displayed cone with summit 𝐴, is thus an equivalence by the



1.2 ∞-Cosmoi 33

2-of-3 property. Again by 2-of-3, it follows that 𝑓 is an equivalence if and only
if 𝑝 is.

Remark 1.2.21 (equivalences satisfy the 2-of-6 property). In fact the equiva-
lences in any∞-cosmos satisfy the stronger 2-of-6 property: for any composable
triple of functors

𝐵

𝐴 𝐷

𝐶

∼

ℎ𝑔𝑓

∼
𝑔𝑓

ℎ𝑔𝑓

𝑔
ℎ

if 𝑔𝑓 and ℎ𝑔 are equivalences then 𝑓, 𝑔, ℎ, and ℎ𝑔𝑓 are too. An argument of
Blumberg and Mandell [20, 6.4] reproduced in Proposition C.1.8 uses Lemmas
1.2.17, 1.2.18, and 1.2.19 to prove that the equivalences have the 2-of-6 property
(see Corollary C.1.9).

One of the key advantages of the ∞-cosmological approach to abstract cate-
gory theory is that there are a myriad varieties of “fibered” ∞-cosmoi that can
be built from a given ∞-cosmos, which means that any theorem proven in this
axiomatic framework specializes and generalizes to those contexts. The most
basic of these derived ∞-cosmoi is the ∞-cosmos of isofibrations over a fixed
base, which we introduce now. Other examples of ∞-cosmoi are developed in
Chapter 6, once we have a deeper understanding of the cosmological limits of
axiom 1.2.1(i).

Proposition 1.2.22 (sliced ∞-cosmoi). For any ∞-cosmos 𝒦 and any ∞-cat-
egory 𝐵 ∈ 𝒦 there is an ∞-cosmos 𝒦/𝐵 of isofibrations over 𝐵 whose

(i) objects are isofibrations 𝑝∶ 𝐸 ↠ 𝐵 with codomain 𝐵
(ii) functor spaces, say from 𝑝∶ 𝐸 ↠ 𝐵 to 𝑞∶ 𝐹 ↠ 𝐵, are defined by

pullback

Fun𝐵(𝑝∶ 𝐸 ↠ 𝐵, 𝑞∶ 𝐹 ↠ 𝐵) Fun(𝐸, 𝐹)

𝟙 Fun(𝐸, 𝐵)

⌟
𝑞∗

𝑝

and abbreviated to Fun𝐵(𝐸, 𝐹) when the specified isofibrations are clear
from context
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(iii) isofibrations are commutative triangles of isofibrations over 𝐵

𝐸 𝐹

𝐵

𝑟

𝑝 𝑞

(iv) terminal object is id∶ 𝐵 ↠ 𝐵 and products are defined by the pullback
along the diagonal

×𝐵
𝑖 𝐸𝑖 ∏𝑖 𝐸𝑖

𝐵 ∏𝑖 𝐵

⌟
∏𝑖 𝑝𝑖

Δ

(v) pullbacks and limits of towers of isofibrations are created by the forgetful
functor 𝒦/𝐵 → 𝒦

(vi) simplicial cotensor of 𝑝∶ 𝐸 ↠ 𝐵 with 𝑈 ∈ 𝑠𝒮𝑒𝑡 is constructed by the
pullback

𝑈 ⋔𝐵 𝑝 𝐸𝑈

𝐵 𝐵𝑈

⌟
𝑝𝑈

Δ

(vii) and in which a map over 𝐵

𝐸 𝐹

𝐵

𝑓

𝑝 𝑞

is an equivalence in the∞-cosmos𝒦/𝐵 if and only if 𝑓 is an equivalence
in 𝒦.

Proof The functor spaces are quasi-categories since axiom 1.2.1(ii) asserts
that for any isofibration 𝑞∶ 𝐹 ↠ 𝐵 in 𝒦 the map 𝑞∗∶ Fun(𝐸, 𝐹) ↠ Fun(𝐸, 𝐵)
is an isofibration of quasi-categories. Other parts of this axiom imply that each
of the limit constructions – such as the products and cotensors constructed in (iv)
and (vi) – define isofibrations over 𝐵. The closure properties of the isofibrations
in 𝒦/𝐵 follow from the corresponding ones in 𝒦. The most complicated of
these is the Leibniz cotensor stability of the isofibrations in 𝒦/𝐵, which follows
from the corresponding property in 𝒦, since for a monomorphism of simplicial
sets 𝑖∶ 𝑋 ↪ 𝑌 and an isofibration 𝑟 over 𝐵 as in (iii) above, the map 𝑖 ⋔̂𝐵 𝑟 is
constructed by pulling back 𝑖 ⋔̂ 𝑟 along Δ∶ 𝐵 → 𝐵𝑌.

The fact that the above constructions define simplicially enriched limits in a
simplicially enriched slice category are standard from enriched category theory.
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It remains only to verify that the equivalences in the ∞-cosmos of isofibrations
are created by the forgetful functor 𝒦/𝐵 → 𝒦. Suppose first that the map
𝑓 displayed in (vii) defines an equivalence in 𝒦. Then for any isofibration
𝑠∶ 𝐴 ↠ 𝐵 the induced map on functor spaces in 𝒦/𝐵 is defined by the pullback:

Fun𝐵(𝐴, 𝐸) Fun(𝐴, 𝐸)

Fun𝐵(𝐴, 𝐹) Fun(𝐴, 𝐹)

𝟙 Fun(𝐴, 𝐵)

∼

𝑓∗⌟
𝑝∗

∼

𝑓∗

⌟
𝑞∗

𝑠

Since 𝑓 is an equivalence in𝒦, the map 𝑓∗∶ Fun(𝐴, 𝐸) → Fun(𝐴, 𝐹) is an equiv-
alence, and so it follows that the induced map on fibers over 𝑠 is an equivalence
as well.18

For the converse implication, we appeal to Lemma 1.2.15. If 𝑓∶ 𝐸 → 𝐹 is
an equivalence in 𝒦/𝐵 then it admits a homotopy inverse in 𝒦/𝐵. The inverse
equivalence 𝑔∶ 𝐹 → 𝐸 also defines an inverse equivalence in𝒦 and the required
simplicial homotopies in 𝒦

𝐸 𝕀 ⋔𝐵 𝑝 𝐸𝕀 𝐹 𝕀 ⋔𝐵 𝑞 → 𝐹𝕀𝛼 𝛽

are defined by composing with the top horizontal leg of the pullback defining
the cotensor in 𝒦/𝐵.

As mentioned in Digression 1.2.13, many of the ∞-cosmoi we encounter
“in the wild” satisfy an additional axiom. Note, however, that this axiom is not
inherited by the sliced ∞-cosmoi of Proposition 1.2.22, which is one of the
reasons it was not included in Definition 1.2.1.

Definition 1.2.23 (cartesian closed ∞-cosmoi). An ∞-cosmos 𝒦 is cartesian
closed if the product bifunctor − × −∶ 𝒦 ×𝒦 → 𝒦 extends to a simplicially
enriched two-variable adjunction

Fun(𝐴 × 𝐵, 𝐶) ≅ Fun(𝐴, 𝐶𝐵) ≅ Fun(𝐵, 𝐶𝐴)

in which the right adjoints (−)𝐴∶ 𝒦 → 𝒦 preserve isofibrations for all 𝐴 ∈ 𝒦.

For instance, the ∞-cosmos of quasi-categories is cartesian closed, with the
exponentials defined as (special cases of) simplicial cotensors. This is one of
the reasons that we use the same notation for cotensor and for exponential.19

18 The stability of equivalences between isofibrations under pullback can be proven either as a
consequence of Lemmas 1.2.14 and 1.2.19 using standard techniques from simplicial homotopy
theory (see Lemma C.1.11) or by arguing 2-categorically (see Proposition 3.3.4).

19 Other advantages of this convenient notational conflation are discussed in §2.3 and in
Proposition 10.3.5.
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Note in this case the functor spaces and the exponentials coincide. The same is
true for the cartesian closed ∞-cosmoi of categories and of Kan complexes. In
general, the functor space from 𝐴 to 𝐵 is the “underlying quasi-category” of the
exponential 𝐵𝐴 whenever it exists (see Remark 1.3.11).

Example 1.2.24 (∞-cosmoi of (∞, 1)-categories; §E.2). The following models
of (∞, 1)-categories define cartesian closed ∞-cosmoi:

(i) Rezk’s complete Segal spaces define the objects of an ∞-cosmos 𝒞𝒮𝒮,
in which the isofibrations, equivalences, and trivial fibrations are the
corresponding classes of the model structure of [100].20

(ii) The Segal categories defined by Dwyer, Kan, and Smith [38] and de-
veloped by Hirschowitz and Simpson [56] define the objects of an ∞-
cosmos 𝒮𝑒𝑔𝑎𝑙, in which the isofibrations, equivalences, and trivial fibra-
tions are the corresponding classes of the model structure of [13, 90].21

(iii) The 1-complicial sets of [129], equivalently the “naturally marked quasi-
categories” of [78], define the objects of an∞-cosmos 1-𝒞𝑜𝑚𝑝 in which
the isofibrations, equivalences, and trivial fibrations are the correspond-
ing classes of the model structure from either of these sources.

In §E.3, we show that certain models of (∞, 𝑛)-categories or even (∞,∞)-
categories define ∞-cosmoi: 𝑛-quasi-categories, Θ𝑛-spaces, iterated complete
Segal spaces, and 𝑛-complicial sets.

Definition 1.2.25 (co-dual ∞-cosmoi). There is an identity-on-objects involu-
tive functor (−)∘∶ 𝚫 → 𝚫 that reverses the ordering of the elements in each
ordinal [𝑛] ∈ 𝚫. In the notation of 1.1.1, the functor (−)∘ sends a face map
𝛿𝑖∶ [𝑛 − 1] ↣ [𝑛] to the face map 𝛿𝑛−𝑖∶ [𝑛 − 1] ↣ [𝑛] and sends the de-
generacy map 𝜎𝑖∶ [𝑛 + 1] ↠ [𝑛] to the degeneracy map 𝜎𝑛−𝑖∶ [𝑛 + 1] ↠
[𝑛]. Precomposition with this involutive automorphism induces an involution
(−)op∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 that sends a simplicial set 𝑋 to its opposite simplicial set
𝑋op, with the orientation of the vertices in each simplex reversed. This con-
struction preserves all conical limits and colimits and induces an isomorphism
(𝑌𝑋)op ≅ (𝑌 op)𝑋op on exponentials.
20 Warning: the model category of complete Segal spaces is enriched over simplicial sets in two

distinct “directions” – one enrichment makes the simplicial set of maps between two complete
Segal spaces into a Kan complex that probes the “spacial” structure while another enrichment
makes the simplicial set of maps into a quasi-category that probes the “categorical” structure
[64]. It is this latter enrichment that we want.

21 Here we reserve the term “Segal category” for those simplicial objects with a discrete set of
objects that are Reedy fibrant and satisfy the Segal condition. The traditional definition does not
include the Reedy fibrancy condition because it is not satisfied by the simplicial object defined
as the nerve of a Kan complex enriched category. Since Kan complex enriched categories are
not among our preferred models of (∞, 1)-categories this does not bother us.
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For any ∞-cosmos 𝒦, there is a dual ∞-cosmos 𝒦co with the same objects
but with functor spaces defined by:

Fun𝒦co(𝐴, 𝐵) ≔ Fun𝒦(𝐴, 𝐵)op.

The isofibrations, equivalences, and trivial fibrations in 𝒦co coincide with those
of 𝒦.

Conical limits in 𝒦co coincide with those in 𝒦, while the cotensor of 𝐴 ∈ 𝒦
with 𝑈 ∈ 𝑠𝒮𝑒𝑡 is defined to be 𝐴𝑈op.

A 2-categorical justification for this notation is given in Exercise 1.4.ii.

Definition 1.2.26 (discrete ∞-categories). An ∞-category 𝐸 in an ∞-cosmos
𝒦 is discrete just when for all 𝑋 ∈ 𝒦 the functor space Fun(𝑋, 𝐸) is a Kan
complex.

In the ∞-cosmos of quasi-categories, the discrete ∞-categories are exactly
the Kan complexes. Similarly, in the ∞-cosmoi of Example 1.2.24 whose ∞-
categories are (∞, 1)-categories in some model, the discrete ∞-categories are
the ∞-groupoids. Importantly for what follows, the discrete ∞-categories can
be characterized “internally” to the ∞-cosmos as follows:

Lemma 1.2.27. An ∞-category 𝐸 is discrete if and only if 𝐸𝕀 ∼ 𝐸𝟚 is a trivial
fibration.

Proof By Definition 1.2.2, the isofibration 𝐸𝕀 ↠ 𝐸𝟚 is a trivial fibration if and
only if for all ∞-categories 𝑋 the induced map on functor spaces

Fun(𝑋, 𝐸𝕀) Fun(𝑋, 𝐸𝟚)

Fun(𝑋, 𝐸)𝕀 Fun(𝑋, 𝐸)𝟚

≅ ≅

is a trivial fibration of quasi-categories. Via the universal property of the sim-
plicial cotensor, Lemma 1.1.30 tells us that this map is a trivial fibration if and
only if Fun(𝑋, 𝐸) is a Kan complex.

The reader may check that the discrete∞-categories in any∞-cosmos assem-
ble into an ∞-cosmos 𝒦≃. A proof appears in Proposition 6.1.6 where general
techniques for producing new ∞-cosmoi from given ones are developed.

Exercises
Exercise 1.2.i. Define an equivalence between the categories of:

(i) simplicial categories, as in (1.2.5), and
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(ii) categories enriched over simplicial sets.

Exercise 1.2.ii. Elaborate on the proof of Proposition 1.2.10 by proving that
the simplicially enriched category 𝒬𝒞𝑎𝑡 admits conical products satisfying the
universal property of Digression 1.2.6. That is:

(i) Define the cartesian product𝐴×𝐵 and the projection maps𝜋𝐴∶ 𝐴×𝐵 →
𝐴 and 𝜋𝐵∶ 𝐴 × 𝐵 → 𝐵 for a pair of quasi-categories 𝐴 and 𝐵 and prove
that this data satisfies the usual (unenriched) universal property.

(ii) Given another quasi-category 𝑋, use (i) and the Yoneda lemma to show
that the projection maps induce an isomorphism of quasi-categories

(𝐴 × 𝐵)𝑋 𝐴𝑋 × 𝐵𝑋.≃

(iii) Explain how this relates to the universal property of Digression 1.2.6.
(iv) Express the usual 1-categorical universal property of (i) as the “0-di-

mensional aspect” of the universal property of (ii).

Exercise 1.2.iii. Prove that any object in an ∞-cosmos has a path object

𝐵𝕀

𝐵 𝐵 × 𝐵

(ev0,ev1)

∼

∼

Δ

constructed by cotensoring with the free-living isomorphism.

Exercise 1.2.iv. Show that if 𝒦 is a cartesian closed ∞-cosmos then 𝒦co is as
well.

Exercise 1.2.v (6.1.6). Use Proposition 1.2.12 to show that the discrete ∞-cat-
egories in any ∞-cosmos define an ∞-cosmos whose functor spaces are all Kan
complexes.

1.3 Cosmological Functors

Certain “right adjoint type” constructions define maps between ∞-cosmoi that
preserve all of the structures axiomatized in Definition 1.2.1. The simple obser-
vation that such constructions define cosmological functors between ∞-cosmoi
streamlines many proofs.

Definition 1.3.1 (cosmological functor). A cosmological functor is a sim-
plicial functor (see Definition A.2.6) between ∞-cosmoi that preserves the
specified isofibrations and all of the cosmological limits.
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In general, cosmological functors preserve any ∞-categorical notion that can
be characterized internally to the ∞-cosmos – for instance, as a map equipped
with additional structure – as opposed to externally – for instance, by a statement
that involves a universal or existential quantifier. For example, the equivalences
in an ∞-cosmos are characterized externally in Definition 1.2.2, which might
lead one to suspect that a nonsurjective cosmological functor could fail to
preserve them. However, Lemma 1.2.15 characterizes equivalences in terms of
the presence of structures defined internally to an ∞-cosmos, so as a result:

Lemma 1.3.2. Any cosmological functor also preserves equivalences and trivial
fibrations.

Proof By Lemma 1.2.15 the equivalences in an ∞-cosmos coincide with the
“homotopy equivalences” defined by cotensoring with the free-living isomorph-
ism. Since a cosmological functor preserves simplicial cotensors, it preserves
the data displayed in (1.2.16) and hence carries equivalences to equivalences.
The preservation of trivial fibrations follows.

Remark 1.3.3. Similarly, arguing from Definition 1.2.26 it would not be clear
whether cosmological functors preserve discrete ∞-categories, but using the
internal characterization of Lemma 1.2.27 – an ∞-category 𝐴 is discrete if and
only if𝐴𝕀 ∼ 𝐴𝟚 is a trivial fibration – this follows from the fact that cosmological
functors preserve simplicial cotensors and trivial fibrations.

We now demonstrate that cosmological functors are abundant:

Proposition 1.3.4. The following constructions define cosmological functors
for any ∞-cosmos 𝒦:

(i) The functor space Fun(𝑋, −)∶ 𝒦 → 𝒬𝒞𝑎𝑡, for any ∞-category 𝑋.
(ii) The underlying quasi-category functor

(−)0 ≔ Fun(1, −)∶ 𝒦 → 𝒬𝒞𝑎𝑡,

specializing (i) to the terminal ∞-category 1.
(iii) The simplicial cotensor (−)𝑈∶ 𝒦 → 𝒦, for any simplicial set 𝑈.
(iv) The exponential (−)𝐴∶ 𝒦 → 𝒦, for any ∞-category 𝐴 in a cartesian

closed ∞-cosmos 𝒦.
(v) Pullback of isofibrations 𝑓∗∶ 𝒦/𝐵 → 𝒦/𝐴 along any functor 𝑓∶ 𝐴 → 𝐵

in an ∞-cosmos 𝒦.
(vi) Moreover, for any cosmological functor 𝐹∶ 𝒦 → ℒ and any ∞-cat-

egory 𝐴 ∈ 𝒦, the induced map on slices 𝐹∶ 𝒦/𝐴 → ℒ/𝐹𝐴 defines a
cosmological functor.
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Proof The first four of these statements are nearly immediate, the preservation
of isofibrations being asserted explicitly as a hypothesis in each case and the
preservation of limits following from familiar arguments.

For (v), pullback in an ∞-cosmos 𝒦 is a simplicially enriched limit con-
struction; one consequence of this is that 𝑓∗∶ 𝒦/𝐵 → 𝒦/𝐴 defines a simplicial
functor. The action of the functor 𝑓∗ on a 0-arrow 𝑔 in 𝒦/𝐵 is also defined by a
pullback square: since the front and back squares in the displayed diagram are
pullbacks the top square is as well

𝑓∗𝐸 𝐸

𝑓∗𝐹 𝐹

𝐴 𝐵

𝑓∗𝑝
𝑓∗(𝑔)

⌟
𝑝

𝑔

𝑓∗𝑞

⌟
𝑞

𝑓

Since isofibrations are stable under pullback, it follows that 𝑓∗∶ 𝒦/𝐵 → 𝒦/𝐴
preserves isofibrations. It remains to prove that this functor preserves the sim-
plicial limits constructed in Proposition 1.2.22, which is fundamentally a conse-
quence of the commutativity of limit constructions. In each case, this can be
verified explicitly. We illustrate this computation for simplicial cotensors by
constructing the commutative cube:

𝑈 ⋔𝐴 𝑓∗𝑝 (𝑓∗𝐸)𝑈

𝑈 ⋔𝐵 𝑝 𝐸𝑈

𝐴 𝐴𝑈

𝐵 𝐵𝑈

⌟

(𝑓∗𝑝)𝑈

⌞

⌟
Δ

𝑓 𝑓𝑈

Δ

𝑝𝑈

Since the front, back, and right faces are pullbacks, the left is as well.
The final statement (vi) is left as Exercise 1.3.i.

Example 1.3.5. By Propositions 1.2.11 and 1.2.12, the full subcategory inclu-
sions 𝒞𝑎𝑡 ↪ 𝒬𝒞𝑎𝑡 and 𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 both define cosmological functors (see
also Lemma 6.1.4). These cosmological embeddings explicate the intuition that
the formal category theory of 1-categories or of ∞-groupoids can be recovered
as a special case of the formal category theory of (∞, 1)-categories.

Non-examples of cosmological functors are also instructive:
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Non-Example 1.3.6. The forgetful functor 𝒦/𝐵 → 𝒦 is simplicial and pre-
serves isofibrations but does not define a cosmological functor, failing to pre-
serve cotensors and products. However, by Proposition 1.3.4(v), its right adjoint
− × 𝐵∶ 𝒦 → 𝒦/𝐵 does define a cosmological functor.

Non-Example 1.3.7. The cosmological embedding 𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 has a right
adjoint (−)≃∶ 𝒬𝒞𝑎𝑡 → 𝒦𝑎𝑛 that carries each quasi-category to its “∞-group-
oid core” or maximal sub Kan complex, the simplicial subset containing those
𝑛-simplices whose edges are all isomorphisms. This core functor preserves
isofibrations and 1-categorical limits but is not cosmological since it is not
simplicially enriched: any functor 𝐾 → 𝑄 whose domain is a Kan complex and
whose codomain is a quasi-category factors through the inclusion 𝑄≃ ↪ 𝑄 via
a unique map 𝐾 → 𝑄≃ but in general Fun(𝐾, 𝑄) ≇ Fun(𝐾, 𝑄≃), since a natural
transformation 𝐾 × Δ[1] → 𝑄 only factors through 𝑄≃ ↪ 𝑄 in the case where
its components are invertible (see Lemma 12.1.12 however).

Certain cosmological functors are especially well-behaved:

Definition 1.3.8 (cosmological biequivalence). A cosmological functor defines
a cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ if it additionally

(i) is essentially surjective on objects up to equivalence: for all 𝐶 ∈ ℒ
there exists 𝐴 ∈ 𝒦 so that 𝐹𝐴 ≃ 𝐶 and

(ii) defines a local equivalence: for all 𝐴, 𝐵 ∈ 𝒦, the action of 𝐹 on functor
spaces defines an equivalence of quasi-categories

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵).∼

Cosmological biequivalences are studied more systematically in Chapter
10, where we think of them as “change-of-model” functors. Crucially for our
proof of the “model independence” of (∞, 1)-category theory in Chapter 11,
there are a variety of cosmological biequivalences between the ∞-cosmoi of
(∞, 1)-categories:

Example 1.3.9 (§E.2).

(i) The underlying quasi-category functors defined on the ∞-cosmoi of
complete Segal spaces, Segal categories, and 1-complicial sets

𝒞𝒮𝒮 𝒬𝒞𝑎𝑡 𝒮𝑒𝑔𝑎𝑙 𝒬𝒞𝑎𝑡 1-𝒞𝑜𝑚𝑝 𝒬𝒞𝑎𝑡∼(−)0 ∼(−)0 ∼(−)0

are all biequivalences. In the first two cases these are defined by “evalu-
ating at the 0th row” and in the last case this is defined by “forgetting
the markings.”
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(ii) There are also cosmological biequivalences nerve∶ 𝒬𝒞𝑎𝑡 ∼ 𝒞𝒮𝒮 and
nerve∶ 𝒬𝒞𝑎𝑡 ∼ 𝒮𝑒𝑔𝑎𝑙 defined by Joyal and Tierney [64].

(iii) The functor disc∶ 𝒞𝒮𝒮 ∼ 𝒮𝑒𝑔𝑎𝑙 defined by Bergner [14] that “dis-
cretizes” a complete Segal spaces also defines a cosmological biequiva-
lence.

(iv) Another cosmological biequivalence (−)♮∶ 𝒬𝒞𝑎𝑡 ∼ 1-𝒞𝑜𝑚𝑝 that gives
each quasi-category its “natural marking.”

In terminology justified by Proposition 10.2.1:

Definition 1.3.10. An ∞-cosmos 𝒦 is an ∞-cosmos of (∞, 1)-categories
just when the underlying quasi-category (−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡 is a cosmological
biequivalence.

Remark 1.3.11. The underlying quasi-category functor (−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡
carries the internal homs of a cartesian closed∞-cosmos𝒦 to the corresponding
functor spaces: for any ∞-categories 𝐴 and 𝐵 in 𝒦, we have

(𝐵𝐴)0 ≔ Fun(1, 𝐵𝐴) ≅ Fun(𝐴, 𝐵).

In the case where the ∞-cosmos 𝒦 is biequivalent to 𝒬𝒞𝑎𝑡, we see in Chapters
10 and 11 that this entails no essential loss of categorical information.

Cosmological biequivalences not only preserve equivalences but also reflect
and create them.

Lemma 1.3.12. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence. Then:

(i) A functor 𝑓∶ 𝐴 → 𝐵 between ∞-categories in 𝒦 is an equivalence if
and only if 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 is an equivalence in ℒ.

(ii) A pair of ∞-categories in 𝒦 are equivalent if and only if their images in
ℒ are equivalent.

Proof Lemma 1.3.2 implies that cosmological functors preserve equivalences
and thus also the existence of an equivalence between a pair of ∞-categories in
𝒦. To see that equivalences are also reflected, suppose 𝑓∶ 𝐴 → 𝐵 is a functor
in 𝒦 with the property that 𝐹𝑓∶ 𝐹𝐴 ∼ 𝐹𝐵 is an equivalence in ℒ. Now for any
∞-category 𝑋, simplicial functoriality provides a commutative diagram

Fun(𝑋, 𝐴) Fun(𝑋, 𝐵)

Fun(𝐹𝑋, 𝐹𝐴) Fun(𝐹𝑋, 𝐹𝐵)

𝑓∗

∼ ∼

∼𝐹𝑓∗



1.3 Cosmological Functors 43

so from the 2-of-3 property we conclude that 𝑓∗∶ Fun(𝑋, 𝐴) ∼ Fun(𝑋, 𝐵) is an
equivalence, proving that 𝑓 is an equivalence in 𝒦.

To see that equivalences are created, suppose now that 𝐴 and 𝐵 are ∞-
categories in 𝒦 equipped with an equivalence:

𝐹𝐴 𝐹𝐵

𝐹𝐴 𝐹𝐵 𝐹𝐴 𝐹𝐴𝕀 𝐹𝐵 𝐹𝐵𝕀

𝐹𝐴 𝐹𝐵

∼

̃𝑓

∼
𝑔̃

𝑔̃ ̃𝑓

𝛼̃

∼ ev0

∼ ev1

̃𝛽

̃𝑓𝑔̃

∼ ev0

∼ ev1

in ℒ. Since Fun(𝐴, 𝐵) ∼ Fun(𝐹𝐴, 𝐹𝐵) and Fun(𝐵, 𝐴) ∼ Fun(𝐹𝐵, 𝐹𝐴) are
equivalences of quasi-categories the induced functors of homotopy categories
h(Fun(𝐴, 𝐵)) ∼ h(Fun(𝐹𝐴, 𝐹𝐵)) and h(Fun(𝐵, 𝐴)) ∼ h(Fun(𝐹𝐵, 𝐹𝐴)) are
equivalences of categories, by Remark 1.1.24, and in particular essentially
surjective. So we may lift ̃𝑓 and ̃𝑔 to functors 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 in
h(Fun(𝐴, 𝐵)) and h(Fun(𝐵, 𝐴)), respectively, so that 𝐹𝑓 ≅ ̃𝑓 and 𝐹𝑔 ≅ ̃𝑔. The
commutative diagram of quasi-categories

Fun(𝐵, 𝐴) × Fun(𝐴, 𝐵) Fun(𝐴, 𝐴)

Fun(𝐹𝐵, 𝐹𝐴) × Fun(𝐹𝐴, 𝐹𝐵) Fun(𝐹𝐴, 𝐹𝐴)

∘

∼ ∼

∘

induces a commutative diagram between their homotopy categories. In particular,
by applying the composition bifunctor to the isomorphisms 𝐹𝑓 ≅ ̃𝑓 and 𝐹𝑔 ≅ ̃𝑔,
we see that

𝐹(id𝐴) = id𝐹𝐴 ≅ ̃𝑔 ∘ ̃𝑓 ≅ 𝐹𝑔 ∘ 𝐹𝑓 = 𝐹(𝑔 ∘ 𝑓)

in h(Fun(𝐴, 𝐴)). By fully faithfulness of h(Fun(𝐴, 𝐴)) ∼ h(Fun(𝐹𝐴, 𝐹𝐴)), this
isomorphism lifts to an isomorphism id𝐴 ≅ 𝑔 ∘𝑓 in h(Fun(𝐴, 𝐴)). By Corollary
1.1.16, this isomorphism can be represented by a homotopy coherent isomorph-
ism 𝕀 → Fun(𝐴, 𝐴), which internalizes to define a map 𝛼∶ 𝐴 → 𝐴𝕀 as required.
The construction of the homotopy coherent isomorphism 𝛽∶ 𝐵 → 𝐵𝕀 from 𝑓 ∘ 𝑔
to id𝐵 proceeds similarly.

The proof of the creation of equivalences in Lemma 1.3.12 is surprisingly
delicate, passing to the homotopy categories of the functor spaces to avoid
lifting and composing homotopy coherent isomorphisms; an argument along
those lines is also possible, and left to the reader as Exercise 1.3.ii. The next
section provides context for the argument just given by introducing the homotopy



44 ∞-Cosmoi and Their Homotopy 2-Categories

2-category of an ∞-cosmos. The reader is then invited to revisit the creation of
equivalences in Exercise 1.4.vi.

Exercises
Exercise 1.3.i. Prove that for any cosmological functor 𝐹∶ 𝒦 → ℒ and any
𝐴 ∈ 𝒦, the induced map 𝐹∶ 𝒦/𝐴 → ℒ/𝐹𝐴 defines a cosmological functor.

Exercise 1.3.ii. Sketch a proof that cosmological biequivalences create equiva-
lences between∞-categor ies without passing to homotopy categories, by lifting
and composing the homotopy coherent isomorphisms given as part of the data
of the hypothesized equivalences.

Exercise 1.3.iii. Suppose 𝐹∶ 𝒦 → ℒ, 𝐺∶ ℒ → ℳ, and 𝐻∶ ℳ → 𝒩 are
cosmological functors, and assume that 𝐺𝐹 and 𝐻𝐺 are cosmological biequiva-
lences. Show that 𝐹, 𝐺, 𝐻, and 𝐻𝐺𝐹 are cosmological biequivalences.

1.4 The Homotopy 2-Category

Small 1-categories define the objects of a strict 2-category22 𝒞𝑎𝑡 of categories,
functors, and natural transformations. Many basic categorical notions – those
defined in terms of categories, functors, and natural transformations – can be
defined internally to the 2-category 𝒞𝑎𝑡. This suggests a natural avenue for
generalization: reinterpreting these same definitions in a generic 2-category
using its objects in place of small categories, its 1-cells in place of functors, and
its 2-cells in place of natural transformations.

In Chapter 2, we develop a significant portion of the theory of ∞-categories
in any fixed ∞-cosmos following exactly this outline, working internally to a
2-category that we refer to as the homotopy 2-category that we associate to
any ∞-cosmos. The homotopy 2-category of an ∞-cosmos is a quotient of the
full ∞-cosmos, replacing each quasi-categorical functor space by its homotopy
category. Surprisingly, this rather destructive quotienting operation preserves
quite a lot of information. Indeed, essentially all of the development of the
22 Appendix B introduces 2-categories and 2-functors, reviewing the 2-category theory needed

here. Succinctly, in parallel with Digression 1.2.4, 2-categories (see Definition B.1.1) can be
understood equally as:

• “two-dimensional” categories, with objects; 1-cells, whose boundary are given by a pair of
objects; and 2-cells, whose boundary are given by a parallel pair of 1-cells between a pair of
objects – together with partially defined composition operations governed by this boundary data

• or as categories enriched over 𝒞𝑎𝑡.
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theory of ∞-categories in Part I takes place in the homotopy 2-category of an
∞-cosmos. This said, we caution the reader against becoming overly seduced by
homotopy 2-categories, which are more of a technical convenience for reducing
the complexity of our arguments than a fundamental notion of ∞-category
theory.

The homotopy 2-category for the ∞-cosmos of quasi-categories was first
introduced by Joyal in his work on the foundations of quasi-category theory
[63].

Definition 1.4.1 (homotopy 2-category). Let𝒦 be an∞-cosmos. Its homotopy
2-category is the 2-category 𝔥𝒦 whose

• objects are the the objects 𝐴, 𝐵 of 𝒦, i.e., the ∞-categories;
• 1-cells 𝑓∶ 𝐴 → 𝐵 are the 0-arrows in the functor space Fun(𝐴, 𝐵), i.e., the
∞-functors; and

• 2-cells 𝐴 𝐵
𝑓

𝑔
⇓𝛼 are homotopy classes of 1-simplices in Fun(𝐴, 𝐵),

which we call ∞-natural transformations.

Put another way 𝔥𝒦 is the 2-category with the same objects as 𝒦 and with
hom-categories defined by

hFun(𝐴, 𝐵) ≔ h(Fun(𝐴, 𝐵)),

that is, hFun(𝐴, 𝐵) is the homotopy category of the quasi-category Fun(𝐴, 𝐵).

The underlying category of a 2-category is defined by simply forgetting its
2-cells. Note that an ∞-cosmos 𝒦 and its homotopy 2-category 𝔥𝒦 share the
same underlying category 𝒦0 of ∞-categories and ∞-functors in 𝒦.

Digression 1.4.2 (change of base, §A.7). The homotopy category functor
preserves finite products, as of course does its right adjoint. It follows that the
adjunction of Proposition 1.1.11 induces a change-of-base adjunction

2-𝒞𝑎𝑡 𝑠𝒮𝑒𝑡-𝒞𝑎𝑡⊥

h∗

whose left and right adjoints change the enrichment by applying the homotopy
category functor or the nerve functor to the hom objects of the enriched category.
Here 2-𝒞𝑎𝑡 and 𝑠𝒮𝑒𝑡-𝒞𝑎𝑡 can each be understood as 2-categories – of enriched
categories, enriched functors, and enriched natural transformations – and both
change of base constructions define 2-functors (see Propositions A.7.3 and
A.7.5). Since the nerve embedding is fully faithful, 2-categories can be identified
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as a full subcategory comprised of those simplicial categories whose hom spaces
are nerves of categories.

The proof of Lemma 1.3.12 uses an observation worth highlighting:

Lemma 1.4.3.

(i) Every 2-cell 𝐴 𝐵
𝑓

𝑔
⇓𝛼 in the homotopy 2-category of an ∞-cosmos

is represented by a map of quasi-categories as below-left or equivalently
by a functor as below-right

𝟙 + 𝟙 𝐴 𝐵𝟚

𝟚 Fun(𝐴, 𝐵) 𝐵 × 𝐵

(𝑓,𝑔)
⌜𝛼⌝

(𝑔,𝑓) (𝑝1,𝑝0)
𝛼

↭

and two such maps represent the same 2-cell if and only if they are
homotopic as 1-simplices in Fun(𝐴, 𝐵).

(ii) Every invertible 2-cell 𝐴 𝐵
𝑓

𝑔
≅⇓𝛼 in the homotopy 2-category of

an ∞-cosmos is represented by a map of quasi-categories as below-left
or equivalently by a functor as below-right

𝟙 + 𝟙 𝐴 𝐵𝕀

𝕀 Fun(𝐴, 𝐵) 𝐵 × 𝐵

(𝑓,𝑔)

⌜𝛼⌝

(𝑔,𝑓) (𝑝1,𝑝0)
𝛼

↭

and two such maps represent the same invertible 2-cell if and only if
their common restrictions along 𝟚 ↪ 𝕀 are homotopic as 1-simplices in
Fun(𝐴, 𝐵).

The notion of homotopic 1-simplices referenced here is defined in Lemma
1.1.9. Since the 2-cells in the homotopy 2-category are referred to as ∞-natural
transformations, we refer to the invertible 2-cells in the homotopy 2-category as
∞-natural isomorphisms.

Proof The statement (i) records the definition of the 2-cells in the homotopy
2-category and the universal property (1.2.7) of the simplicial cotensor. For (ii),
a 2-cell in the homotopy 2-category is invertible if and only if it defines an
isomorphism in the appropriate hom-category hFun(𝐴, 𝐵). By Corollary 1.1.16
it follows that each invertible 2-cell 𝛼 is represented by a homotopy coherent
isomorphism 𝛼∶ 𝕀 → Fun(𝐴, 𝐵), which similarly internalizes to define a functor
⌜𝛼⌝∶ 𝐴 → 𝐵𝕀.
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An upshot of Digression 1.4.2 is that change of base is an operation that
applies to enriched functors as well as enriched categories, as can be directly
verified in the case of greatest interest.

Lemma 1.4.4. Any simplicial functor 𝐹∶ 𝒦 → ℒ between ∞-cosmoi induces a
2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ between their homotopy 2-categories.

Proof The action of the induced 2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ on objects and 1-
cells is given by the corresponding action of 𝐹∶ 𝒦 → ℒ; recall an ∞-cosmos
and its homotopy 2-category have the same underlying 1-category. Each 2-cell
in 𝔥𝒦 is represented by a 1-simplex in Fun(𝐴, 𝐵) which is mapped via

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵)𝐹

𝐴 𝐵 𝐹𝐴 𝐹𝐵
𝑓

𝑔

⇓𝛼

𝐹𝑓

𝐹𝑔

⇓𝐹𝛼

to a 1-simplex representing a 2-cell in 𝔥ℒ. Since the action 𝐹∶ Fun(𝐴, 𝐵) →
Fun(𝐹𝐴, 𝐹𝐵) on functor spaces defines a morphism of simplicial sets, it pre-
serves faces and degeneracies. In particular, homotopic 1-simplices in Fun(𝐴, 𝐵)
are carried to homotopic 1-simplices in Fun(𝐹𝐴, 𝐹𝐵) so the action on 2-cells
just described is well-defined. The 2-functoriality of these mappings follows
from the simplicial functoriality of the original mapping.

We now begin to relate the simplicially enriched structures of an∞-cosmos to
the 2-categorical structures in its homotopy 2-category by proving that homotopy
2-categories inherit products from their ∞-cosmoi that satisfy a 2-categori-
cal universal property. To illustrate, recall that the terminal ∞-category 1 ∈
𝒦 has the universal property Fun(𝑋, 1) ≅ 𝟙 for all 𝑋 ∈ 𝒦. Applying the
homotopy category functor we see that 1 ∈ 𝔥𝒦 has the universal property
hFun(𝑋, 1) ≅ 𝟙 for all 𝑋 ∈ 𝔥𝒦, which is expressed by saying that the ∞-
category 1 defines a 2-terminal object in the homotopy 2-category. This 2-
categorical universal property has both a 1-dimensional and a 2-dimensional
aspect. Since hFun(𝑋, 1) ≅ 𝟙 is a category with a single object, there exists
a unique morphism 𝑋 → 1 in 𝒦, and since hFun(𝑋, 1) ≅ 𝟙 has only a single
morphism, the only 2-cells in 𝔥𝒦 with codomain 1 are identities.

Proposition 1.4.5 (cartesian (closure)).

(i) The homotopy 2-category of any ∞-cosmos has 2-categorical products.
(ii) The homotopy 2-category of a cartesian closed ∞-cosmos is cartesian

closed as a 2-category.
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Proof While the functor h∶ 𝑠𝒮𝑒𝑡 → 𝒞𝑎𝑡 only preserves finite products, the
restricted functor h∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 preserves all products on account of the
simplified description of the homotopy category of a quasi-category given in
Lemma 1.1.12. Thus for any set 𝐼 and family of ∞-categories (𝐴𝑖)𝑖∈𝐼 in 𝒦, the
homotopy category functor carries the isomorphism of functor spaces to an
isomorphism of hom-categories

Fun(𝑋,∏𝑖∈𝐼 𝐴𝑖) ∏𝑖∈𝐼 Fun(𝑋, 𝐴𝑖)

hFun(𝑋,∏𝑖∈𝐼 𝐴𝑖) ∏𝑖∈𝐼 hFun(𝑋, 𝐴𝑖).

≃

h
≃

This proves that the homotopy 2-category 𝔥𝒦 has products whose universal
properties have both a 1- and 2-dimensional component, as described in the
empty case for terminal objects above.

If 𝒦 is a cartesian closed ∞-cosmos, then for any triple of ∞-categories
𝐴, 𝐵, 𝐶 ∈ 𝒦 there exist exponential objects 𝐶𝐴, 𝐶𝐵 ∈ 𝒦 characterized by
natural isomorphisms

Fun(𝐴 × 𝐵, 𝐶) ≅ Fun(𝐴, 𝐶𝐵) ≅ Fun(𝐵, 𝐶𝐴).

Passing to homotopy categories we have natural isomorphisms

hFun(𝐴 × 𝐵, 𝐶) ≅ hFun(𝐴, 𝐶𝐵) ≅ hFun(𝐵, 𝐶𝐴),

which demonstrates that 𝔥𝒦 is cartesian closed as a 2-category: functors 𝐴 ×
𝐵 → 𝐶 transpose to define functors 𝐴 → 𝐶𝐵 and 𝐵 → 𝐶𝐴, and natural
transformations transpose similarly.

There is a standard definition of isomorphism between two objects in any
1-category, preserved by any functor. Similarly, there is a standard definition of
equivalence between two objects in any 2-category, preserved by any 2-functor:

Definition 1.4.6 (equivalence). An equivalence in a 2-category is given by

• a pair of objects 𝐴 and 𝐵;
• a pair of 1-cells 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴; and
• a pair of invertible 2-cells

𝐴 𝐴 and 𝐵 𝐵
𝑔𝑓

≅⇓𝛼 ≅⇓𝛽

When 𝐴 and 𝐵 are equivalent, we write 𝐴 ≃ 𝐵 and refer to the 1-cells 𝑓 and 𝑔
as equivalences, denoted by “∼ .”
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In the case of the homotopy 2-category of an ∞-cosmos we have a competing
definition of equivalence from 1.2.1: namely a 1-cell 𝑓∶ 𝐴 ∼ 𝐵 that induces an
equivalence 𝑓∗∶ Fun(𝑋, 𝐴) ∼ Fun(𝑋, 𝐵) on functor spaces – or equivalently,
by Lemma 1.2.15, a homotopy equivalence defined relative to the interval 𝕀.
Crucially, all three notions of equivalence coincide:

Theorem 1.4.7 (equivalences are equivalences). In any ∞-cosmos 𝒦, the fol-
lowing are equivalent and characterize what it means for a functor 𝑓∶ 𝐴 → 𝐵
between ∞-categories to define an equivalence.

(i) For all 𝑋 ∈ 𝒦, the post-composition map 𝑓∗∶ Fun(𝑋, 𝐴) ∼ Fun(𝑋, 𝐵)
defines an equivalence of quasi-categories.

(ii) There exists a functor 𝑔∶ 𝐵 → 𝐴 and natural isomorphisms 𝛼∶ id𝐴 ≅
𝑔𝑓 and 𝛽∶ 𝑓𝑔 ≅ id𝐵 in the homotopy 2-category.

(iii) There exists a functor 𝑔∶ 𝐵 → 𝐴 and maps

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

∼ ev0

∼ ev1

𝛽

𝑓𝑔

∼ ev0

∼ ev1

in the ∞-cosmos in 𝒦.

As an illustrative comparison of 2-categorical and quasi-categorical tech-
niques, rather than appealing to Lemma 1.2.15 to prove (i)⇔(iii), we re-prove
it.

Proof For (i)⇒(ii), if the induced map 𝑓∗∶ Fun(𝑋, 𝐴) ∼ Fun(𝑋, 𝐵) defines an
equivalence of quasi-categories then the functor 𝑓∗∶ hFun(𝑋, 𝐴) ∼ hFun(𝑋, 𝐵)
defines an equivalence of categories, by Remark 1.1.24. In particular, the
equialence 𝑓∗∶ hFun(𝐵, 𝐴) ∼ hFun(𝐵, 𝐵) is essentially surjective so there
exists 𝑔 ∈ hFun(𝐵, 𝐴) and an isomorphism 𝛽∶ 𝑓𝑔 ≅ id𝐵 ∈ hFun(𝐵, 𝐵).
Now since 𝑓∗∶ hFun(𝐴, 𝐴) ∼ hFun(𝐴, 𝐵) is fully faithful, the isomorphism
𝛽𝑓∶ 𝑓𝑔𝑓 ≅ 𝑓 ∈ hFun(𝐴, 𝐵) can be lifted to define an isomorphism 𝛼−1∶ 𝑔𝑓 ≅
id𝐴 ∈ hFun(𝐴, 𝐴). This defines the data of a 2-categorical equivalence in Defi-
nition 1.4.6.

To see that (ii)⇒(iii) recall from Lemma 1.4.3 that the natural isomorphisms
𝛼∶ id𝐴 ≅ 𝑔𝑓 and 𝛽∶ 𝑓𝑔 ≅ id𝐵 in 𝔥𝒦 are represented by maps 𝛼∶ 𝐴 → 𝐴𝕀

and 𝛽∶ 𝐵 → 𝐵𝕀 in 𝒦 as in (1.2.16).
Finally, (iii)⇒(i) since Fun(𝑋, −) carries the data of (iii) to the data of an

equivalence of quasi-categories as in Definition 1.1.23.
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It is hard to overstate the importance of Theorem 1.4.7 for the work that follows.
The categorical constructions that we introduce for ∞-categories, ∞-functors,
and ∞-natural transformations are invariant under 2-categorical equivalence
in the homotopy 2-category and the universal properties we develop similarly
characterize 2-categorical equivalence classes of ∞-categories. Theorem 1.4.7
then asserts that such constructions are “homotopically correct”: both invariant
under equivalence in the∞-cosmos and precisely identifying equivalence classes
of objects.

The equivalence invariance of the functor space in the codomain variable is
axiomatic, but equivalence invariance in the domain variable is not.23 Nor is it
evident how this could be proven from either (i) or (iii) of Theorem 1.4.7. But
using (ii) and 2-categorical techniques, there is now a short proof.

Corollary 1.4.8. Equivalences of ∞-categories 𝐴′ ∼ 𝐴 and 𝐵 ∼ 𝐵′ induce
an equivalence of functor spaces Fun(𝐴, 𝐵) ∼ Fun(𝐴′, 𝐵′).

Proof The representable simplicial functors Fun(𝐴, −)∶ 𝒦 → 𝒬𝒞𝑎𝑡 and
Fun(−, 𝐵)∶ 𝒦op → 𝒬𝒞𝑎𝑡 induce 2-functors Fun(𝐴, −)∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡 and
Fun(−, 𝐵)∶ 𝔥𝒦op → 𝔥𝒬𝒞𝑎𝑡, which preserve the 2-categorical equivalences of
Definition 1.4.6. By Theorem 1.4.7 this is what we wanted to show.

There is also a standard 2-categorical notion of an isofibration, defined in
the statement of Proposition 1.4.9 and elaborated upon in Definition B.4.4. We
now show that any isofibration in an ∞-cosmos defines an isofibration in its
homotopy 2-category.

Proposition 1.4.9 (isofibrations are isofibrations). An isofibration 𝑝∶ 𝐸 ↠ 𝐵
in an ∞-cosmos 𝒦 also defines an isofibration in the homotopy 2-category 𝔥𝒦:
given any invertible 2-cell as displayed below-left abutting to 𝐵 with a specified
lift of one of its boundary 1-cells through 𝑝, there exists an invertible 2-cell
abutting to 𝐸 with this boundary 1-cell as displayed below-right that whiskers
with 𝑝 to the original 2-cell.

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

𝑝≅⇓𝛽 =

𝑒

̄𝑒

≅⇓𝛾

𝑝

Proof The universal property of the statement says that the functor

𝑝∗∶ hFun(𝑋, 𝐸) ↠ hFun(𝑋, 𝐵)
23 Lemma 1.3.2 does not apply since Fun(−,𝐵) is not cosmological.
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is an isofibration of categories in the sense defined in Proposition 1.2.11. By
axiom 1.2.1(ii), since 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration in 𝒦, the induced map
𝑝∗∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) is an isofibration of quasi-categories. So it suffices
to show that the functor h∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 carries isofibrations of quasi-categor-
ies to isofibrations of categories.

So let us now consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories.
By Corollary 1.1.16, every isomorphism 𝛽 in the homotopy category h𝐵 of the
quasi-category 𝐵 is represented by a simplicial map 𝛽∶ 𝕀 → 𝐵. By Definition
1.1.17, the lifting problem

𝟙 𝐸

𝕀 𝐵

𝑒

𝑝𝛾

𝛽

can be solved, and the map 𝛾∶ 𝕀 → 𝐸 so produced represents a lift of the
isomorphism from h𝐵 to an isomorphism in h𝐸 with domain 𝑒.

Convention 1.4.10 (on isofibrations in homotopy 2-categories). Since the
converse to Proposition 1.4.9 does not hold, there is a potential ambiguity when
using the term “isofibration” to refer to a map in the homotopy 2-category of an
∞-cosmos. We adopt the convention that when we declare a map in 𝔥𝒦 to be an
isofibration we always mean this is the stronger sense of defining an isofibration
in𝒦. This stronger condition gives us access to the 2-categorical lifting property
of Proposition 1.4.9 and also to homotopical properties axiomatized in Definition
1.2.1, which ensure that the strictly defined limits of 1.2.1(i) are automatically
equivalence invariant constructions (see §C.1 and Proposition 6.2.8).

We conclude this chapter with a final definition that can be extracted from the
homotopy 2-category of an ∞-cosmos. The 1- and 2-cells in the homotopy 2-
category from the terminal ∞-category 1 ∈ 𝒦 to a generic ∞-category 𝐴 ∈ 𝒦
define the objects and morphisms in the homotopy category of the ∞-category
𝐴.

Definition 1.4.11 (homotopy category of an ∞-category). The homotopy
category of an ∞-category 𝐴 in an ∞-cosmos 𝒦 is defined to be the homotopy
category of its underlying quasi-category, that is:

h𝐴 ≔ hFun(1, 𝐴) ≔ h(Fun(1, 𝐴)).

As we shall discover, homotopy categories generally inherit “derived” ana-
logues of structures present at the level of ∞-categories. An early example of
this appears in Proposition 2.1.7(ii).
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Exercises
Exercise 1.4.i.

(i) What is the homotopy 2-category of the ∞-cosmos 𝒞𝑎𝑡 of 1-categories?
(ii) Prove that the nerve defines a 2-functor 𝒞𝑎𝑡 ↪ 𝔥𝒬𝒞𝑎𝑡 that is locally

fully faithful.

Exercise 1.4.ii. Demonstrate that the homotopy 2-category of the dual cosmos
𝒦co of an ∞-cosmos 𝒦 is the co-dual of the homotopy 2-category 𝔥𝒦 – in
symbols 𝔥(𝒦co) ≅ (𝔥𝒦)co – with the domains and codomains of 2-cells but not
1-cells reversed (see Definition B.1.6).

Exercise 1.4.iii. Consider a natural isomorphism 𝐴 𝐵
𝑓

𝑔
≅⇓𝛼 between a

parallel pair of functors in an ∞-cosmos. Give two proofs that if either 𝑓 or 𝑔 is
an equivalence then both functors are, either by arguing entirely in the homotopy
2-category or by appealing to Lemma 1.4.3.

Exercise 1.4.iv. Extend Lemma 1.2.27 to show that the following four con-
ditions are equivalent, characterizing the discrete objects 𝐸 in an ∞-cosmos
𝒦:

(i) 𝐸 is a discrete object in the homotopy 2-category 𝔥𝒦, that is, every 2-cell
with codomain 𝐸 is invertible.

(ii) For each 𝑋 ∈ 𝒦, the hom-category hFun(𝑋, 𝐸) is a groupoid.
(iii) For each 𝑋 ∈ 𝒦, the mapping quasi-category Fun(𝑋, 𝐸) is a Kan com-

plex.
(iv) The isofibration 𝐸𝕀 ↠ 𝐸𝟚, induced by the inclusion of simplicial sets

𝟚 ↪ 𝕀, is a trivial fibration.

Exercise 1.4.v (10.3.1). Extend Lemma 1.4.4 to show that if 𝐹∶ 𝒦 → ℒ is a
cosmological biequivalence then𝐹∶ 𝔥𝒦 → 𝔥ℒ is a 2-categorical biequivalence,
a 2-functor that is essentially surjective on objects up to equivalence that locally
defines an equivalence of hom-categories.

Exercise 1.4.vi. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence and let
𝐴, 𝐵 ∈ 𝒦. Re-prove part of the statement of Lemma 1.3.12: that if 𝐹𝐴 ≃ 𝐹𝐵 in
ℒ then 𝐴 ≃ 𝐵 in 𝒦.

Exercise 1.4.vii (3.6.2). Let 𝐵 be an ∞-category in the ∞-cosmos 𝒦 and let
𝔥𝒦/𝐵 denote the 2-category whose

• objects are isofibrations 𝐸 ↠ 𝐵 in 𝒦 with codomain 𝐵;
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• 1-cells are 1-cells in 𝔥𝒦 over 𝐵; and

𝐸 𝐹

𝐵

• 2-cells are 2-cells 𝛼 in 𝔥𝒦

𝐸 𝐹

𝐵
𝑝

𝑓

𝑔
⇓𝛼

𝑞

that lie over 𝐵 in the sense that 𝑞𝛼 = id𝑝.

Argue that the homotopy 2-category 𝔥(𝒦/𝐵) of the sliced ∞-cosmos has the
same underlying 1-category but different 2-cells. How do these compare with
the 2-cells of 𝔥𝒦/𝐵?
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Adjunctions, Limits, and Colimits I

Heuristically,∞-categories generalize ordinary 1-categories by adding in higher
dimensional morphisms and weakening the composition law. One could imagine
“∞-tizing” other types of categorical structure similarly, by adding in higher
dimension and weakening properties. The naïve hope is that proofs establishing
the theory of 1-categories might similarly generalize to give proofs for ∞-
categories, just by adding a prefix “∞-” everywhere. In this chapter, we make
this dream a reality – at least for a library of basic propositions concerning
equivalences, adjunctions, limits, and colimits and the interrelationships between
these notions.

Recall that categories, functors, and natural transformations assemble into a
2-category 𝒞𝑎𝑡. Similarly, the ∞-categories, ∞-functors, and ∞-natural trans-
formations in any ∞-cosmos assemble into a 2-category, namely the homotopy
2-category of the ∞-cosmos, introduced in §1.4. In fact, 𝒞𝑎𝑡 can be regarded as
a special case of a homotopy 2-category (by Exercise 1.4.i). In this chapter, we
use 2-categorical techniques to define adjunctions between ∞-categories and
limits and colimits of diagrams valued in an ∞-category and prove that these
notions interact in the expected ways. In the homotopy 2-category of categories,
this recovers classical results from 1-category theory, and in some cases even
specializes to the standard proofs. As these arguments are equally valid in any
homotopy 2-category, our proofs also establish the desired generalizations by
simply appending the prefix “∞-.”

In §2.1, we define an adjunction between ∞-categories to be an adjunction in
the homotopy 2-category of ∞-categories, ∞-functors, and ∞-natural transfor-
mations. While it takes some work to justify the moral correctness of this simple
definition, it has the great advantage that proofs of a number of results concern-
ing the calculus of adjunctions and equivalences can be taken “off the shelf”
in the sense that anyone who is sufficiently well-acquainted with 2-categories
might know them already. In §2.2, we specialize the theory of adjunctions be-

54
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tween ∞-categories to define and study initial and terminal elements inside an
∞-category. This section also serves as a warmup for the more subtle general
theory of limits and colimits of diagrams valued in an ∞-category, which is the
subject of §2.3. Finally, in §2.4, we study the interactions between these notions,
proving that right adjoints preserve limits and left adjoints preserve colimits.

Missing from this discussion is an account of the universal properties associ-
ated to the unit of an adjunction or to a limit cone. These will be incorporated
when we return to these topics in Chapter 4 after introducing an appropriate
“hom ∞-category” with which to state them.

2.1 Adjunctions and Equivalences

In §1.4, we encounter the definition of an equivalence between a pair of objects
in a 2-category. In the case where the ambient 2-category is the homotopy
2-category of an ∞-cosmos, Theorem 1.4.7 observes that the 2-categorical
notion of equivalence precisely recaptures the notion of equivalence between∞-
categories in the full ∞-cosmos. In each of the examples of ∞-cosmoi we have
considered, the representably defined equivalences in the ∞-cosmos coincide
with the standard notion of equivalences between ∞-categories as presented
in that particular model.1 Thus, the 2-categorical notion of equivalence is the
“correct” notion of equivalence between ∞-categories.

Similarly, there is a standard definition of an adjunction between a pair of
objects in a 2-category, which, when interpreted in the homotopy 2-category
of ∞-categories, functors, and natural transformations in an ∞-cosmos, will
define the correct notion of adjunction between ∞-categories.

Definition 2.1.1 (adjunction). An adjunction between ∞-categories is com-
prised of:

• a pair of ∞-categories 𝐴 and 𝐵;
• a pair of ∞-functors 𝑢∶ 𝐴 → 𝐵 and 𝑓∶ 𝐵 → 𝐴; and
• a pair of ∞-natural transformations 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and 𝜖∶ 𝑓𝑢 ⇒ id𝐴, called

the unit and counit respectively,
1 For instance, as outlined in Digression 1.2.13, the equivalences in the ∞-cosmoi of Example

1.2.24 recapture the weak equivalences between fibrant–cofibrant objects in the usual model
structure.
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so that the triangle equalities hold:2

𝐵 𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴
⇓𝜖 𝑓 ⇓𝜂 = =

𝑓
⇓𝜂 ⇓𝜖

𝑓 = = 𝑓𝑓ᵆ
ᵆ ᵆ ᵆ ᵆ

The functor 𝑓 is called the left adjoint and 𝑢 is called the right adjoint, a
relationship that is denoted symbolically in text by writing 𝑓 ⊣ 𝑢 or in a
displayed diagram such as3

𝐴 𝐵
ᵆ
⊥
𝑓

We typically drop the prefix “∞” from the functors and natural transforma-
tions between ∞-categories.

Digression 2.1.2 (justifying the 2-categorical definition of an adjunction). We
offer a few words of justification for those who find Definition 2.1.1 implausible
– perhaps too simple to be trusted. Joyal was the first to propose using the
standard 2-categorical definition to define an adjunction between ∞-categories,
defining an adjunction between quasi-categories to be an adjunction in the
homotopy 2-category 𝔥𝒬𝒞𝑎𝑡 in the preface to [63]. However, this definition was
not widely adopted, with most practitioners instead using Lurie’s definition of
adjunction between quasi-categories [78, §5.2], which takes a quite different
form. In §F.5, we prove that in the ∞-cosmos of quasi-categories, Joyal’s 2-
categorical definition of adjunction precisely recovers Lurie’s. As explained in
Part III, each of the models of (∞, 1)-categories described in Example 1.2.24
“has the same category theory,” so Definition 2.1.1 agrees with the community
consensus notion of adjunction between (∞, 1)-categories.

In the ∞-cosmoi whose objects model (∞, 𝑛)- or (∞,∞)-categories, the ad-
junctions defined in the homotopy 2-category are the “pseudo-style” adjunctions.
While these are not the most general adjunctions that might be considered –
for instance, one might have the triangle equality relations satisfied only up to
coherent noninvertible 3-cells – they are an important class of adjunctions. One
reason for the relevance of Definition 2.1.1 in all ∞-cosmoi is its relationships
to the equivalences, which Theorem 1.4.7 establishes are morally “correct,” and
to the notions of limits and colimits to be introduced.
2 The left-hand equality of pasting diagrams asserts the composition relation ᵆ𝜖 ⋅ 𝜂ᵆ = id𝑢 in the

hom-category hFun(𝐴,𝐵), while the right-hand equality asserts that 𝜖𝑓 ⋅ 𝑓𝜂 = id𝑓 in
hFun(𝐵,𝐴). The calculus of pasting diagrams is surveyed in §B.1.

3 Some authors contort adjunction diagrams so that the left adjoint is always oriented in a
particular direction; we instead use the turnstile symbol “⊥” to indicate which adjoint is the left
adjoint.
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Finally, a reasonable objection is that Definition 2.1.1 appears too “low di-
mensional,” comprised of data found entirely in the homotopy 2-category and
ignoring the higher dimensional morphisms in an∞-cosmos. In fact, any adjunc-
tion between∞-categories extends to a homotopy coherent adjunction involving
data in all dimensions, and moreover such extensions are homotopically unique
[109].

The definition of an adjunction given in Definition 2.1.1 is “equational” in
character: stated in terms of the objects, 1-cells, and 2-cells of a 2-category and
their composites. Immediately:

Lemma 2.1.3. An adjunction in a 2-category is preserved by any 2-functor.

Example 2.1.4 (adjunctions between 1-categories). Via the nerve embedding
𝒞𝑎𝑡 ↪ 𝔥𝒬𝒞𝑎𝑡, any adjunction between 1-categories induces an adjunction
between their nerves regarded as quasi-categories.

Example 2.1.5 (adjunctions between topological categories). Cordier’s homo-
topy coherent nerve [29, 30] defines a 2-functor 𝔑∶ 𝒦𝑎𝑛-𝒞𝑎𝑡 → 𝔥𝒬𝒞𝑎𝑡 from
the 2-category of Kan complex enriched categories, simplicially enriched func-
tors, and simplicial natural transformations, to the homotopy 2-category 𝔥𝒬𝒞𝑎𝑡.
In this way, topologically enriched adjunctions define adjunctions between
quasi-categories.

Example 2.1.6 (Quillen adjunctions). Topologically enriched adjunctions are
relatively rare. More prevalent are “up-to-homotopy” topologically enriched
adjunctions, such as those presented by Quillen adjunctions between (simplicial)
model categories. These also define adjunctions between quasi-categories (see
Mazel-Gee [85] or [108, §6.2]).

These examples define adjunctions between quasi-categories, but Lemma
2.1.3 applies to the 2-functors underlying the cosmological functors of Example
1.3.9 to transfer adjunctions defined in one model of (∞, 1)-categories to ad-
junctions defined in each of the other models. The preservation of adjunctions
by 2-functors, such as those given by Lemma 1.4.4, also proves:

Proposition 2.1.7. Given an adjunction 𝐴 𝐵
ᵆ
⊥
𝑓

between ∞-categories:

(i) for any ∞-category 𝑋,

Fun(𝑋, 𝐴) Fun(𝑋, 𝐵)
ᵆ∗
⊥
𝑓∗

defines an adjunction between quasi-categories;
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(ii) for any ∞-category 𝑋,

hFun(𝑋, 𝐴) hFun(𝑋, 𝐵)
ᵆ∗
⊥
𝑓∗

defines an adjunction between categories;
(iii) for any simplicial set 𝑈,

𝐴𝑈 𝐵𝑈

ᵆ𝑈
⊥
𝑓𝑈

defines an adjunction between ∞-categories; and
(iv) if the ambient ∞-cosmos is cartesian closed, then for any ∞-category

𝐶,

𝐴𝐶 𝐵𝐶

ᵆ𝐶
⊥
𝑓𝐶

defines an adjunction between ∞-categories.

For instance, taking 𝑋 = 1 in (ii) yields a “derived” adjunction between the
homotopy categories of the ∞-categories 𝐴 and 𝐵 (see Definition 1.4.11):

h𝐴 h𝐵
ᵆ∗
⊥
𝑓∗

Proof Any adjunction 𝑓 ⊣ 𝑢 in the homotopy 2-category 𝔥𝒦 is preserved by
each of the 2-functors Fun(𝑋, −)∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡, hFun(𝑋, −)∶ 𝔥𝒦 → 𝒞𝑎𝑡,
(−)𝑈∶ 𝔥𝒦 → 𝔥𝒦, and (−)𝐶∶ 𝔥𝒦 → 𝔥𝒦.

Remark 2.1.8. There are contravariant versions of each of the adjunction preser-
vation results of Proposition 2.1.7, the first of which we explain in detail (see
Exercise 2.1.i for further discussion). Fixing the codomain variable of the functor
space at any ∞-category 𝐶 ∈ 𝒦 defines a 2-functor

Fun(−, 𝐶)∶ 𝔥𝒦op 𝔥𝒬𝒞𝑎𝑡

that is contravariant on 1-cells and covariant on 2-cells.4 Such 2-functors pre-
serve adjunctions, but exchange left and right adjoints: for instance, given 𝑓 ⊣ 𝑢
4 On a 2-category, the superscript “op” is used to signal that the 1-cells should be reversed but not

the 2-cells, the superscript “co” is used to signal that the 2-cells should be reversed but not the
1-cells, and the superscript “coop” is used to signal that both the 1- and 2-cells should be
reversed (see Definition B.1.6).
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in 𝒦, we obtain an adjunction

Fun(𝐴, 𝐶) Fun(𝐵, 𝐶)
𝑓∗
⊥
ᵆ∗

between the functor spaces.

The next five results have standard proofs that can be taken “off the shelf” by
querying any 2-category theorist who may happen to be standing nearby. The
only novelty is the observation that these standard arguments can be applied to
the theory of adjunctions between ∞-categories.

Proposition 2.1.9. Adjunctions compose: given adjoint functors

𝐶 𝐵 𝐴 ⇝ 𝐶 𝐴
𝑓′

⊥
𝑓

⊥
ᵆ′ ᵆ

𝑓𝑓′

⊥
ᵆ′ᵆ

the composite functors are adjoint.

Proof Writing 𝜂∶ id𝐵 ⇒ 𝑢𝑓, 𝜖∶ 𝑓𝑢 ⇒ id𝐴, 𝜂′∶ id𝐶 ⇒ 𝑢′𝑓′, and 𝜖′∶ 𝑓′𝑢′ ⇒
id𝐵 for the respective units and counits, the pasting diagrams

𝐶 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴

𝑓′ ⇓𝜂′ ⇓𝜖′
𝑓′

𝑓
⇓𝜂

ᵆ′

and

ᵆ′

⇓𝜖
𝑓

ᵆ
ᵆ

define the unit and counit of 𝑓𝑓′ ⊣ 𝑢′𝑢 so that the triangle equalities hold:

𝐶 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴

𝐶 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴

𝑓′ ⇓𝜂′ ⇓𝜖′
𝑓′

𝑓′𝑓′ =

𝑓
⇓𝜂

ᵆ′

⇓𝜖
𝑓

=
𝑓𝑓 =ᵆ

⇓𝜖′𝑓
′

⇓𝜂′
ᵆ′

⇓𝜖 𝑓 ⇓𝜂

ᵆ′

=
ᵆ′ ᵆ′=

ᵆ
ᵆ ᵆ ᵆ=
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An adjoint to a given functor is unique up to natural isomorphism:

Proposition 2.1.10 (uniqueness of adjoints).

(i) If 𝑓 ⊣ 𝑢 and 𝑓′ ⊣ 𝑢, then 𝑓 ≅ 𝑓′.
(ii) Conversely, if 𝑓 ⊣ 𝑢 and 𝑓 ≅ 𝑓′, then 𝑓′ ⊣ 𝑢.

Proof Writing 𝜂∶ id𝐵 ⇒ 𝑢𝑓, 𝜖∶ 𝑓𝑢 ⇒ id𝐴, 𝜂′∶ id𝐵 ⇒ 𝑢𝑓′, and 𝜖′∶ 𝑓′𝑢 ⇒
id𝐴 for the respective units and counits, the pasting diagrams

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴
𝑓′

⇓𝜂′
𝑓

𝑓
⇓𝜂

𝑓′
ᵆ ⇓𝜖 ᵆ ⇓𝜖′

define 2-cells 𝑓 ⇒ 𝑓′ and 𝑓′ ⇒ 𝑓. The composites 𝑓 ⇒ 𝑓′ ⇒ 𝑓 and 𝑓′ ⇒
𝑓 ⇒ 𝑓′ are computed by pasting these diagrams together horizontally on one
side or on the other. Applying the triangle equalities for the adjunctions 𝑓 ⊣ 𝑢
and 𝑓′ ⊣ 𝑢 both composites are easily seen to be identities. Hence 𝑓 ≅ 𝑓′ as
functors from 𝐵 to 𝐴.

Part (ii) is left as Exercise 2.1.ii.

The following result weakens the hypotheses of Definition 2.1.1.

Lemma 2.1.11 (minimal adjunction data). A pair of functors 𝑓∶ 𝐵 → 𝐴 and
𝑢∶ 𝐴 → 𝐵 form an adjoint pair 𝑓 ⊣ 𝑢 if and only if there exist natural
transformations id𝐵 ⇒ 𝑢𝑓 and𝑓𝑢 ⇒ id𝐴 so that the triangle equality composites
𝑓 ⇒ 𝑓𝑢𝑓 ⇒ 𝑓 and 𝑢 ⇒ 𝑢𝑓𝑢 ⇒ 𝑢 are both invertible.

Proof The unit and counit of an adjunction certainly satisfy these hypotheses.
For the converse, consider natural transformations 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and 𝜖′∶ 𝑓𝑢 ⇒
id𝐴 so that the triangle equality composites

𝜙 ≔ 𝑓 𝑓𝑢𝑓 𝑓 𝜓 ≔ 𝑢 𝑢𝑓𝑢 𝑢
𝑓𝜂 𝜖′𝑓 𝜂ᵆ ᵆ𝜖′

are isomorphisms. We construct an adjunction 𝑓 ⊣ 𝑢with unit 𝜂 by modifying 𝜖′

to form the counit 𝜖.5 To explain the idea of the construction, note that for a fixed
pair of generalized elements 𝑏∶ 𝑋 → 𝐵 and 𝑎∶ 𝑋 → 𝐴, pasting with 𝜂 and
5 By the co-dual of this construction, we could alternatively take 𝜖′ to be the counit at the cost of

modifying 𝜂 to form the unit (see Exercise 2.1.iii).
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with 𝜖′ defines functions between the displayed sets of natural transformations:

⎧
⎨
⎩

𝑋 𝐵

𝐴

𝑏

𝑎
⇓

ᵆ

⎫
⎬
⎭

⎧

⎨
⎩

𝐵

𝑋 𝐴

𝑓𝑏

𝑎

⇓

⎫

⎬
⎭

⎧
⎨
⎩

𝑋 𝐵

𝐴

𝑏

𝑎
⇓

ᵆ

⎫
⎬
⎭

⎧

⎨
⎩

𝐵

𝑋 𝐴

𝑓𝑏

𝑎

⇓

⎫

⎬
⎭

𝜖′⋅𝑓(−)

ᵆ(−)⋅𝜂

𝜓⋅−

≅

−⋅𝜙

≅

𝜖′⋅𝑓(−)

From the hypothesis that the triangle equality composites are isomorphisms,
two of these functions are invertible, and then by the 2-of-6 property for isomor-
phisms all six maps are bijections.

Define the “corrected” counit to be the composite:

𝜖 ≔
𝐵

𝐴 𝐴
𝑓

𝑓

≅⇓𝜙−1
ᵆ

⇓𝜖′

so that one of the triangle equality composites reduces to the identity:

𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴
𝑓

⇓𝜂 ⇓𝜖
𝑓

𝑓
⇓𝜂

𝑓

𝑓

≅⇓𝜙−1 = 𝑓𝑓ᵆ = ᵆ ⇓𝜖′ =

Now from the pasting equality

𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴

𝑓 ⇓𝜂
𝑓

𝑓

≅⇓𝜙−1 ⇓𝜂 = 𝑓 ⇓𝜂ᵆ
⇓𝜖′ ᵆ ⇓𝜖′ ᵆ

ᵆ
⇓𝜖′ ᵆ

we see that (𝑢𝜖 ⋅ 𝜂𝑢) ⋅ 𝜓 = 𝜓. Since 𝜓 is invertible, we may cancel to conclude
that 𝑢𝜖 ⋅ 𝜂𝑢 = idᵆ.

A standard 2-categorical result is that any equivalence in a 2-category can be
promoted to an equivalence that also defines an adjunction:
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Proposition 2.1.12 (adjoint equivalences). Any equivalence can be promoted
to an adjoint equivalence by modifying one of the 2-cells. That is, the invertible
2-cells in an equivalence can be chosen so as to satisfy the triangle equalities.
Hence, if 𝑓 and 𝑔 are inverse equivalences then 𝑓 ⊣ 𝑔 and 𝑔 ⊣ 𝑓.

Proof Consider an equivalence comprised of functors 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 →
𝐴 and invertible 2-cells

𝐴 𝐴 and 𝐵 𝐵
𝑔𝑓

≅⇓𝛼

𝑓𝑔

≅⇓𝛽

Since 𝛼 and 𝛽 are both invertible, the triangle equality composites are as well,
and the construction of Lemma 2.1.11 applies.

One use of Proposition 2.1.12 is to show that adjunctions are equivalence
invariant:

Proposition 2.1.13. A functor 𝑢∶ 𝐴 → 𝐵 between ∞-categories admits a
left adjoint if and only if, for any pair of equivalent ∞-categories 𝐴′ ≃ 𝐴 and
𝐵′ ≃ 𝐵, the equivalent functor 𝑢′∶ 𝐴′ → 𝐵′ admits a left adjoint.

As we shall discover, all of ∞-category theory is equivalence invariant in this
way.

Proof If 𝑢∶ 𝐴 → 𝐵 admits a left adjoint then by composing 𝑓 ⊣ 𝑢 with the
adjoint equivalences 𝐴′ ≃ 𝐴 and 𝐵 ≃ 𝐵′ we obtain an equivalent adjunction:

𝐴′ 𝐴 𝐵 𝐵′∼⊥
ᵆ
⊥

∼

∼⊥
𝑓 ∼

Conversely, if the equivalent functor 𝑢′∶ 𝐴′ ∼ 𝐴 ᵆ 𝐵 ∼ 𝐵′ admits a left
adjoint 𝑓′ then again we obtain a composite adjunction:

𝐴 𝐴′ 𝐴 𝐵 𝐵′ 𝐵

∼

⊥

∼

∼

ᵆ

⊥

∼

𝑓′

∼

⊥
∼

whose right adjoint is naturally isomorphic to the original functor 𝑢. By Propo-
sition 2.1.10 the displayed left adjoint is then a left adjoint to 𝑢.

For later use, we close with an example of an abstractly defined adjunction
that can be constructed for any ∞-category in any ∞-cosmos via the results
proven in this section.
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Lemma 2.1.14. For any ∞-category 𝐴, the “composition” functor

𝐴𝟚 ×
𝐴
𝐴𝟚 𝐴𝟚∘

(−,iddom(−))

⊥

(idcod(−),−)
⊥

(2.1.15)

admits left and right adjoints, which extend an arrow into a composable pair by
pairing it with the identities at its domain or its codomain, respectively.

Proof There is a dual adjunction in 𝚫 ⊂ 𝒞𝑎𝑡 whose functors we describe
using notation for simplicial operators introduced in 1.1.1:

𝟛 𝟚 ⇝ 𝐴𝟛 𝐴𝟚
𝜍0

⊤

𝜍1
⊤
𝛿1 𝐴𝛿1

𝐴𝜍0

⊥

𝐴𝜍1
⊥

For any ∞-category 𝐴 in an ∞-cosmos 𝒦, Exercise 2.1.i describes a 2-functor
𝐴(−)∶ 𝒞𝑎𝑡op → 𝔥𝒦 carrying the adjoint triple displayed above-left to the one
displayed above-right.

Now we claim there is a trivial fibration𝐴𝟛 ∼ 𝐴𝟚×𝐴𝐴𝟚 constructed as follows.
The pushout diagram of simplicial sets displayed below-left is carried by the
simplicial cotensor 𝐴(−)∶ 𝑠𝒮𝑒𝑡op → 𝒦 to a pullback diagram of ∞-categories
below-right; since the legs of the pushout square are monomorphisms, the legs
of the pullback square are isofibrations by 1.2.1(ii):

Λ1[2] 𝟚 𝐴Λ1[2] 𝐴𝟚

𝟚 𝟙 𝐴𝟚 𝐴

⌟
ev0

𝛿0

𝛿1
⌟

ev1

By Lemma 1.2.14, the cotensor of the inner horn inclusion Λ1[2] ↪ Δ[2] ≅ 𝟛
with the ∞-category 𝐴 defines a trivial fibration 𝑞∶ 𝐴𝟛 ∼ 𝐴Λ1[2] ≅ 𝐴𝟚 ×𝐴 𝐴𝟚.
By Lemma 1.2.18, the trivial fibration 𝑞∶ 𝐴𝟛 ∼ 𝐴𝟚 ×𝐴 𝐴𝟚 admits a section 𝑠,
which defines an equivalence inverse. By Proposition 2.1.12, these functors are
both left and right adjoints. The desired adjoint triple may then be constructed
as the composite adjunction:

𝐴𝟚 ×
𝐴
𝐴𝟚 𝐴𝟛 𝐴𝟚𝑠

𝑞

⊥

𝑞
⊥ 𝐴𝛿1

𝐴𝜍0

⊥

𝐴𝜍1
⊥
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Note that the adjoint functors of (2.1.15) commute with the “endpoint evalua-
tion” functors to 𝐴 × 𝐴. In fact, the units and counits can similarly be fibered
over 𝐴 × 𝐴 (see Example 3.6.13).

Exercises
Exercise 2.1.i. The aim of this exercise is to spell out the most subtle of the
dual adjunction-preservation results discussed in Remark 2.1.8.

(i) Let 𝐴 be an ∞-category is an ∞-cosmos 𝒦. Show that the simplicial
cotensor restricts to define a 2-functor 𝐴(−)∶ 𝔥𝒬𝒞𝑎𝑡op → 𝔥𝒦.

(ii) Argue that the 2-functor of (i) restricts further along the nerve embedding
to define a 2-functor 𝐴(−)∶ 𝒞𝑎𝑡op → 𝔥𝒦.

(iii) Conclude that for any adjunction between 1-categories as below-left
there is an induced adjunction between ∞-categories as below-right:

𝐼 𝐽
ᵆ
⊥
𝑓

⇝ 𝐴𝐼 𝐴𝐽
𝑓∗
⊥
ᵆ∗

Exercise 2.1.ii. Prove Proposition 2.1.10(ii).

Exercise 2.1.iii. Dualize the proof of Lemma 2.1.11 so that it applies in the
context of Proposition 2.1.12 to show that any equivalence can be promoted
into an adjoint equivalence in which the counit is part of the originally specified
data.

Exercise 2.1.iv. Prove that an adjoint equivalence between ∞-categories de-
scends to an adjoint equivalence between their homotopy categories.

2.2 Initial and Terminal Elements

Employing the tactic used in Definition 1.4.11 to define the homotopy category
of an ∞-category, we use the terminal ∞-category 1 to probe inside an ∞-
category 𝐴. An object 𝑎 in the homotopy category h𝐴 is defined to be a map of
∞-categories 𝑎∶ 1 → 𝐴. To avoid the proliferation of the term “objects,” and in
deference to Lawvere’s notion of (generalized) elements [74], we refer to maps
𝑎∶ 1 → 𝐴 as elements6 of the ∞-category 𝐴 henceforth. This terminology
will help us keep track of the “category level” under discussion: elements 𝑎
6 A generalized element of 𝐴 is a functor 𝑓∶ 𝑋 → 𝐴. By the Yoneda lemma, an ∞-category is

determined by its generalized elements.
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live inside ∞-categories 𝐴, which are the objects of ∞-cosmoi 𝒦 – which
themselves define “infinite-dimensional categories,” albeit of a different sort.

Definition 2.2.1 (initial/terminal element). An initial element in an ∞-cate-
gory 𝐴 is a left adjoint to the unique functor !∶ 𝐴 → 1, as displayed below-left,
while a terminal element in an ∞-category 𝐴 is a right adjoint, as displayed
below-right.

1 𝐴 1 𝐴
𝑖

⊥
! 𝑡

⊥
!

Let us unpack the definition of an initial element; dual remarks apply to
terminal elements.

Lemma 2.2.2 (minimal data). To define an initial element in an ∞-category 𝐴,
it suffices to specify

• an element 𝑖∶ 1 → 𝐴 and

• a natural transformation
1

𝐴 𝐴

𝑖
⇓𝜖

! from the constant functor at 𝑖 to

the identity functor

so that the component 𝜖𝑖∶ 𝑖 ⇒ 𝑖, an arrow from 𝑖 to 𝑖 in h𝐴, is invertible.

Proof Proposition 1.4.5, whose proof starts in the paragraph before its state-
ment, demonstrates that the ∞-category 1 ∈ 𝒦 is 2-terminal in the homotopy
2-category 𝔥𝒦. The 1-dimensional aspect of this universal property implies
that any element 𝑖∶ 1 → 𝐴 defines a section of the unique map !∶ 𝐴 → 1,
while the 2-dimensional aspect asserts that there exist no nonidentity 2-cells
with codomain 1. In particular, the unit of the adjunction 𝑖 ⊣ ! is necessarily
an identity and one of the triangle equalities comes for free. What remains of
Definition 2.1.1 in this setting is the data of a counit natural transformation
𝜖∶ 𝑖! ⇒ id𝐴 together with the condition that its component 𝜖𝑖 = id𝑖. But in
fact we can prove that this natural transformation must be the identity from the
weaker and more natural assumption that 𝜖𝑖∶ 𝑖 ≅ 𝑖 is invertible.

To see this consider, the horizontal composite

1 1

1 𝐴 𝐴 𝐴

𝑖
⇓𝜖

𝑖
⇓𝜖𝑖

! ! ↭
𝑖!𝑖!𝑖 𝑖!𝑖

𝑖!𝑖 𝑖

𝜖𝑖!𝑖

𝑖!𝜖𝑖 𝜖𝑖

𝜖𝑖
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By naturality of whiskering,7 we can evaluate this composite as a vertical
composite in two ways. Since 1 is 2-terminal, the whiskered cell !𝜖 = id!,
so the composition relation reduces to 𝜖𝑖 ⋅ 𝜖𝑖 = 𝜖𝑖. Thus 𝜖𝑖 is an idempotent
isomorphism, and hence, by cancelation, an identity.

Put more concisely, an initial element defines a left adjoint right inverse to
the functor !∶ 𝐴 ↠ 1, while a terminal element defines a right adjoint right
inverse (see §B.4).

Lemma 2.2.3 (uniqueness). Any two initial elements in an ∞-category 𝐴 are
isomorphic in h𝐴 and any element of h𝐴 that is isomorphic to an initial element
is initial.

Proof By Proposition 2.1.10, any two left adjoints 𝑖 and 𝑖′ to the functor
!∶ 𝐴 → 1 are naturally isomorphic, and any 𝑎∶ 1 → 𝐴 that is isomorphic to a
left adjoint to !∶ 𝐴 → 1 is itself a left adjoint. A natural isomorphism between
a pair of functors 𝑖, 𝑖′∶ 1 → 𝐴 gives exactly the data of an isomorphism 𝑖 ≅ 𝑖′

between the corresponding elements of the homotopy category h𝐴.

Remark 2.2.4. Applying the 2-functor Fun(𝑋, −)∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡 to an initial
element 𝑖∶ 1 → 𝐴 of an ∞-category 𝐴 ∈ 𝒦 yields an adjunction

𝟙 ≅ Fun(𝑋, 1) Fun(𝑋, 𝐴)
𝑖∗

⊥
!

Via the isomorphism Fun(𝑋, 1) ≅ 𝟙 that expresses the universal property of the
terminal ∞-category 1, the constant functor at an initial element

𝑋 1 𝐴! 𝑖

defines an initial element of the functor space Fun(𝑋, 𝐴). This observation can
be summarized by saying that initial elements are representably initial at the
level of the ∞-cosmos.

Conversely, if 𝑖∶ 1 → 𝐴 is representability initial, then 𝑖 defines an initial ele-
ment of𝐴. This is most easily seen by passing to the homotopy 2-category, where
we can show that an initial element 𝑖∶ 1 → 𝐴 is initial among all generalized
elements 𝑓∶ 𝑋 → 𝐴 in the following precise sense.
7 “Naturality of whiskering” refers to the observation of Lemma B.1.3 that any

horizontal-composite of 2-cells in a 2-category can be expressed as a vertical composite of
whiskerings of those cells in two different ways, in this case giving rise to the commutative
diagram in h𝐴 ≔ hFun(1,𝐴) displayed above-right.
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Lemma 2.2.5. An element 𝑖∶ 1 → 𝐴 is initial if and only if for all 𝑓∶ 𝑋 → 𝐴
there exists a unique 2-cell with boundary

1

𝑋 𝐴

𝑖
⇓∃!

!

𝑓

Proof If 𝑖∶ 1 → 𝐴 is initial, then the adjunction of Definition 2.2.1 is preserved
by the 2-functor hFun(𝑋, −)∶ 𝔥𝒦 → 𝒞𝑎𝑡, defining an adjunction

𝟙 ≅ hFun(𝑋, 1) hFun(𝑋, 𝐴)
𝑖∗

⊥
!

Via the isomorphism hFun(𝑋, 1) ≅ 𝟙, this adjunction proves that the constant
functor 𝑖!∶ 𝑋 → 𝐴 is initial in the category hFun(𝑋, 𝐴) and thus has the univer-
sal property of the statement.

Conversely, if 𝑖∶ 1 → 𝐴 satisfies the universal property of the statement,
applying this to the generic element of 𝐴 (the identity map id𝐴∶ 𝐴 → 𝐴)
produces the data of Lemma 2.2.2.

Lemma 2.2.5 says that initial elements are representably initial in the homo-
topy 2-category. Specializing the generalized elements to ordinary elements,
we see that initial and terminal elements in 𝐴 respectively define initial and
terminal elements in its homotopy category:

𝟙 h𝐴

𝑖
⊥

𝑡
⊥
! (2.2.6)

In general the property of being “homotopy initial,” i.e., initial in the homotopy
category, is weaker than being initial in the ∞-category. However Nguyen,
Raptis, and Schrade observe that a homotopy initial element in a complete
(∞, 1)-category necessarily defines an initial element [88, 2.2.2].

Continuing the theme of the equivalence invariance of ∞-categorical notions:

Lemma 2.2.7. If 𝐴 has an initial element and 𝐴 ≃ 𝐴′ then 𝐴′ has an initial
element and these elements are preserved up to isomorphism by the equivalences.

Proof By Proposition 2.1.12, the equivalence 𝐴 ≃ 𝐴′ can be promoted to an
adjoint equivalence, which can immediately be composed with the adjunction
characterizing an initial element 𝑖 of 𝐴:

1 𝐴 𝐴′
𝑖

⊥
!

∼
⊥∼
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The composite adjunction provided by Proposition 2.1.9 proves that the image
of 𝑖 defines an initial element of 𝐴′, which by construction is preserved by the
equivalence𝐴 ∼ 𝐴′. By the uniqueness of initial elements established in Lemma
2.2.3, this argument also shows that the equivalence 𝐴′ ∼ 𝐴 preserves initial
elements.

We now turn to the general theory of limits and colimits of diagrams valued
in an ∞-category. The theory of initial elements previews this material well
since in fact an initial element can be understood as an example of both notions:
an initial element is the colimit of the empty diagram and also the limit of the
diagram encoded by the identity functor, as we explain in Example 2.3.11.

Exercises
Exercise 2.2.i. Use Lemma 2.2.5 to show that a representably initial element,
as described in Remark 2.2.4, necessarily defines an initial element in 𝐴.

Exercise 2.2.ii. Prove that initial elements are preserved by left adjoints and
terminal elements are preserved by right adjoints.

2.3 Limits and Colimits

We now introduce limits and colimits of diagram valued inside an ∞-category
𝐴 in some ∞-cosmos. We consider two varieties of diagrams:

• diagrams indexed by a simplicial set 𝐽 and valued in an ∞-category 𝐴 in a
generic ∞-cosmos and

• diagrams indexed by an ∞-category 𝐽 and valued in an ∞-category 𝐴 in a
cartesian closed ∞-cosmos.8

Definition 2.3.1 (diagram ∞-category). For an ∞-category 𝐴 and a simplicial
set 𝐽 – or possibly, in the case of a cartesian closed ∞-cosmos, an ∞-category 𝐽
– we refer to 𝐴𝐽 as the ∞-category of 𝐽-shaped diagrams in 𝐴. A diagram of
shape 𝐽 in 𝐴 is an element 𝑑∶ 1 → 𝐴𝐽.9

8 For the ∞-cosmoi of (∞, 1)-categories of Example 1.2.24, there is no essential difference
between these notions: in 𝒬𝒞𝑎𝑡 they are tautologically the same, and in all biequivalent
∞-cosmoi the ∞-category of diagrams indexed by an ∞-category 𝐽 is equivalent to the
∞-category of diagrams indexed by its underlying quasi-category, regarded as a simplicial set
(see Proposition 10.3.5).

9 When 𝐴𝐽 is the exponential of a cartesian closed ∞-cosmos, diagrams stand in bijection with
functors 𝑑∶ 𝐽 → 𝐴.
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Both constructions of the ∞-category of diagrams in an ∞-cosmos 𝒦 define
simplicial bifunctors

𝑠𝒮𝑒𝑡op ×𝒦 𝒦 𝒦op ×𝒦 𝒦

(𝐽, 𝐴) 𝐴𝐽 (𝐽, 𝐴) 𝐴𝐽

In either indexing context, there is a terminal object 1 with the property that
𝐴1 ≅ 𝐴 for any ∞-category 𝐴. Restriction along the unique map !∶ 𝐽 → 1
induces the constant diagram functor Δ∶ 𝐴 → 𝐴𝐽.

We deliberately conflate the notation for ∞-categories of diagrams indexed
by a simplicial set or by another ∞-category because all of the results we prove
in Part I about the former case also apply to the latter. For economy of language,
we refer only to simplicial set indexed diagrams for the remainder of this section.

Definition 2.3.2 (limit and colimit functor). An ∞-category 𝐴 admits all
colimits of shape 𝐽 if the constant diagram functor Δ∶ 𝐴 → 𝐴𝐽 admits a left
adjoint, while 𝐴 admits all limits of shape 𝐽 if the constant diagram functor
admits a right adjoint:

𝐴𝐽 𝐴

colim
⊥

lim
⊥
Δ

In the ∞-cosmos of categories, Definition 2.3.2 reduces to the classically
defined limit and colimit functors, but in a general∞-category limits and colimits
should be thought of as analogous to the classical notions of “homotopy limits”
and “homotopy colimits.” In certain cases, this correspondence can be made
precise. Every quasi-category is equivalent to the homotopy coherent nerve of a
Kan complex enriched category [111, 7.2.2], and homotopy limit or homotopy
colimit cones in the Kan complex enriched category correspond exactly to limit
or colimit cones in the homotopy coherent nerve (see Lurie’s [78, 4.2.4.1] or
[113, 6.1.4, 6.2.7]). In the ∞-categorical context, no stricter notion of limit or
colimit is available, so the “homotopy” qualifier is typically dropped.

Limits or colimits of set-indexed diagrams – the case where the indexing
shape is a coproduct of the terminal object 1 indexed by a set 𝐽 – are called
products or coproducts, respectively.

Lemma 2.3.3. Products or coproducts in an ∞-category 𝐴 also define products
or coproducts in its homotopy category h𝐴.

Proof When 𝐽 is a set, the ∞-category of diagrams itself decomposes as a
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product 𝐴𝐽 ≅ ∏𝐽 𝐴. Since the 2-functor that carries an ∞-category to its
homotopy category

𝔥𝒦 𝒞𝑎𝑡

𝐴 h𝐴

hFun(1,−)

preserves products, there is a chain of isomorphisms

h(𝐴𝐽) ≅ h(∏𝐽 𝐴) ≅ ∏𝐽 h𝐴 ≅ (h𝐴)𝐽

when 𝐽 is a set. Thus, in this special case, the adjunctions of Definition 2.3.2
that define products or coproducts in an ∞-category descend to the adjunctions
that define products or coproducts in its homotopy category:

(h𝐴)𝐽 ≅ h(𝐴𝐽) h𝐴
colim
⊥

lim
⊥

Δ

This remains true in the case 𝐽 = ∅, explaining the observation made in (2.2.6).

Warning 2.3.4. This argument does not extend to more general limit or colimit
notions, and such ∞-categorical limits or colimits do not typically descend
to limits or colimits in the homotopy category.10 In §3.2, we observe that the
homotopy category construction fails to preserve more complicated cotensors,
even in the relatively simple case of 𝐽 = 𝟚.

The problem with Definition 2.3.2 is that it is insufficiently general: many
∞-categories have certain, but not all, limits of diagrams of a particular indexing
shape. So it would be desirable to re-express Definition 2.3.2 in a form that
allows us to consider the limit of a single diagram 𝑑∶ 1 → 𝐴𝐽 or of a family of
diagrams. To achieve this, we make use of the following 2-categorical notion
that op-dualizes the more familiar absolute (Kan) extension diagrams.

Definition 2.3.5 (absolute lifting diagram). Given a cospan 𝐶 𝑔 𝐴 𝑓 𝐵 in
a 2-category, an absolute left lifting of 𝑔 through 𝑓 is given by a 1-cell ℓ and
2-cell 𝜆 as displayed below-left

𝐵 𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴 𝐶 𝐴
⇑𝜆

𝑓 ⇑𝜒

𝑏

𝑐 𝑓 =
∃!⇑𝜁

⇑𝜆

𝑏

𝑐 𝑓

𝑔

ℓ

𝑔

ℓ

𝑔

10 This sort of behavior is familiar from abstract homotopy theory: homotopy limits and colimits
are not generally limits or colimits in the homotopy category.
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so that any 2-cell as displayed above-center factors uniquely through (ℓ, 𝜆) as
displayed above-right.

Dually, an absolute right lifting of 𝑔 through 𝑓 is given by a 1-cell 𝑟 and
2-cell 𝜌 as displayed below-left

𝐵 𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴 𝐶 𝐴
⇓𝜌

𝑓 ⇓𝜒

𝑏

𝑐 𝑓 =
∃!⇓𝜁

⇓𝜌

𝑏

𝑐 𝑓

𝑔

𝑟

𝑔

𝑟

𝑔

so that any 2-cell as displayed above-center factors uniquely through (𝑟, 𝜌) as
displayed above-right.

When these exist, left and right liftings respectively define left and right
adjoints to the composition functor 𝑓∗∶ hFun(𝐶, 𝐵) → hFun(𝐶, 𝐴), with the
2-cells defining the components of the unit and counit of these adjunctions,
respectively, at the object 𝑔. The adjective “absolute” refers to the following
stability property.

Lemma 2.3.6. Absolute left or right lifting diagrams are stable under restriction
of their domain object: if (ℓ, 𝜆) defines an absolute left lifting of 𝑔 through 𝑓,
then for any 𝑐∶ 𝑋 → 𝐶, the restricted diagram (ℓ𝑐, 𝜆𝑐) defines an absolute left
lifting of 𝑔𝑐 through 𝑓.

𝐵

𝑋 𝐶 𝐴
⇑𝜆

𝑓

𝑐 𝑔

ℓ

Proof Exercise 2.3.ii.

Units and counits of adjunctions provide important examples of absolute left
and right lifting diagrams, respectively:

Lemma 2.3.7. A 2-cell 𝜂∶ id𝐵 ⇒ 𝑢𝑓 defines the unit of an adjunction 𝑓 ⊣ 𝑢 if
and only if (𝑓, 𝜂) defines an absolute left lifting diagram, displayed below-left.

𝐴 𝐵

𝐵 𝐵 𝐴 𝐴
⇑𝜂

ᵆ
⇓𝜖

𝑓
𝑓 ᵆ

Dually a 2-cell 𝜖∶ 𝑓𝑢 ⇒ id𝐴 defines the counit of an adjunction if and only if
(𝑢, 𝜖) defines an absolute right lifting diagram, displayed above-right.
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Proof The universal property of the absolute right lifting diagram

𝑋 𝐵 𝑋 𝐵

𝐴 𝐴 𝐴 𝐴

𝑏

𝑎 ⇓𝛼 𝑓 =

𝑏

𝑎
∃!⇓𝛽

⇓𝜖
𝑓ᵆ

asserts that every natural transformation 𝛼∶ 𝑓𝑏 ⇒ 𝑎 has a unique transpose
𝛽∶ 𝑏 ⇒ 𝑢𝑎 across the adjunction between the hom-categories of the homotopy
2-category:

hFun(𝑋, 𝐵) hFun(𝑋, 𝐴)
𝑓∗

⊥
ᵆ∗

Thus if 𝑓 ⊣ 𝑢 with counit 𝜖, Proposition 2.1.7(ii) supplies this induced adjunc-
tion and (𝑢, 𝜖) defines an absolute right lifting of id𝐴 through 𝑓.

Conversely, the unit and triangle equalities of an adjunction can extracted
from the universal property of the absolute right lifting diagram. The details are
left as Exercise 2.3.iii.

In particular, the unit and counit of the adjunctions colim ⊣ Δ ⊣ lim of
Definition 2.3.2 define absolute left and right lifting diagrams:

𝐴 𝐴

𝐴𝐽 𝐴𝐽 𝐴𝐽 𝐴𝐽
⇑𝜂

Δ
⇓𝜖

Δcolim lim

By Lemma 2.3.6, these universal properties are retained upon restricting to
any subobject of the ∞-category of diagrams. This motivates the following
definition:

Definition 2.3.8 (limit and colimit). A colimit of a family of diagrams 𝑑∶ 𝐷 →
𝐴𝐽 of shape 𝐽 in an ∞-category 𝐴 is given by an absolute left lifting diagram

𝐴

𝐷 𝐴𝐽
⇑𝜂

Δcolim𝑑

𝑑

comprised of a generalized element colim𝑑∶ 𝐷 → 𝐴 and a colimit cone
𝜂∶ 𝑑 ⇒ Δ colim𝑑.

Dually, a limit of a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 of shape 𝐽 in an ∞-
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category 𝐴 is given by an absolute right lifting diagram

𝐴

𝐷 𝐴𝐽
⇓𝜖

Δlim𝑑

𝑑

comprised of a generalized element lim𝑑∶ 𝐷 → 𝐴 and a limit cone 𝜖∶
Δ lim𝑑 ⇒ 𝑑.

Remark 2.3.9. If 𝐴 has all limits of shape 𝐽, then Lemma 2.3.6 implies that
any family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 has a limit, defined by composing the
limit functor lim∶ 𝐴𝐽 → 𝐴 with 𝑑. In an ∞-cosmos of (∞, 1)-categories, if
every diagram 𝑑∶ 1 → 𝐴𝐽 has a limit, then 𝐴 admits all limits of shape 𝐽 (see
Corollary 12.2.10), but in general families of diagrams cannot be reduced to
single diagrams.

Example 2.3.10. An initial element 𝑖∶ 1 → 𝐴 can be regarded as a colimit
of the empty diagram. The ∞-category 𝐴∅ ≃ 1 of empty diagrams in 𝐴 is
terminal, so the constant diagram functor reduces to !∶ 𝐴 → 1. To show that
initial elements are colimits in the sense of Definition 2.3.8, we must verify that
an initial element defines an absolute left lifting diagram whose 2-cell is the
identity:

𝐴 𝑋 𝐴 𝑋 𝐴

1 1 1 1 1 1

=

! ⇑𝜒

𝑓

! ! =
∃!⇑𝜁

=
𝑓

! !𝑖
𝑖

Since the ∞-category 1 is 2-terminal, there is a unique 2-cell 𝜒 inhabiting the
central square above, namely the identity. Thus, the universal property of the
absolute left lifting diagram asserts the existence of a unique 2-cell 𝜁∶ 𝑖! ⇒ 𝑓
for any 𝑓∶ 𝑋 → 𝐴, exactly as provided by Lemma 2.2.5.

Example 2.3.11. In a cartesian closed ∞-cosmos, an initial element 𝑖∶ 1 → 𝐴
can also be regarded as a limit of the identity functor id𝐴∶ 𝐴 → 𝐴.11 The
counit 𝜖∶ 𝑖! ⇒ id𝐴 of the adjunction 𝑖 ⊣ ! transposes across the 2-adjunction
𝐴×− ⊣ (−)𝐴 of Proposition 1.4.5 to define the limit cone displayed below-left:

𝐴 𝑋 𝐴 𝑋 𝐴

1 𝐴𝐴 1 𝐴𝐴 1 𝐴𝐴
⇓ ̌𝜖

Δ ⇓𝜒

𝑓

! Δ =
∃!⇓𝜁

⇓ ̌𝜖

𝑓

! Δ

id𝐴

𝑖

id𝐴

𝑖

id𝐴

11 This result is extended to ∞-cosmoi that are not cartesian closed in Proposition 9.4.10.
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The universal property displayed above-right is easiest to verify by transposing
across the 2-adjunction 𝐴 × − ⊣ (−)𝐴 again, where we must establish the
pasting equality

𝑋 𝑋

𝑋 × 𝐴 𝑋 × 𝐴 1 𝐴

𝐴 𝐴

𝑓

𝑓

!
∃!⇓𝜁

𝜋𝑋

𝜋𝐴

⇓𝜒̂ =

𝜋𝑋

𝜋𝐴

𝑖
!

⇓𝜖

(2.3.12)

Observe that when we restrict the right-hand side of (2.3.12) along the functor
id𝑋×𝑖∶ 𝑋 ≅ 𝑋 × 1 → 𝑋 × 𝐴 we recover the 2-cell 𝜁, since 𝜖𝑖 = id𝑖. This
tells us that given 𝜒, we must necessarily define the 2-cell 𝜁∶ 𝑓 ⇒ 𝑖! to be the
restriction of ̂𝜒 along the functor id𝑋×𝑖∶ 𝑋 → 𝑋 × 𝐴.

From this definition of 𝜁 and the 2-functoriality of the cartesian product –
which tells us that 𝜖𝜋𝐴 = 𝜋𝐴(𝑋 × 𝜖) – we have

𝑋 𝑋 × 1 𝑋

𝑋 × 𝐴 1 𝐴 𝑋 × 𝐴 𝑋 × 𝐴

𝐴 𝐴

𝑓

!
⇓𝜁

id𝑋×𝑖

𝑓

𝜋𝑋

𝜋𝐴

𝑖 =

id𝑋×!
⇓𝑋×𝜖

𝜋𝐴

𝜋𝑋

⇓𝜒̂
!

⇓𝜖

By “naturality of whiskering” (see Lemma B.1.3), the right-hand pasted com-
posite can be computed as the vertical composite of 𝜋𝑋(𝑋 × 𝜖) followed by ̂𝜒,
but 𝜋𝑋(𝑋 × 𝜖) is the identity 2-cell, so this composite is just ̂𝜒. This verifies the
desired pasting equality (2.3.12).

Certain limits and colimits in∞-categories exist for formal reasons. For exam-
ple, an abstract 2-categorical lemma enables a formal proof of a classical result
from homotopy theory that computes the colimits, typically called geometric
realizations, of “split” simplicial objects. Before proving this, we introduce the
indexing shapes involved.

Definition 2.3.13 (split augmented (co)simplicial object). The simplex cat-
egory 𝚫 of finite nonempty ordinals and order-preserving maps introduced
in 1.1.1 defines a full subcategory of the category 𝚫+ of finite ordinals and
order-preserving maps, which freely appends the empty ordinal “[−1]” as an
initial object. The category 𝚫+ in turn defines a wide subcategory of a category
𝚫⊥, which adds an “extra” degeneracy 𝜎−1∶ [𝑛 + 1] ↠ [𝑛] between each pair
of consecutive ordinals, including 𝜎−1∶ [0] ↠ [−1]. The category 𝚫+ also
defines a wide subcategory of a category 𝚫⊤, which adds an “extra” degeneracy
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𝜎𝑛+1∶ [𝑛 + 1] ↠ [𝑛] on the other side between each pair of consecutive ordi-
nals, including 𝜎0∶ [0] ↠ [−1]. The categories 𝚫⊥ and 𝚫⊤ can be described
in another way: there are faithful embeddings of these categories into 𝚫 that act
on objects by [𝑛] ↦ [𝑛 + 1] and identify 𝚫⊥ and 𝚫⊤ with the subcategories of
finite nonempty ordinals and order-preserving maps that preserve the bottom
and top elements respectively.

Covariant diagrams indexed by 𝚫 ⊂ 𝚫+ ⊂ 𝚫⊥, 𝚫⊤ are, respectively, called
cosimplicial objects, coaugmented cosimplicial objects, and split coaugment-
ed cosimplicial objects (in the case of either 𝚫⊥ or 𝚫⊤), while contravariant
diagrams are respectively called simplicial objects, augmented simplicial ob-
jects, and split augmented simplicial objects. When it is useful to disambiguate
between 𝚫⊥ and 𝚫⊤ we refer to the former category as a “bottom splitting” and
the latter category as a “top splitting,” but this terminology is not standard.

A cosimplicial object 𝑑∶ 1 → 𝐴𝚫 in an ∞-category 𝐴 admits a coaugmen-
tation or admits a splitting if it lifts along the restriction functors

𝐴𝚫⊥

𝐴𝚫+

1 𝐴𝚫

res

res

𝑑

where in the case of a top splitting, 𝚫⊥ is replaced by 𝚫⊤. The family of cosim-
plicial objects admitting a coaugmentation and splitting is represented by the
generalized element res∶ 𝐴𝚫⊥ ↠ 𝐴𝚫. In any augmented cosimplicial object,
there is a cone over the underlying cosimplicial object whose summit is obtained
by evaluating at [−1] ∈ 𝚫+. This cone is defined by cotensoring with the unique
natural transformation

𝚫 𝚫+

𝟙
! [−1]

∃!⇑𝜈 (2.3.14)

that exists because [−1]∶ 𝟙 → 𝚫+ is initial (see Lemma 2.2.5).

Proposition 2.3.15 (totalization/geometric realization). Let 𝐴 be any ∞-cat-
egory. Every cosimplicial object in 𝐴 that admits a coaugmentation and a
splitting has a limit, whose limit cone is defined by the coaugmentation. Dually,
every simplicial object in 𝐴 that admits an augmentation and a splitting has a
colimit, whose colimit cone is defined by the augmentation. That is, there exist
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absolute right and left lifting diagrams

𝐴 𝐴

𝐴𝚫⊥ 𝐴𝚫+ 𝐴𝚫 𝐴𝚫
op
⊥ 𝐴𝚫

op
+ 𝐴𝚫op

⇓𝐴𝜈
Δ

⇑𝐴𝜈op
Δ

res

ev[−1]

res res res

ev[−1]

𝐴 𝐴

𝐴𝚫⊤ 𝐴𝚫+ 𝐴𝚫 𝐴𝚫
op
⊤ 𝐴𝚫

op
+ 𝐴𝚫op

⇓𝐴𝜈
Δ

⇑𝐴𝜈op
Δ

res

ev[−1]

res res res

ev[−1]

in which the 2-cells are obtained as restrictions of the cotensor of the 2-cell
(2.3.14) into 𝐴. Moreover, such limits and colimits are absolute, preserved by
any functor 𝑓∶ 𝐴 → 𝐵 of ∞-categories.

Proof By Example B.5.2, the inclusion 𝚫 ↪ 𝚫⊥ admits a right adjoint, which
can automatically be regarded as an adjunction “over 𝟙” since 𝟙 is 2-terminal in
𝒞𝑎𝑡. The initial element [−1] ∈ 𝚫+ ⊂ 𝚫⊥ defines a left adjoint to the constant
functor:

𝚫 𝚫+ 𝚫⊥

𝟙

!

!

⊤

[−1] ⊥

and the counit of this adjunction restricts along the inclusions 𝚫 ⊂ 𝚫+ ⊂ 𝚫⊥ to
the 2-cell (2.3.14). For any ∞-category 𝐴 in an ∞-cosmos 𝒦, these adjunctions
are preserved by the 2-functor 𝐴(−)∶ 𝒞𝑎𝑡op → 𝔥𝒦, yielding a diagram

𝐴

𝐴𝚫⊥ 𝐴𝚫+ 𝐴𝚫
⇓𝐴𝜈

⊥ Δ

!

res

ev[−1]

res
⊤

By Lemma B.5.1 these adjunctions witness the fact that evaluation at [−1]
and the 2-cell from (2.3.14) define an absolute right lifting of the canonical
restriction functor 𝐴𝚫⊥ ↠ 𝐴𝚫 through the constant diagram functor, as claimed.
The colimit case is proven similarly by applying the composite 2-functor

𝒞𝑎𝑡coop 𝒞𝑎𝑡op 𝔥𝒦
(−)op 𝐴(−)

A similar argument, starting from Example B.5.3, constructs the absolute lifting
diagrams from the top splitting.
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Finally, by 2-functoriality of the simplicial cotensor, any functor 𝑓∶ 𝐴 → 𝐵
commutes with the 2-cells defined by cotensoring with 𝜈 or its opposite:

𝐴 𝐵 𝐵

𝐴𝚫⊥ 𝐴𝚫+ 𝐴𝚫 𝐵𝚫 𝐴𝚫⊥ 𝐵𝚫+ 𝐵𝚫
⇓𝐴𝜈

Δ

𝑓

Δ =
⇓𝐴𝜈

Δ

res

ev[−1]

res 𝑓𝚫 res ⋅𝑓𝚫⊥

ev[−1]

res

Since the right-hand composite is an absolute right lifting diagram by Lem-
ma 2.3.6, so is the left-hand composite, and thus 𝑓∶ 𝐴 → 𝐵 preserves the
totalization of any split coaugmented cosimplicial object in 𝐴.

Exercises
Exercise 2.3.i. Prove that if an ∞-category 𝐴 has binary products then it also
has ternary products (and in fact 𝑛-ary products for all 𝑛 ≥ 1). Show further
that the ternary product functor can be defined from the binary product functor
− × −∶ 𝐴 × 𝐴 → 𝐴 either as the composite (− × −) × − or as the composite
− × (− × −); that is, show that these composites are naturally isomorphic and
both satisfy the universal property that characterizes ternary products.

Exercise 2.3.ii. Prove Lemma 2.3.6.

Exercise 2.3.iii. Re-prove the forwards implication of Lemma 2.3.7 by a pasting
diagram calculation and prove the converse similarly.

Exercise 2.3.iv. Let be the category defined by gluing two arrows along
their codomain. Diagrams of shape are called cospans. Consider either of the
surjective functors 𝜋∶ → 𝟚 that send one of these arrows to an identity. Show
that for any ∞-category 𝐴, the corresponding functor 𝐴𝜋∶ 𝐴𝟚 → 𝐴 admits an
absolute right lifting through the constant diagram functor Δ∶ 𝐴 → 𝐴 . That
is, show that any ∞-category admits pullbacks of cospans in which one of the
two arrows is an identity.

Exercise 2.3.v (3.5.6). Show that for any functor 𝑓∶ 𝐴 → 𝐵, the identity

𝐴

𝐴 𝐵

=

𝑓

𝑓

defines an absolute right lifting of 𝑓 through itself if and only if the identity
defines an absolute left lifting of 𝑓 through itself by proving that each of these
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conditions is equivalent to the assertion that for any ∞-category 𝑋 the induced
functor

𝑓∗∶ hFun(𝑋, 𝐴) → hFun(𝑋, 𝐵)

is fully faithful. A fourth equivalent characterization of what it means for a
functor between ∞-categories to be fully faithful appears in Corollary 3.5.6.

Exercise 2.3.vi. Show that diagrams that are isomorphic to absolute right
lifting diagrams are themselves absolute right lifting: given an absolute right
lifting diagram and natural isomorphisms

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟 𝐶 𝐵 𝐵 𝐴 𝐶 𝐴
𝑟′

𝑟
≅⇓𝜃

𝑓′

𝑓

≅⇓𝜙

𝑔

𝑔′
≅⇓𝜓

show that the pasted composite is an absolute right lifting diagram.

𝐵

𝐶 𝐴
⇓𝜌

𝑓 ⇐
𝜙
≅

𝑓′

𝑔

𝑔′
≅⇓𝜓

𝑟′

≅⇓𝜃 𝑟

Conclude that limits and colimits are invariant under natural isomorphism.

2.4 Preservation of Limits and Colimits

A functor 𝑓∶ 𝐴 → 𝐵 preserves limits if the image of a limit cone in 𝐴 also
defines a limit cone in 𝐵. In the other direction, a functor 𝑓∶ 𝐴 → 𝐵 reflects
limits if a cone in 𝐴 that defines a limit cone in 𝐵 is also a limit cone in 𝐴. A
functor 𝑓∶ 𝐴 → 𝐵 creates limits if whenever a diagram in 𝐴 admits a limit cone
in 𝐵, then there must exist a limit cone in 𝐴 whose image under 𝑓 is isomorphic
to the given limit cone in 𝐵.

Famously, right adjoint functors preserve limits and left adjoints preserve
colimits. Our aim in this section is to prove this in the∞-categorical context and
exhibit the first examples of initial and final functors, in the sense introduced in
Definition 2.4.5. We conclude with a result about the reflection of limits whose
proof relies in a crucial way on a result – that cosmological functors preserve
absolute lifting diagrams – that motivates Chapter 3.

The commutativity of right adjoints and limits is very easily established in the
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case where the ∞-categories in question admit all limits of a given shape: under
these hypotheses, the limit functor is right adjoint to the constant diagram functor,
which commutes with all functors between the base ∞-categories. Since the
left adjoints commute, the uniqueness of adjoints (Proposition 2.1.10) implies
that the right adjoints commute up to isomorphism. This outline gives a hint for
Exercise 2.4.i.

A more delicate argument is needed in the general case, involving, say, the
preservation of a single limit diagram without a priori assuming that any other
limits exist. We appeal to a general lemma about composition and cancelation
of absolute lifting diagrams:

Lemma 2.4.1 (composition and cancelation of absolute lifting diagrams). Sup-
pose (𝑟, 𝜌) defines an absolute right lifting of ℎ through 𝑓:

𝐶

𝐵

𝐷 𝐴

⇓𝜍
𝑔

⇓𝜌
𝑓

ℎ

𝑟

𝑠

Then (𝑠, 𝜎) defines an absolute right lifting of 𝑟 through 𝑔 if and only if (𝑠, 𝜌 ⋅𝑓𝜎)
defines an absolute right lifting of ℎ through 𝑓𝑔.

Proof Exercise 2.4.ii.

Theorem 2.4.2. Right adjoints preserve limits and left adjoints preserve colim-
its.

The usual argument that right adjoints preserve limits is this: a cone over a 𝐽-
shaped diagram in the image of a right adjoint 𝑢 transposes across the adjunction
𝑓𝐽 ⊣ 𝑢𝐽 to a cone over the original diagram, which factors uniquely through the
designated limit cone. This factorization transposes across the adjunction 𝑓 ⊣ 𝑢
to define the sought-for unique factorization through the image of the limit cone.
An ∞-categorical proof along these lines can be given as well (see Exercise
2.4.iii), but instead we present a slicker packaging of the standard argument. We
use absolute lifting diagrams to express the universal properties of limits and
colimits (Definition 2.3.8) and adjoint transposition (Lemma 2.3.7), allowing us
to suppress consideration of a generic test cone that must be shown to uniquely
factor through the limit cone.

Proof We prove that right adjoints preserve limits. By taking co-duals the
same argument demonstrates that left adjoints preserve colimits.
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Suppose a functor 𝑢∶ 𝐴 → 𝐵 in an ∞-cosmos 𝒦 admits a left adjoint
𝑓∶ 𝐵 → 𝐴 with counit 𝜖∶ 𝑓𝑢 ⇒ id𝐴. Our aim is to show that any absolute
right lifting diagram as displayed below-left is carried to an absolute right lifting
diagram as displayed below-right:

𝐴 𝐴 𝐵

𝐷 𝐴𝐽 𝐷 𝐴𝐽 𝐵𝐽
⇓𝜌

Δ
⇓𝜌

Δ

ᵆ

Δlim𝑑

𝑑

lim𝑑

𝑑 ᵆ𝐽

(2.4.3)

By Proposition 2.1.7, the cotensor (−)𝐽∶ 𝔥𝒦 → 𝔥𝒦 carries the adjunction
𝑓 ⊣ 𝑢 to an adjunction 𝑓𝐽 ⊣ 𝑢𝐽 with counit 𝜖𝐽. In particular, by Lemma 2.3.7,
(𝑢𝐽, 𝜖𝐽) defines an absolute right lifting of the identity through 𝑓𝐽, which is then
preserved by restriction along the functor 𝑑. Thus, by Lemma 2.4.1, the diagram
on the right of (2.4.3) is an absolute right lifting diagram if and only if the pasted
composite displayed below-left defines an absolute right lifting diagram:

𝐴 𝐵 𝐵 𝐵

𝐷 𝐴𝐽 𝐵𝐽 𝐴 𝐴 𝐴

𝐴𝐽 𝐷 𝐴𝐽 𝐴𝐽 𝐷 𝐴𝐽

⇓𝜌
Δ

ᵆ

Δ
⇓𝜖

𝑓
⇓𝜖 lim𝑑

𝑓lim𝑑

𝑑
ᵆ𝐽

𝑓𝐽⇓𝜖𝐽
=

⇓𝜌

ᵆ

Δ Δ

=

⇓𝜌
Δ

𝑑

lim𝑑

𝑑

lim𝑑

ᵆ lim𝑑

As noted in the proof of Lemma 2.3.7, pasting the 2-cell on the right of (2.4.3)
with the counit in this way amounts to transposing the cone 𝑢𝐽𝜌 across the
adjunction 𝑓𝐽 ⊣ 𝑢𝐽.

We now argue that this transposed cone above-left factors through the limit
cone (lim𝑑, 𝜌) in a canonical way. From the 2-functoriality of the simplicial
cotensor in its exponent variable, 𝑓𝐽Δ = Δ𝑓 and 𝜖𝐽Δ = Δ𝜖. Hence, the pasting
diagram displayed above-left equals the one displayed above-center, which
equals the diagram above-right. This latter diagram is a pasted composite of
two absolute right lifting diagrams, and is then an absolute right lifting diagram
in its own right by Lemma 2.4.1; this universal property says that any cone
over 𝑑 whose summit factors through 𝑓 factors uniquely through the limit cone
(lim𝑑, 𝜌) through a map that then transposes along the adjunction 𝑓 ⊣ 𝑢. Hence
the diagram on the right-hand side of (2.4.3) is an absolute right lifting diagram
as claimed.

Proposition 2.4.4. An equivalence 𝑓∶ 𝐴 ∼ 𝐵 preserves, reflects, and creates
limits and colimits.
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Proof By Proposition 2.1.12, equivalences define adjoint functors, so Theorem
2.4.2 implies that equivalences preserve limits. To see that limits are reflected,
consider a 𝐽-shaped cone 𝜌 in 𝐴 whose image 𝑓𝐽𝜌 is a limit cone in 𝐵. The
inverse equivalence 𝑔∶ 𝐵 ∼ 𝐴 carries this to a limit cone 𝑔𝐽𝑓𝐽𝜌 in 𝐴, which
is naturally isomorphic to the original cone 𝜌. By Exercise 2.3.vi, 𝜌 must also
define a limit cone. Finally to see that limits are created, consider a diagram
𝑑∶ 𝐷 → 𝐴𝐽 so that 𝑓𝑑 has a limit cone 𝜈 in 𝐵. Then 𝑔𝐽𝜈 defines a limit cone for
the diagram 𝑔𝑓𝑑 in 𝐴, and by Exercise 2.3.vi, a limit cone for 𝑑 may be defined
by composing with the isomorphism 𝑔𝑓𝑑 ≅ 𝑑.

We turn now to a limit-preservation result of another sort, which can be used to
simplify the calculation of limits or colimits of diagrams with particular shapes.
This simplification comes about by reindexing the diagrams, by restricting
along a functor 𝑘∶ 𝐼 → 𝐽. For certain functors, called “initial” or “final,” this
reindexing preserves and reflects limits or colimits, respectively.

At present, we give a teleological, rather than an intrinsic, description of
these functors. The following definition makes sense for an arbitrary functor in
a cartesian closed ∞-cosmos or for a map between simplicial sets serving as
indexing shapes in an arbitrary ∞-cosmos. In Definition 9.4.11 we extend the
adjectives “initial” and “final” to functors between ∞-categories in an arbitrary
∞-cosmos and prove that the functors characterized there satisfy the property
described here.

Definition 2.4.5 (initial and final functor). A functor 𝑘∶ 𝐼 → 𝐽 is final if a
𝐽-shaped cone defines a colimit cone if and only if the restricted 𝐼-shaped cone
is a colimit cone and initial if any 𝐽-shaped cone defines a limit cone if and only
if the restricted 𝐼-shaped cone is a limit cone. That is, 𝑘∶ 𝐼 → 𝐽 is final if and
only if for any ∞-category 𝐴, the square

𝐴 𝐴

𝐴𝐽 𝐴𝐼
Δ Δ

𝐴𝑘

preserves and reflects all absolute left lifting diagrams, and initial if and only if
this squares preserves and reflects all absolute right lifting diagrams.

Historically, final functors were called “cofinal” with no obvious name for
the dual notion. Our preferred terminology hinges on the following mnemonic:
the inclusion of an initial element defines an initial functor, while the inclusion
of a terminal (aka final) element defines a final functor. These facts are special
cases of a more general result we now establish, using exactly the same tactics
as deployed to prove Theorem 2.4.2.
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Proposition 2.4.6. Left adjoints define initial functors and right adjoints define
final functors.

Proof If 𝑘 ⊣ 𝑟 with counit 𝜖∶ 𝑘𝑟 ⇒ id𝐽, then cotensoring into 𝐴 yields an
adjunction

𝐴𝐽 𝐴𝐼

𝐴𝑘
⊥
𝐴𝑟

with counit 𝐴𝜖∶ 𝐴𝑟𝐴𝑘 ⇒ id𝐴𝐽 .

To prove that 𝑘 is initial we must show that for any cone 𝜌∶ Δℓ ⇒ 𝑑 as displayed
below-left,

𝐴 𝐴 𝐴

𝐷 𝐴𝐽 𝐷 𝐴𝐽 𝐴𝐼
⇓𝜌

Δ
⇓𝜌

Δ Δℓ

𝑑

ℓ

𝑑 𝐴𝑘

the left-hand diagram is an absolute right lifting diagram if and only if the
right-hand diagram is an absolute right lifting diagram.

By Lemmas 2.3.7 and 2.4.1, the right-hand diagram is an absolute right
lifting diagram if and only if the pasted composite displayed below-left is also
an absolute right lifting diagram.

𝐴 𝐴 𝐴

𝐷 𝐴𝐽 𝐴𝐼 𝐷 𝐴𝐽

𝐴𝐽

⇓𝜌
Δ Δ

⇓𝜌
Δℓ

𝑑
𝐴𝑘

𝐴𝑟
⇓𝐴𝜖

=

ℓ

𝑑

Since 𝐴𝑟Δ = Δ and 𝐴𝜖Δ = idΔ, the left-hand side reduces to the right-hand
side, which proves the claim.

Exercise 2.3.v defines a functor 𝑓∶ 𝐴 → 𝐵 between ∞-categories to be fully
faithful just when

𝐴

𝐴 𝐵

=

𝑓

𝑓

defines absolute right lifting diagram or equivalently an absolute left lifting
diagram. Modulo a result we borrow from Chapter 3, we show:
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Proposition 2.4.7. A fully faithful functor 𝑓∶ 𝐴 → 𝐵 reflects any limits or
colimits that exist in 𝐵.

Proof The statement for limits asserts that for any family of diagrams 𝑑∶ 𝐷 →
𝐴𝐽 of shape 𝐽 in 𝐴, any functor ℓ∶ 𝐷 → 𝐴, and any cone 𝜌∶ Δℓ ⇒ 𝑑 so that
the whiskered composite with 𝑓𝐽∶ 𝐴𝐽 → 𝐵𝐽 is an absolute right lifting diagram

𝐴 𝐵

𝐷 𝐴𝐽 𝐵𝐽
⇓𝜌

Δ

𝑓

Δℓ

𝑑 𝑓𝐽

then (ℓ, 𝜌) defines an absolute right lifting of 𝑑∶ 𝐷 → 𝐴𝐽 through Δ∶ 𝐴 → 𝐴𝐽.
By Exercise 2.3.v, to say that 𝑓 is fully faithful is to say that id𝐴∶ 𝐴 → 𝐴 defines
an absolute right lifting of 𝑓 through itself. So by Lemma 2.4.1, the composite
diagram below-left is an absolute right lifting diagram, and by 2-functoriality
of the simplicial cotensor with 𝐽, the diagram below-left coincides with the
diagram below-right:

𝐴 𝐴

𝐴 𝐵 𝐴𝐽

𝐷 𝐴𝐽 𝐵𝐽 𝐷 𝐴𝐽 𝐵𝐽

𝑓 Δ

⇓𝜌
Δ

𝑓
Δ

=
⇓𝜌

𝑓𝐽ℓ

𝑑 𝑓𝐽 𝑑

ℓ

𝑓𝐽

Now if we knew that id𝐴𝐽 ∶ 𝐴𝐽 → 𝐴𝐽 defines an absolute right lifting of 𝑓𝐽

through itself – that is, if we know that 𝑓𝐽∶ 𝐴𝐽 → 𝐵𝐽 is also fully faithful – then
we could apply Lemma 2.4.1 again to conclude that (ℓ, 𝜌) is an absolute right
lifting of 𝑑 through Δ as required. And indeed this is the case: by Corollary 3.5.7,
any cosmological functor, such as (−)𝐽, preserves absolute lifting diagrams.

It is worth asking why we have not already proven that cosmological functors
preserve absolute lifting diagrams, since after all, by Lemma 1.4.4, cosmologi-
cal functors induce 2-functors between homotopy 2-categories, which is where
absolute lifting diagrams are defined. But unlike adjunctions, which are defined
by pasting equations in a 2-category, absolute lifting diagrams are defined using
universal quantifiers and hence are not preserved by all 2-functors. However,
the 2-functors that underlie cosmological functors do preserve absolute lifting
diagrams, even when the cosmological functor is “forgetful” or fails to be es-
sentially surjective. This is because the universal property of absolute lifting
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diagrams can be re-expressed internally to the ambient ∞-cosmos by deploying
the axiomatized limits of 1.2.1(i), at which point their preservation by cosmo-
logical functors is a direct corollary (see Theorem 3.5.3 and Corollary 3.5.7). In
pursuit of results such as these, we now turn our attention to the 2-categorical
properties of the cosmological limits.

Exercises
Exercise 2.4.i. Show that any left adjoint 𝑓∶ 𝐵 → 𝐴 between ∞-categories
admitting all 𝐽-shaped colimits preserves them in the sense that the square of
functors commutes up to isomorphism.

𝐵𝐽 𝐴𝐽

𝐵 𝐴

colim

𝑓𝐽

colim≅

𝑓

Exercise 2.4.ii. Prove Lemma 2.4.1.

Exercise 2.4.iii. Give a proof of Theorem 2.4.2 that does not appeal to Lemma
2.4.1 by directly verifying that the diagram on the right of (2.4.3) is an absolute
right lifting diagram.

Exercise 2.4.iv. Use Lemma 2.4.1 to give a new proof that adjunctions compose
(Proposition 2.1.9).

Exercise 2.4.v. For any composable pair of maps 𝑘∶ 𝐼 → 𝐽 and ℓ∶ 𝐽 → 𝐾,
show that if 𝑘 and ℓ𝑘 are final, then so is ℓ.



3

Comma ∞-Categories

In Chapter 2, we introduce adjunctions between ∞-categories and limits of
diagrams valued within an ∞-category through definitions that are particularly
expedient for establishing the expected interrelationships, as illustrated by the
proof that right adjoints preserve limits. These definitions are 2-categorical in
nature – stated in reference to the ∞-categories, ∞-functors, and ∞-natural
transformations of the homotopy 2-category – but neither clearly articulates
the universal properties of these notions. Definition 2.3.8 does not obviously
express the expected universal property of the limit cone: namely, that a limit
cone over a diagram 𝑑 defines a terminal element in some ∞-category of cones
over 𝑑. Nor does Definition 2.1.1 explain how an adjunction 𝑓 ⊣ 𝑢 induces
an equivalence between hom-spaces Hom𝐴(𝑓𝑏, 𝑎) ≃ Hom𝐵(𝑏, 𝑢𝑎).1 In this
chapter, we make use of the axiomatized limits in an ∞-cosmos to exhibit a
general construction that specializes to define both this∞-category of cones and
also these hom-spaces. This construction also permits us to represent a functor
between ∞-categories as an ∞-category, in dual “left” or “right” fashions, so
that an adjunction consists of a pair of functors 𝑓∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 so
that the left representation of 𝑓 is equivalent to the right representation of 𝑢 over
𝐴 × 𝐵 (see Proposition 4.1.1).

Our vehicle for all of these new definitions is the comma ∞-category associ-
ated to a cospan:

Hom𝐴(𝑓, 𝑔)

𝐶 𝐴 𝐵 ⇝ 𝐶 𝐵

𝐴

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

𝑔 𝑓

1 A 2-categorical version of this result – exhibiting a bijection between sets of 2-cells – appears as
Lemma 2.3.7, but in an ∞-category one would expect a similar equivalence of hom-spaces.

85
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Our aim in this chapter is to develop the general theory of comma constructions
from the point of view of the homotopy 2-category of an ∞-cosmos. Our
first payoff for this work appears in Chapter 4 where we study the universal
properties of adjunctions, limits, and colimits along these lines. The comma
construction also provides the essential vehicle in Part III for establishing the
model independence of the categorical notions we introduce throughout this
text.

There is a standard definition of a “comma object” that can be stated in
any 2-category, defined as a particular weighted limit (see Example A.6.14).
Comma ∞-categories do not satisfy this universal property in the homotopy
2-category, however. Instead, they satisfy a somewhat peculiar “weak” variant
of the usual 2-categorical universal property that to our knowledge has not
appeared elsewhere in the literature. The weak universal property is encoded
by something we call a smothering functor, which relates homotopy coherent
and homotopy commutative diagrams of suitable shapes. To introduce these
universal properties in a concrete rather than abstract framework, we start in
§3.1 by considering smothering functors involving homotopy categories of
quasi-categories.

In §3.2, we use a smothering functor to encode the weak universal property
of the ∞-category of arrows 𝐴𝟚 associated to an ∞-category 𝐴, considered as
an object in the homotopy 2-category. In §3.3, we briefly study the analogous
weak universal properties associated to the pullback of an isofibration, which
we exploit to prove that the pullback of an equivalence along an isofibration is
an equivalence.

Comma ∞-categories are introduced in §3.4 where we describe both their
strict universal properties as simplicially enriched limits as well as their weak
universal properties in the homotopy 2-category. Each have their uses, for in-
stance in describing the induced actions on comma ∞-categories of various
types of morphisms between their generating cospans. The weak 2-categorical
universal property is deployed in §3.5 to prove a general representability theorem
that characterizes those comma ∞-categories that are right or left represented
by a functor. In Chapter 4, we reap the payoff for this work, achieving the desired
representable characterizations of adjunctions, limits, and colimits as special
cases of these general results.

In §3.6, we tighten the main theorem of §3.5 to say that a comma ∞-category
is right represented by a functor if and only if its codomain-projection functor
admits a terminal element, when considered as an object in the sliced∞-cosmos.
This result requires a careful analysis of the subtle difference between the homo-
topy 2-category of a sliced∞-cosmos and the sliced 2-category of the homotopy
2-category of an ∞-cosmos. Those readers who would rather stay out of the
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weeds are invited to take note of Definition 3.6.5 and Corollary 3.6.10 but
otherwise skip this section.

3.1 Smothering Functors

Let𝑄 be a quasi-category. Recall from Lemma 1.1.12 that its homotopy category
h𝑄 has

• elements of 𝑄 as its objects;
• homotopy classes of 1-simplices of 𝑄 as its arrows, where parallel 1-simpli-

ces are homotopic just when they bound a 2-simplex whose remaining outer
edge is degenerate; and

• a composition relation if and only if any chosen 1-simplices representing
the three arrows bound a 2-simplex.

For a 1-category 𝐽, it is well-known in classical homotopy theory that the
homotopy category of diagrams h(𝑄𝐽) is not equivalent to the category (h𝑄)𝐽 of
diagrams in the homotopy category – except in very special cases, such as when 𝐽
is a set (see Lemma 2.3.3). The objects of h(𝑄𝐽) are homotopy coherent diagrams
of shape 𝐽 in 𝑄, while the objects of (h𝑄)𝐽 are mere homotopy commutative
diagrams. There is, however, a canonical comparison functor

h(𝑄𝐽) (h𝑄)𝐽

defined by applying h∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 to the evaluation functor 𝑄𝐽 × 𝐽 → 𝑄
and then transposing; a homotopy coherent diagram is in particular homotopy
commutative.

Our first aim in this section is to better understand the relationship between
the arrows in the homotopy category h𝑄 and the arrows of 𝑄, meaning the
1-simplices in the quasi-category. To study this, we consider the quasi-category
𝑄𝟚 in which the arrows of 𝑄 live as elements, where 𝟚 = Δ[1] is the nerve of
the walking arrow. Our notation deliberately imitates the notation commonly
used for the category of arrows: if 𝐶 is a 1-category, then 𝐶𝟚 is the category
whose objects are arrows in 𝐶 and whose morphisms are commutative squares,
regarded as a morphism from the arrow displayed vertically on the left-hand
side to the arrow displayed vertically on the right-hand side. This notational
conflation suggests our first question: how does the homotopy category of 𝑄𝟚

relate to the category of arrows in the homotopy category h𝑄?

Lemma 3.1.1. The canonical functor h(𝑄𝟚) → (h𝑄)𝟚 is

(i) surjective on objects,
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(ii) full, and
(iii) conservative, i.e., reflects invertibility of morphisms,

but not necessarily injective on objects nor faithful.

Proof Surjectivity on objects asserts that every arrow in the homotopy category
h𝑄 is represented by a 1-simplex in 𝑄. This is the conclusion of Exercise
1.1.iii(iii) which outlines the proof of Lemma 1.1.12.

To prove fullness, consider a pair of arrows 𝑓 and 𝑔 in 𝑄 that form the source
and target of a commutative square in h𝑄. By (i), we may choose arbitrary
1-simplices representing each morphism in h𝑄 and their common composite:

• •

• •
𝑓

ℎ

ℓ 𝑔

𝑘

By Lemma 1.1.12, every composition relation in h𝑄 is witnessed by a 2-simplex
in 𝑄; choosing a pair of such 2-simplices defines a diagram 𝟚 × 𝟚 → 𝑄, which
represents a morphism from 𝑓 to 𝑔 in h(𝑄𝟚), proving fullness.

Surjectivity on objects and fullness of the functor h(𝑄𝟚) → (h𝑄)𝟚 are special
properties having to do with the diagram shape 𝟚, while conservativity holds
for generic diagram shapes by Corollary 1.1.22. The construction of counterex-
amples illustrating the general failure of injectivity on objects and faithfulness
is left to Exercise 3.1.i, with a hint.

The properties of the canonical functor h(𝑄𝟚) → (h𝑄)𝟚 frequently reappear,
so we bestow them with a suggestive name:

Definition 3.1.2 (smothering functor). A functor 𝑓∶ 𝐴 → 𝐵 between 1-cate-
gories is smothering if it is surjective on objects, full, and conservative. That
is, a functor is smothering if and only if it has the right lifting property with
respect to the set of functors:

⎧⎪
⎨⎪
⎩

∅ 𝟙 + 𝟙 𝟚

𝟙 𝟚 𝕀

, ,
⎫⎪
⎬⎪
⎭

Various elementary properties of smothering functors are established in Exer-
cise 3.1.ii; here we highlight one worthy of particular attention:

Lemma 3.1.3 (smothering fibers). Each fiber of a smothering functor is a non-
empty connected groupoid.
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Proof Suppose 𝑓∶ 𝐴 → 𝐵 is smothering and consider the fiber

𝐴𝑏 𝐴

𝟙 𝐵

⌟
𝑓

𝑏

over an object 𝑏 of 𝐵. By surjectivity on objects, the fiber is nonempty. Its
morphisms are defined to be arrows between objects in the fiber of 𝑏 that map
to the identity on 𝑏. By fullness, any two objects in the fiber are connected by a
morphism, indeed, by morphisms pointing in both directions. By conservativity,
all the morphisms in the fiber are necessarily invertible.

The argument used to prove Lemma 3.1.1 generalizes to:

Lemma 3.1.4. If 𝐽 is a 1-category that is free on a reflexive directed graph and
𝑄 is a quasi-category, then the canonical functor h(𝑄𝐽) → (h𝑄)𝐽 is smothering.

Proof Exercise 3.1.iii.

Cotensors are one of the cosmological limits axiomatized in Definition 1.2.1.
Other limit constructions listed there also give rise to smothering functors.

Lemma 3.1.5. For any pullback diagram of quasi-categories in which 𝑝 is an
isofibration

𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵

⌟
𝑝

𝑓

the canonical functor h(𝐴 ×
𝐵
𝐸) → h𝐴 ×

h𝐵
h𝐸 is smothering.

Proof As h∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 does not preserve pullbacks, the canonical com-
parison functor of the statement is not an isomorphism. It is however bijective
on objects since the composite functor

𝒬𝒞𝑎𝑡 𝒞𝑎𝑡 𝒮𝑒𝑡h obj

passes to the underlying set of vertices of each quasi-category, and this functor
does preserve pullbacks.

For fullness, note that a morphism in h𝐴×h𝐵h𝐸 is represented by a pair of
1-simplices 𝛼∶ 𝑎 → 𝑎′ in 𝐴 and 𝜖∶ 𝑒 → 𝑒′ in 𝐸 whose images are homotopic
in 𝐵, a condition that implies in particular that 𝑓(𝑎) = 𝑝(𝑒) and 𝑓(𝑎′) = 𝑝(𝑒′).
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By Lemma 1.1.9, we can configure this homotopy however we like, and thus we
choose a 2-simplex witness 𝛽 so as to define a lifting problem

Λ1[2] 𝐸 ∋

Δ[2] 𝐵 ∋

𝑝

𝛽

𝑒

𝑒 𝑒′

↧

𝑝(𝑒)

𝑓(𝑎) 𝑓(𝑎′) = 𝑝(𝑒′)

𝜖

𝑝(𝜖)

𝑓(𝛼)

Since 𝑝 is an isofibration, a solution exists, defining an arrow ̃𝜖 ∶ 𝑒 → 𝑒′ in 𝐸 in
the same homotopy class as 𝜖 so that 𝑝( ̃𝜖) = 𝑓(𝛼). The pair (𝛼, ̃𝜖) now defines
the lifted arrow in h(𝐸 ×𝐵 𝐴).

Finally, consider an arrow 𝟚 → 𝐴×
𝐵
𝐸whose image in h𝐴×

h𝐵
h𝐸 is an isomorph-

ism, which is the case just when the projections to 𝐸 and 𝐴 define isomorphisms.
By Corollary 1.1.16, we may choose a homotopy coherent isomorphism 𝕀 → 𝐴
extending the given isomorphism 𝟚 → 𝐴. This data presents us with a lifting
problem

𝟚 𝐴 ×
𝐵
𝐸 𝐸

𝕀 𝐴 𝐵

⌟
𝑝

𝑓

which Exercise 1.1.vi tells us we can solve. This proves that h(𝐴×
𝐵
𝐸) → h𝐴×

h𝐵
h𝐸

is conservative and hence also smothering.

A similar argument proves:

Lemma 3.1.6. For any tower of isofibrations between quasi-categories

⋯ 𝐸𝑛 𝐸𝑛−1 ⋯ 𝐸2 𝐸1 𝐸0

the canonical functor h(lim𝑛 𝐸𝑛) → lim𝑛 h𝐸𝑛 is smothering.

Proof Exercise 3.1.iv.

Lemma 3.1.7. For any cospan between quasi-categories 𝐶 𝑔 𝐴 𝑓 𝐵 consider
the quasi-category defined by the pullback

Hom𝐴(𝑓, 𝑔) 𝐴𝟚

𝐶 × 𝐵 𝐴 × 𝐴

⌟
(cod,dom)

𝑔×𝑓
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The canonical functor hHom𝐴(𝑓, 𝑔) → Homh𝐴(h𝑓, h𝑔) is smothering.

Proof The codomain of this functor is the category defined by an analogous
pullback in 𝒞𝑎𝑡

Homh𝐴(h𝑓, h𝑔) (h𝐴)𝟚

h𝐶 × h𝐵 h𝐴 × h𝐴

⌟
(cod,dom)

h𝑔×h𝑓

and the canonical functor factors as

hHom𝐴(𝑓, 𝑔) h(𝐴𝟚) ×h𝐴×h𝐴 (h𝐶 × h𝐵) (h𝐴)𝟚 ×h𝐴×h𝐴 (h𝐶 × h𝐵)

By Lemma 3.1.5 the first of these functors is smothering. By Lemma 3.1.1 the
second is a pullback of a smothering functor. By Exercise 3.1.ii(i) it follows that
the composite functor is smothering.

In the sections that follow, we discover that the smothering functors just
constructed express weak universal properties of arrow, pullback, and comma
constructions in the homotopy 2-category of any ∞-cosmos.

Exercises
Exercise 3.1.i. Find an explicit example of a quasi-category 𝑄 for which the
canonical smothering functor h(𝑄𝟚) → (h𝑄)𝟚 fails to be injective on objects and
faithful for instance by defining 𝑄 to be the total singular complex of a suitable
topological space.

Exercise 3.1.ii. Prove that:

(i) Smothering functors are closed under composition, retract, product,
pullback, and limits of towers.

(ii) Surjective equivalences of categories are smothering functors.
(iii) Smothering functors are isofibrations, that is, maps that have the right

lifting property with respect to 𝟙 ↪ 𝕀.
(iv) Prove that if 𝑓 and 𝑔𝑓 are smothering functors, then 𝑔 is a smothering

functor.2

Exercise 3.1.iii. Prove Lemma 3.1.4.

Exercise 3.1.iv. Prove Lemma 3.1.6.
2 In fact, it suffices to merely assume that 𝑓 is surjective on objects and arrows.
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3.2 ∞-Categories of Arrows

In this section, we replicate the discussion from the start of §3.1 using an
arbitrary ∞-category 𝐴 in place of the quasi-category 𝑄. The analysis of the
previous section could have been developed natively in this general setting but
at the cost of an extra layer of abstraction and more confusing notation – with a
functor space Fun(𝑋, 𝐴) replacing the quasi-category 𝑄.

Recall an element of an ∞-category is defined to be a functor 𝑎∶ 1 → 𝐴.
Tautologically, the elements of 𝐴 are the vertices of the underlying quasi-cat-
egory Fun(1, 𝐴) of 𝐴. In this section, we define and study an ∞-category 𝐴𝟚

whose elements are the 1-simplices in the underlying quasi-category of 𝐴. We
refer to 𝐴𝟚 as the ∞-category of arrows in 𝐴 and call its elements simply arrows
of 𝐴. In fact, we have tacitly introduced this construction already. Recall 𝟚 is
our preferred notation for the quasi-category Δ[1], the nerve of the category 𝟚
with a single nonidentity morphism 0 → 1.

Definition 3.2.1 (arrow ∞-category). Let 𝐴 be an ∞-category. The ∞-cate-
gory of arrows in 𝐴 is the simplicial cotensor 𝐴𝟚 together with the canonical
endpoint evaluation isofibration

𝐴𝟚 ≔ 𝐴Δ[1] 𝐴𝜕Δ[1] ≅ 𝐴 × 𝐴
(𝑝1,𝑝0)

induced by the inclusion 𝜕Δ[1] ↪ Δ[1]. For conciseness, we write 𝑝0∶ 𝐴𝟚 ↠
𝐴 for the domain evaluation induced by the inclusion 0∶ 𝟙 ↪ 𝟚 and write
𝑝1∶ 𝐴𝟚 ↠ 𝐴 for the codomain evaluation induced by 1∶ 𝟙 ↪ 𝟚.

As an object of the homotopy 2-category, the ∞-category of arrows comes
equipped with a canonical 2-cell that we now construct.

Lemma 3.2.2 (generic arrow). For any∞-category𝐴, the∞-category of arrows
𝐴𝟚 comes equipped with a canonical 2-cell

𝐴𝟚 𝐴
𝑝0

𝑝1

⇓𝜅 (3.2.3)

that we refer to as the generic arrow with codomain 𝐴.

Proof The simplicial cotensor has a strict universal property described in
Digression 1.2.6: namely 𝐴𝟚 is characterized by the natural isomorphism

Fun(𝑋, 𝐴𝟚) ≅ Fun(𝑋, 𝐴)𝟚. (3.2.4)

By the Yoneda lemma, the data of the natural isomorphism (3.2.4) is encoded
by its “universal element”, which is defined to be the image of the identity at
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the representing object. Here the identity functor id∶ 𝐴𝟚 → 𝐴𝟚 is mapped to
an element of Fun(𝐴𝟚, 𝐴)𝟚, a 1-simplex in Fun(𝐴𝟚, 𝐴), which by Lemma 1.4.3
represents a 2-cell 𝜅 in the homotopy 2-category.

To see that the source and target of 𝜅 must be the domain evaluation and co-
domain evaluation functors, defined by cotensoring with the endpoint inclusion
𝟙 + 𝟙 ↪ 𝟚, we use the naturality of the isomorphism (3.2.4) in the cotensor
variable:

Fun(𝑋, 𝐴𝟚) Fun(𝑋, 𝐴)𝟚

Fun(𝑋, 𝐴 × 𝐴) Fun(𝑋, 𝐴) × Fun(𝑋, 𝐴)

≅

(𝑝1,𝑝0)∗ (cod,dom)

≅

The identity functor maps around the top-right composite to the pair of functors
(cod 𝜅, dom 𝜅) and around the left-bottom composite to the pair (𝑝1, 𝑝0).

There is a 2-categorical limit notion that is analogous to Definition 3.2.1,
which constructs, for any object𝐴, the universal 2-cell with codomain𝐴: namely
the (categorical) cotensor with the 1-category 𝟚. Its universal property is anal-
ogous to (3.2.4) but with the hom-categories of the 2-category in place of
the functor spaces (see Definition A.4.1). In the 2-category of categories, the
𝟚-cotensor defines the arrow category.

In the homotopy 2-category, by the Yoneda lemma again, the data (3.2.3)
encodes a natural transformation

hFun(𝑋, 𝐴𝟚) → hFun(𝑋, 𝐴)𝟚

of categories but this is not a natural isomorphism, nor even a natural equivalence
of categories. However, it does furnish the ∞-category of arrows with a “weak”
universal property of the following form:

Proposition 3.2.5 (the weak universal property of the arrow ∞-category). The
generic arrow (3.2.3) with codomain 𝐴 has a weak universal property in the
homotopy 2-category given by three operations:

(i) 1-cell induction: Given a natural transformation over 𝐴 as below-left

𝑋 𝑋

= 𝐴𝟚

𝐴 𝐴

𝑠𝑡
𝛼
⇐ 𝑠𝑡

⌜𝛼⌝

𝑝0𝑝1 𝜅⇐
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there exists a functor ⌜𝛼⌝∶ 𝑋 → 𝐴𝟚 so that 𝑠 = 𝑝0⌜𝛼⌝, 𝑡 = 𝑝1⌜𝛼⌝, and
𝛼 = 𝜅⌜𝛼⌝.

(ii) 2-cell induction: Given functors 𝑎, 𝑎′∶ 𝑋 → 𝐴𝟚 and natural transfor-
mations 𝜏1 and 𝜏0 so that

𝑋 𝑋

𝐴𝟚 𝐴𝟚 = 𝐴𝟚 𝐴𝟚

𝐴 𝐴

𝑎𝑎′

𝜏1
⇐

𝑎𝑎′

𝜏0
⇐

𝑝1

𝑝1

𝑝0

𝜅⇐
𝑝1

𝑝0
𝜅⇐ 𝑝0

there exists a natural transformation 𝜏∶ 𝑎 ⇒ 𝑎′ so that 𝑝1𝜏 = 𝜏1 and
𝑝0𝜏 = 𝜏0.

(iii) 2-cell conservativity: For any natural transformation 𝑋 𝐴𝟚
𝑎

𝑎′
⇓𝜏

if both 𝑝1𝜏 and 𝑝0𝜏 are isomorphisms then 𝜏 is an isomorphism.

Proof Let 𝑄 = Fun(𝑋, 𝐴) and apply Lemma 3.1.1 to observe that the natural
map of hom-categories

hFun(𝑋, 𝐴𝟚) hFun(𝑋, 𝐴)𝟚

hFun(𝑋, 𝐴) × hFun(𝑋, 𝐴)
((𝑝1)∗,(𝑝0)∗) (cod,dom)

over hFun(𝑋, 𝐴 × 𝐴) ≅ hFun(𝑋, 𝐴) × hFun(𝑋, 𝐴) is a smothering functor. Sur-
jectivity on objects is expressed by 1-cell induction, fullness by 2-cell induction,
and conservativity by 2-cell conservativity.

Note that the functors ⌜𝛼⌝∶ 𝑋 → 𝐴𝟚 that represent a given natural transfor-
mation 𝛼 with domain 𝑋 and codomain 𝐴 are not unique. However, they are
unique up to “fibered” isomorphisms that whisker with (𝑝1, 𝑝0)∶ 𝐴𝟚 ↠ 𝐴× 𝐴
to identities:

Proposition 3.2.6. Whiskering with (3.2.3) induces a bijection between natural
transformations with domain 𝑋 and codomain 𝐴 as displayed below-left

⎧
⎪

⎨
⎪
⎩

𝑋

𝐴

𝑠𝑡 𝛼⇐

⎫
⎪

⎬
⎪
⎭

↭

⎧⎪⎪

⎨
⎪⎪
⎩

𝑋

𝐴 𝐴

𝐴𝟚

𝑡 𝑠

⌜𝛼⌝

𝑝0𝑝1

⎫
⎪⎪
⎬
⎪⎪
⎭/≅
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and fibered isomorphism classes of functors 𝑋 → 𝐴𝟚 as displayed above-right,
where the fibered isomorphisms are given by invertible 2-cells

𝑋

𝐴 𝐴

𝐴𝟚

𝑡 𝑠

⌜𝛼⌝⌜𝛼⌝′
𝛾
≅

𝑝0𝑝1

so that 𝑝1𝛾 = id𝑡 and 𝑝0𝛾 = id𝑠.

Proof Lemma 3.1.3 proves that the fibers of the smothering functor of Propo-
sition 3.2.5 are connected groupoids. The objects of the fiber over 𝛼 are functors
𝑋 → 𝐴𝟚 that whisker with the generic arrow 𝜅 to 𝛼, and the morphisms are
invertible 2-cells that whisker with (𝑝1, 𝑝0)∶ 𝐴𝟚 ↠ 𝐴× 𝐴 to the identity 2-cell
(id𝑡, id𝑠). The action of the smothering functor defines a bijection between the
objects of its codomain and their corresponding fibers.

Our final task is to observe that the universal property of Proposition 3.2.5
is also enjoyed by any object (𝑒1, 𝑒0)∶ 𝐸 ↠ 𝐴 × 𝐴 that is equivalent to the ∞-
category of arrows (𝑝1, 𝑝0)∶ 𝐴𝟚 ↠ 𝐴×𝐴 in the slice∞-cosmos over𝐴 × 𝐴. We
have special terminology to allow us to concisely express the type of equivalence
we have in mind.

Definition 3.2.7 (fibered equivalence). A fibered equivalence over an ∞-cat-
egory 𝐵 in an ∞-cosmos 𝒦 is an equivalence

𝐸 𝐹

𝐵

∼
(3.2.8)

in the sliced ∞-cosmos 𝒦/𝐵. We write 𝐸 ≃𝐵 𝐹 to indicate that the specified
isofibrations with these domains are equivalent over 𝐵.

By Proposition 1.2.22(vii), a fibered equivalence is just a map between a
pair of isofibrations over a common base that defines an equivalence in the
underlying ∞-cosmos: the forgetful functor 𝒦/𝐵 → 𝒦 preserves and reflects
equivalences. Note, however, that it does not create them: It is possible for two
∞-categories 𝐸 and 𝐹 to be equivalent without there existing any equivalence
compatible with a pair of specified isofibrations 𝐸 ↠ 𝐵 and 𝐹 ↠ 𝐵.

Warning 3.2.9. At this point, there is some ambiguity about the 2-categorical
data that presents a fibered equivalence in an ∞-cosmos 𝒦/𝐵 related to the ques-
tion posed in Exercise 1.4.vii about the relationship between the 2-categories
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𝔥(𝒦/𝐵) and (𝔥𝒦)/𝐵. But since Proposition 1.2.22(vii) tells us that a mere equiv-
alence in 𝔥𝒦 involving a functor of the form (3.2.8) is sufficient to guarantee
that this as-yet-unspecified 2-categorical data exists, we defer a careful analysis
of this issue to Proposition 3.6.4.

Proposition 3.2.10 (uniqueness of arrow ∞-categories). For any isofibration
(𝑒1, 𝑒0)∶ 𝐸 ↠ 𝐴 × 𝐴 that is fibered equivalent to (𝑝1, 𝑝0)∶ 𝐴𝟚 ↠ 𝐴 × 𝐴 the
2-cell

𝐸 𝐴
𝑒0

𝑒1

⇓𝜖

encoded by the equivalence 𝑒∶ 𝐸 ∼ 𝐴𝟚 satisfies the weak universal property of
Proposition 3.2.5. Conversely, if the isofibrations (𝑑1, 𝑑0)∶ 𝐷 ↠ 𝐴 × 𝐴 and
(𝑒1, 𝑒0)∶ 𝐸 ↠ 𝐴 × 𝐴 are equipped with 2-cells

𝐷 𝐴 and 𝐸 𝐴
𝑑0

𝑑1

⇓𝛿

𝑒0

𝑒1

⇓𝜖

satisfying the weak universal property of Proposition 3.2.5, then 𝐷 ≃𝐴×𝐴 𝐸.

Proof We prove the first statement. By the defining equation of 1-cell induction
𝜖 = 𝜅𝑒, where 𝜅 is the generic arrow (3.2.3). Hence, the functor induced by
pasting with 𝜖 factors as a composite

hFun(𝑋, 𝐸) hFun(𝑋, 𝐴𝟚) hFun(𝑋, 𝐴)𝟚

hFun(𝑋, 𝐴) × hFun(𝑋, 𝐴)

∼𝑒∗

((𝑝1)∗,(𝑝0)∗) (cod,dom)

and our task is to prove that this composite functor is smothering. The first
functor, defined by postcomposing with the equivalence 𝑒∶ 𝐸 ∼ 𝐴𝟚, is an
equivalence of categories, and the second functor is smothering. Thus, the
composite is clearly full and conservative. To see that it is also surjective on
objects, note first that by 1-cell induction any 2-cell

𝑋 𝐴
𝑠

𝑡

⇓𝛼

is represented by a functor ⌜𝛼⌝∶ 𝑋 → 𝐴𝟚 over 𝐴 × 𝐴. Composing with any
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fibered inverse equivalence 𝑒′ to 𝑒 yields a functor

𝑋 𝐴𝟚 𝐸

𝐴 × 𝐴

⌜𝛼⌝

(𝑡,𝑠)

(𝑝1,𝑝0)

∼𝑒
′

(𝑒1,𝑒0)

whose image after postcomposing with 𝑒 is isomorphic to ⌜𝛼⌝ over 𝐴 × 𝐴.
Because this isomorphism is fibered in the sense of Proposition 3.2.6, the image
of 𝑒′⌜𝛼⌝ under the functor hFun(𝑋, 𝐸) → hFun(𝑋, 𝐴)𝟚 returns the 2-cell 𝛼. This
proves that this mapping is surjective on objects and hence defines a smothering
functor as claimed.

The converse is left to Exercise 3.2.ii and proven in a more general context in
Proposition 3.4.11.

Convention 3.2.11. On account of Proposition 3.2.10, we extend the appel-
lation “∞-category of arrows” from the strict model constructed in Definition
3.2.1 to any ∞-category that is fibered equivalent to it.

Via Lemma 3.1.4, the results of this section extend to corresponding weak
universal properties for the cotensors𝐴𝐽 of an∞-category𝐴with a free category
𝐽, as the reader is invited to explore.

Exercises
Exercise 3.2.i. This exercise revisits the result of Proposition 3.2.6.

(i) Prove that a parallel pair of 1-simplices 𝑓, 𝑔∶ 𝑥 → 𝑦 in a quasi-category
𝑄 are homotopic if and only if they are isomorphic as elements of 𝑄𝟚 via
an isomorphism that projects to an identity along (𝑝1, 𝑝0)∶ 𝑄𝟚 ↠ 𝑄×𝑄.

(ii) Conclude that a parallel pair of 1-arrows in the functor space between
two ∞-categories 𝑋 and 𝐴 in any ∞-cosmos represent the same nat-
ural transformation if and only if they are isomorphic as elements of
Fun(𝑋, 𝐴)𝟚 ≅ Fun(𝑋, 𝐴𝟚) via an isomorphism whose domain and codo-
main components are an identity.

(iii) Conclude that a parallel pair of 1-arrows in Fun(𝑋, 𝐴), which may be
encoded as functors 𝑋 → 𝐴𝟚, represent the same natural transformation
if and only if they are connected by a fibered isomorphism:

𝑋 𝐴𝟚

𝐴 × 𝐴

≅

(𝑝1,𝑝0)
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Exercise 3.2.ii. Prove the converse implication of Proposition 3.2.10.

Exercise 3.2.iii. Extend the results of Propositions 3.2.5 and Proposition 3.2.6
to describe the weak universal property of the cotensor 𝐴𝐽 of an ∞-category 𝐴
by a category 𝐽 that is freely generated from some reflexive directed graph.

3.3 Pullbacks of Isofibrations

Pullbacks and limits of towers of isofibrations in an ∞-cosmos also have weak
2-dimensional universal properties in the homotopy 2-category, though we
generally exploit the strict universal properties of the simplicially enriched limits
instead. However, the weak 2-dimensional universal property of pullbacks can
be used to prove that equivalences pull back along isofibrations to equivalences,
which in turn is used to establish the equivalence invariance of pullbacks in an
∞-cosmos.

Proposition 3.3.1 (the weak universal property of the pullback). The pullback
of an isofibration along a functor in an ∞-cosmos

𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵

𝑔

𝑞
⌟

𝑝

𝑓

has a weak universal property in the homotopy 2-category given by three opera-
tions:

(i) 1-cell induction: Commutative squares 𝑝𝑒 = 𝑓𝑎 over the cospan under-
lying a pullback diagram factor uniquely through the pullback square

𝑋

𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵

𝑒

𝑎

∃!𝑥

𝑔

𝑞
⌟

𝑝

𝑓

(ii) 2-cell induction: Given functors 𝑥, 𝑥′∶ 𝑋 → 𝐴×
𝐵
𝐸 and natural transfor-

mations 𝛼∶ 𝑞𝑥 ⇒ 𝑞𝑥′ and 𝜖∶ 𝑔𝑥 ⇒ 𝑔𝑥′ so that 𝑝𝜖 = 𝑓𝛼, there exists a
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natural transformation 𝜏∶ 𝑥 ⇒ 𝑥′ so that 𝑞𝜏 = 𝛼 and 𝑔𝜏 = 𝜖.

𝑋 𝑋

𝐸 𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵 𝐴 𝐵

𝑞𝑥𝑞𝑥′
𝛼
⇙

𝑔𝑥

𝑔𝑥′

𝜖⇙

𝑥

𝑥′
∃𝜏⇙

= 𝑝

𝑔

𝑞
⌟

𝑝

𝑓 𝑓

(iii) 2-cell conservativity: For any 𝑋 𝐴 ×
𝐵
𝐸

𝑥

𝑥′
𝜏⇓ if both 𝑞𝜏 and 𝑔𝜏

are isomorphisms then 𝜏 is an isomorphism.

Proof Apply Lemma 3.1.5 to the pullback diagram of quasi-categories

Fun(𝑋, 𝐴 ×
𝐵
𝐸) Fun(𝑋, 𝐸)

Fun(𝑋, 𝐴) Fun(𝑋, 𝐵)

𝑔∗

𝑞∗
⌟

𝑝∗

𝑓∗

to observe that the natural map of hom-categories

hFun(𝑋, 𝐴 ×
𝐵
𝐸) hFun(𝑋, 𝐴) ×

hFun(𝑋,𝐵)
hFun(𝑋, 𝐸)

is a bijective-on-objects smothering functor. Bijectivity on objects is expressed
by 1-cell induction, fullness by 2-cell induction, and conservativity by 2-cell
conservativity.

Digression 3.3.2 (weakly cartesian squares). A commutative square between
parallel isofibrations is weakly cartesian if the induced map to the pullback is
an equivalence:

𝐹 𝐸
•

𝐴 𝐵

𝑞

𝑔
∼

𝑝⌟

𝑓

Weakly cartesian squares also satisfy 2-cell induction and 2-cell conservativity
as well as a modified form of the 1-cell induction property, where the essentially
unique induced functor commutes strictly over 𝐵 and up to an isomorphism over
𝐸 that projects along 𝑝 to the identity [110, 3.5.4].
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It follows from the weak 2-categorical universal property of the pullback that
∞-cosmoi are right proper, meaning that the pullback of any equivalence along
an isofibration defines an equivalence.

Proposition 3.3.3. In any ∞-cosmos, the pullback of an equivalence along an
isofibration is an equivalence.

𝐹 𝐸

𝐴 𝐵

𝑞

∼𝑔

⌟
𝑝

∼
𝑓

Proof By Proposition 2.1.12, we may choose an adjoint equivalence inverse
to 𝑓 and pick invertible 2-cells 𝛼∶ id𝐴 ≅ 𝑓−1𝑓 and 𝛽∶ 𝑓𝑓−1 ≅ id𝐵 satisfying
the triangle equalities in the homotopy 2-category.3 Now since the map 𝑝 is an
isofibration, we may use Proposition 1.4.9 to lift the isomorphism 𝛽𝑝∶ 𝑓𝑓−1𝑝 ≅
𝑝 along 𝑝 to define an isomorphism 𝜖∶ 𝑒 ≅ id𝐸 with codomain id𝐸∶ 𝐸 → 𝐸.
By construction 𝑝𝑒 = 𝑓𝑓−1𝑝, so by 1-cell induction the pair (𝑓−1𝑝, 𝑒) induces
a map 𝑔−1∶ 𝐸 → 𝐹 so that 𝑞𝑔−1 = 𝑓−1𝑝 and 𝑔𝑔−1 = 𝑒. In this way we obtain
an isomorphism 𝜖∶ 𝑔𝑔−1 ≅ id𝐸 with 𝑝𝜖 = 𝛽𝑝.

Now by 2-cell induction and conservativity of Proposition 3.3.1, to define an
isomorphism id𝐹 ≅ 𝑔−1𝑔, it suffices to exhibit a pair of isomorphisms

𝛼𝑞∶ 𝑞 ≅ 𝑓−1𝑓𝑞 = 𝑓−1𝑝𝑔 = 𝑞𝑔−1𝑔 and 𝜖−1𝑔∶ 𝑔 ≅ 𝑔𝑔−1𝑔

so that 𝑓𝛼𝑞 = 𝑝𝜖−1𝑔. This latter equation holds because 𝑝𝜖−1𝑔 = 𝛽−1𝑝𝑔 =
𝛽−1𝑓𝑞 = 𝑓𝛼𝑞 by the triangle equality 𝛽𝑓 ⋅ 𝑓𝛼 = id𝑓 for the adjoint equivalence
𝑓 ⊣ 𝑓−1. Thus, we may lift the data of an inverse equivalence to 𝑓 to define an
inverse equivalence to its pullback 𝑔.

As a consequence of right properness, pullback is an equivalence invariant
construction in any ∞-cosmos.

Proposition 3.3.4. Given a diagram of isofibrations and equivalences in any
∞-cosmos

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵

∼𝑟

𝑔

∼ 𝑝 ∼ 𝑞

𝑓

𝑔̄ ̄𝑓

the induced map 𝐶 ×𝐴 𝐵 → ̄𝐶 ×𝐴̄ ̄𝐵 between the pullbacks of the horizontal
rows is again an equivalence.
3 It is for this reason that we work with the weak 2-categorical universal property of the pullback

rather than the simplicially enriched universal property.
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Proof By factoring via Lemma 1.2.19, we can replace the map ̄𝑔 by an isofi-
bration. By the 2-of-3 property and the right properness of Proposition 3.3.3,
the pullback of this isofibration along the equivalence 𝑝 is equivalent to the map
𝑔:

𝐶 𝑃 𝐴 𝐶 ×
𝐴
𝐵 𝑃 ×

𝐴
𝐵 𝐵

̄𝐶 ̄𝑃 ̄𝐴 𝐶 𝑃 𝐴

𝑔

∼

∼𝑟 ∼

⌟
∼ 𝑝

∼

⌟ ⌟
𝑓

𝑔̄

∼ ∼

By right properness again, the pullback of 𝑃 ↠ 𝐴 along 𝑓 is equivalent to the
pullback of 𝑔∶ 𝐶 → 𝐴 along 𝑓 and similarly for the lower-horizontal maps. So
without loss of generality, we may assume that the maps 𝑔 and ̄𝑔 of the statement
are isofibrations and the left-hand square is a pullback.

Under these new hypothesis, the top, bottom, and front faces of the cube are
pullback squares:

𝐶 ×
𝐴
𝐵 𝐵

𝐶 𝐴

̄𝐶 ×̄
𝐴

̄𝐵 ̄𝐵

̄𝐶 ̄𝐴

⌟

∼ 𝑞

𝑓

⌟
𝑔

∼𝑟
⌟

̄𝑓

𝑔̄

𝑝≀

so by pullback composition and cancelation, the back face is a pullback square as
well. Now the induced map 𝐶×𝐴𝐵 → ̄𝐶×𝐴̄ ̄𝐵 is the pullback of the equivalence
𝑞 along an isofibration and hence is an equivalence by Proposition 3.3.3.

Exercises
Exercise 3.3.i. Use Proposition 3.3.1 to prove that for any isofibration and
parallel pair of isomorphic functors

𝐸

𝐴 𝐵

𝑝
𝑓

𝑓′
≅⇓𝛼

their pullbacks are equivalent over 𝐴.
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Exercise 3.3.ii. State and prove an analogous result to Proposition 3.3.1 that
describes the weak 2-categorical universal property of limits of towers of isofi-
brations.

Exercise 3.3.iii. Use the result of Exercise 3.3.ii to prove that a natural equiv-
alence between towers of isofibrations induces an equivalence between their
limits by adapting the construction given in the proofs of Propositions 3.3.3 and
3.3.4.

3.4 The Comma Construction

The comma ∞-category is defined by restricting the domain and codomain of
the ∞-category of arrows 𝐴𝟚 along a pair of specified functors with codomain
𝐴.

Definition 3.4.1 (comma ∞-category). Let 𝐶 𝑔 𝐴 𝑓 𝐵 be a diagram of
∞-categories. The comma ∞-category is constructed as a pullback of the
simplicial cotensor 𝐴𝟚 along 𝑔 × 𝑓

Hom𝐴(𝑓, 𝑔) 𝐴𝟚

𝐶 × 𝐵 𝐴 × 𝐴

(𝑝1,𝑝0)

⌜𝜙⌝

⌟
(𝑝1,𝑝0)

𝑔×𝑓

(3.4.2)

This construction equips the comma ∞-category with a specified isofibration
(𝑝1, 𝑝0)∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐶 × 𝐵 and a canonical natural transformation

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

(3.4.3)

in the homotopy 2-category called the comma cone.

By the universal property (3.4.2), an element (𝛼, 𝑏, 𝑐)∶ 1 → Hom𝐴(𝑓, 𝑔)
of the comma ∞-category is a triple where 𝑏 and 𝑐 are elements of 𝐵 and 𝐶,
respectively, and 𝛼∶ 𝑓𝑏 → 𝑔𝑐 is an arrow in 𝐴 with domain 𝑓𝑏 and codomain
𝑔𝑐.

Example 3.4.4. The∞-category of arrows arises as a special case of the comma
construction applied to the identity span. This provides us with alternate notation
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for the generic arrow of (3.2.3), which may be regarded as a particular instance
of a comma cone.

Hom𝐴

𝐴 𝐴

𝐴

𝑝1 𝑝0

𝜙
⇐

The following proposition encodes the homotopical properties of the comma
construction.

Proposition 3.4.5 (maps between commas). A commutative diagram

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵

𝑟

𝑔

𝑝 𝑞

𝑓

𝑔̄ ̄𝑓

induces a map between the comma ∞-categories

Hom𝐴(𝑓, 𝑔) Hom𝐴̄( ̄𝑓, ̄𝑔)

𝐶 × 𝐵 ̄𝐶 × ̄𝐵

(𝑝1,𝑝0)

Hom𝑝(𝑞,𝑟)

(𝑝1,𝑝0)

𝑟×𝑞

Moreover, if 𝑝, 𝑞, and 𝑟 are all isofibrations, all trivial fibrations, or all equiva-
lences then the induced map is again an isofibration, trivial fibration, or equiva-
lence, respectively.

Proof The map of cospans gives rise to a commutative diagram

𝐶 × 𝐵 𝐴 × 𝐴 𝐴𝟚

•

̄𝐶 × ̄𝐵 ̄𝐴 × ̄𝐴 ̄𝐴𝟚

𝑟×𝑞

𝑔×𝑓

𝑝×𝑝

(𝑝1,𝑝0)

𝑝𝟚⌞

𝑔̄× ̄𝑓 (𝑝1,𝑝0)

in which the dotted map is the Leibniz tensor of the monomorphism 𝟙 + 𝟙 ↪ 𝟚
with 𝑝. If 𝑝, 𝑞, and 𝑟 are isofibrations or trivial fibrations, then this map and the
four other downwards pointing maps are all isofibrations or trivial fibrations,
respectively, by axiom 1.2.1(ii) and Lemma 1.2.14. By Proposition C.1.12, the
map Hom𝑝(𝑞, 𝑟) is again a isofibration or trivial fibration (see Exercise 3.4.i).
In the case where 𝑝, 𝑞, and 𝑟 are equivalences, Lemma 1.2.15 implies that the
maps 𝑟 × 𝑞, 𝑝 × 𝑝, and 𝑝𝟚 are as well, so Proposition 3.3.4 applies to prove that
Hom𝑝(𝑞, 𝑟) is an equivalence.
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There is a 2-categorical limit notion that is analogous to Definition 3.4.1,
which constructs the universal 2-cell inhabiting a square over a specified cospan.
In 𝒞𝑎𝑡 this universal property characterizes the comma category, from which
we borrow the name. As with the case of ∞-categories of arrows, comma
∞-categories do not satisfy this 2-universal property strictly. Instead:

Proposition 3.4.6 (the weak universal property of the comma∞-category). The
comma cone (3.4.3) has a weak universal property in the homotopy 2-category
given by three operations:

(i) 1-cell induction: Given a natural transformation over 𝐶 𝑔 𝐴 𝑓 𝐵 as
below-left

𝑋

𝐶 𝐵

𝐴

𝑐 𝑏

𝛼
⇐

𝑔 𝑓

=

𝑋

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑐 𝑏⌜𝛼⌝

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

there exists a functor ⌜𝛼⌝∶ 𝑋 → Hom𝐴(𝑓, 𝑔) so that 𝑏 = 𝑝0⌜𝛼⌝, 𝑐 =
𝑝1⌜𝛼⌝, and 𝛼 = 𝜙⌜𝛼⌝.

(ii) 2-cell induction: Given functors 𝑎, 𝑎′∶ 𝑋 → Hom𝐴(𝑓, 𝑔) and natural
transformations 𝜏1 and 𝜏0 so that

𝑋

Hom𝐴(𝑓, 𝑔) Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑎𝑎′

𝜏1
⇐

𝑝1

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

𝑋

Hom𝐴(𝑓, 𝑔) Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑎𝑎′

𝜏0
⇐

𝑝1 𝑝0

𝜙
⇐

𝑝0

𝑔 𝑓

there exists a natural transformation 𝜏∶ 𝑎 ⇒ 𝑎′ so that 𝑝1𝜏 = 𝜏1 and
𝑝0𝜏 = 𝜏0.

(iii) 2-cell conservativity: For any 𝑋 Hom𝐴(𝑓, 𝑔)
𝑎

𝑎′
⇓𝜏 if both 𝑝1𝜏

and 𝑝0𝜏 are isomorphisms then 𝜏 is an isomorphism.

Proof The cosmological functor Fun(𝑋, −)∶ 𝒦 → 𝒬𝒞𝑎𝑡 carries the pullback
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(3.4.2) to a pullback

Fun(𝑋,Hom𝐴(𝑓, 𝑔))

HomFun(𝑋,𝐴)(Fun(𝑋, 𝑓), Fun(𝑋, 𝑔)) Fun(𝑋, 𝐴)𝟚

Fun(𝑋, 𝐶) × Fun(𝑋, 𝐵) Fun(𝑋, 𝐴) × Fun(𝑋, 𝐴)
≅

(𝑝1,𝑝0)

𝜙

⌟
(𝑝1,𝑝0)

Fun(𝑋,𝑔)×Fun(𝑋,𝑓)

of quasi-categories. Now Lemma 3.1.7 demonstrates that the canonical 2-cell
(3.4.3) induces a natural map of hom-categories

hFun(𝑋,Hom𝐴(𝑓, 𝑔)) HomhFun(𝑋,𝐴)(hFun(𝑋, 𝑓), hFun(𝑋, 𝑔))

hFun(𝑋, 𝐶) × hFun(𝑋, 𝐵)
((𝑝1)∗,(𝑝0)∗) (cod,dom)

over hFun(𝑋, 𝐶 × 𝐵) ≅ hFun(𝑋, 𝐶) × hFun(𝑋, 𝐵) that is a smothering functor.
The properties of 1-cell induction, 2-cell induction, and 2-cell conservativity fol-
low from surjectivity on objects, fullness, and conservativity of this smothering
functor, respectively.

The functors ⌜𝛼⌝∶ 𝑋 → Hom𝐴(𝑓, 𝑔) induced by a fixed natural transforma-
tion 𝛼∶ 𝑓𝑏 ⇒ 𝑔𝑐 are unique up to fibered isomorphism over 𝐶 × 𝐵.

Proposition 3.4.7. Whiskering with the comma cone (3.4.3) induces a bijection
between natural transformations as displayed below-left

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑋

𝐶 𝐵

𝐴

𝑐 𝑏

𝛼
⇐

𝑔 𝑓

⎫
⎪⎪

⎬
⎪⎪
⎭

↭

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑋

𝐶 𝐵

Hom𝐴(𝑓, 𝑔)

𝑐 𝑏

⌜𝛼⌝

𝑝0𝑝1

⎫
⎪⎪

⎬
⎪⎪
⎭/≅

and fibered isomorphism classes of maps of spans from 𝐶 to 𝐵 as displayed
above-right, where the fibered isomorphisms are given by invertible 2-cells

𝑋

𝐶 𝐵

Hom𝐴(𝑓, 𝑔)

𝑐 𝑏

⌜𝛼⌝⌜𝛼⌝′
𝛾
≅

𝑝0𝑝1

so that 𝑝1𝛾 = id𝑐 and 𝑝0𝛾 = id𝑏.
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Proof Lemma 3.1.3 proves that the fibers of the smothering functor of Propo-
sition 3.4.6 are connected groupoids. The objects of the fiber over 𝛼 are functors
𝑋 → Hom𝐴(𝑓, 𝑔) that whisker with the comma cone 𝜙 to 𝛼, and the morphisms
are invertible 2-cells that whisker with

(𝑝1, 𝑝0)∶ Hom𝐴(𝑓, 𝑔) 𝐶 × 𝐵

to the identity 2-cell (id𝑐, id𝑏). The action of the smothering functor defines a
bijection between the objects of its codomain and their corresponding fibers.

Oplax maps of cospans in the homotopy 2-category also induce maps of
comma ∞-categories:

Observation 3.4.8. By 1-cell induction a diagram

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵

𝑟

𝑔

⇓𝛾 𝑝 ⇓𝛽 𝑞

𝑓

𝑔̄ ̄𝑓

induces a map between comma ∞-categories as displayed below-right:

Hom𝐴(𝑓, 𝑔) Hom𝐴(𝑓, 𝑔)

𝐶 𝐵 Hom𝐴̄( ̄𝑓, ̄𝑔)

̄𝐶 𝐴 ̄𝐵 ̄𝐶 ̄𝐵

̄𝐴 ̄𝐴

𝑝1 𝑝0

𝜙
⇐

𝛽↓𝛾
𝑞𝑝0𝑟𝑝1

𝑔
𝑟

𝑓 𝑞 =
𝑝1 𝑝0

𝜙
⇐⇐𝛾

𝑔̄
𝑝

⇐𝛽

̄𝑓 𝑔̄ ̄𝑓

that is well-defined and functorial up to fibered isomorphism (see Exercise
3.4.ii).

One of many uses of comma ∞-categories is to define the internal mapping
spaces between two elements of an ∞-category 𝐴. This is one motivation for
our notation “Hom𝐴.”

Definition 3.4.9 (mapping space). The mapping space between two elements
𝑥, 𝑦∶ 1 → 𝐴 of an ∞-category is the comma ∞-category Hom𝐴(𝑥, 𝑦) defined
by the pullback diagram

Hom𝐴(𝑥, 𝑦) 𝐴𝟚

1 𝐴 × 𝐴

(𝑝1,𝑝0)

⌜𝜙⌝

⌟
(𝑝1,𝑝0)

(𝑦,𝑥)
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Mapping spaces are discrete in the sense of Definition 1.2.26:

Proposition 3.4.10 (mapping spaces are discrete). For any pair of elements
𝑥, 𝑦∶ 1 → 𝐴 of an ∞-category 𝐴, the mapping space Hom𝐴(𝑥, 𝑦) is discrete.

Proof We must show that the functor space Fun(𝑋,Hom𝐴(𝑥, 𝑦)) is a Kan
complex for any ∞-category 𝑋. This is so just when hFun(𝑋,Hom𝐴(𝑥, 𝑦)) is
a groupoid, i.e., when any 2-cell with codomain Hom𝐴(𝑥, 𝑦) is invertible. By
2-cell conservativity, a 2-cell with codomain Hom𝐴(𝑥, 𝑦) is invertible just when
its whiskered composite with the isofibration (𝑝1, 𝑝0)∶ Hom𝐴(𝑥, 𝑦) ↠ 1 × 1 is
an invertible 2-cell, but in fact this whiskered composite is an identity since 1 is
2-terminal.

The weak universal property of Proposition 3.4.6 characterizes comma ∞-
categories up to fibered equivalence (see Definition 3.2.7) over 𝐶 × 𝐵.

Proposition 3.4.11 (uniqueness of comma ∞-categories). For any isofibration
(𝑒1, 𝑒0)∶ 𝐸 ↠ 𝐶 × 𝐵 that is fibered equivalent to Hom𝐴(𝑓, 𝑔) ↠ 𝐶 × 𝐵 the
2-cell

𝐸

𝐶 𝐵

𝐴

𝑒1 𝑒0

𝜖
⇐

𝑔 𝑓

encoded by the equivalence 𝑒∶ 𝐸 ∼ Hom𝐴(𝑓, 𝑔) satisfies the weak univer-
sal property of Proposition 3.4.6. Conversely, if (𝑑1, 𝑑0)∶ 𝐷 ↠ 𝐶 × 𝐵 and
(𝑒1, 𝑒0)∶ 𝐸 ↠ 𝐶 × 𝐵 are equipped with 2-cells

𝐷 𝐸

𝐶 𝐵 and 𝐶 𝐵

𝐴 𝐴

𝑑1 𝑑0

𝛿
⇐

𝑒1 𝑒0

𝜖
⇐

𝑔 𝑓 𝑔 𝑓

(3.4.12)

satisfying the weak universal property of Proposition 3.4.6, then 𝐷 ≃𝐶×𝐵 𝐸.

Proof The proof of the first statement proceeds exactly as in the special case
of Proposition 3.2.10. We prove the converse, solving Exercise 3.2.ii.

Consider a pair of 2-cells (3.4.12) satisfying the weak universal properties
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enumerated in Proposition 3.4.6. 1-cell induction supplies a map of spans

𝐷

𝐶 𝐵

𝐴

𝑑1 𝑑0

𝛿
⇐

𝑔 𝑓

=

𝐷

𝐸

𝐶 𝐵

𝐴

𝑑1 𝑑0⌜𝛿⌝

𝑒1 𝑒0

𝜖
⇐

𝑔 𝑓

Exchanging the roles of 𝛿 and 𝜖 yields a second map of spans ⌜𝜖⌝∶ 𝐸 → 𝐷 with
the property that 𝜖⌜𝛿⌝⌜𝜖⌝ = 𝜖 and 𝛿⌜𝜖⌝⌜𝛿⌝ = 𝛿. By Proposition 3.4.7 it follows
that ⌜𝛿⌝⌜𝜖⌝ ≅ id𝐸 over 𝐶 × 𝐵 and ⌜𝜖⌝⌜𝛿⌝ ≅ id𝐷 over 𝐶 × 𝐵. This defines the
data of a fibered equivalence 𝐷 ≃ 𝐸.4

As is our convention for ∞-categories of arrows, it is convenient extend
the appellation “comma ∞-category” from the strict model constructed in
Definition 3.4.1 to any ∞-category that is fibered equivalent to it and refer to its
accompanying 2-cell as the “comma cone.” For example, in §4.2, we introduce
multiple models for the ∞-category of cones over a fixed simplicial set indexed
diagram, which are useful in developing various equivalent formulations of the
universal property of limits.

Exercises
Exercise 3.4.i (C.1.12). Complete the proof of Proposition 3.4.5 by observing
that the map Hom𝑝(𝑞, 𝑟) factors as a pullback of the Leibniz cotensor of 𝜕Δ[1] ↪
Δ[1] with 𝑝 followed by a pullback of 𝑟 × 𝑞.

Exercise 3.4.ii. Use Proposition 3.4.7 to justify the functoriality up to isomorph-
ism of the comma construction in oplax morphisms described in Observation
3.4.8.

Exercise 3.4.iii. Exercises 3.4.i and 3.4.ii illustrate the relative advantages and
disadvantages of strict simplicial and weak 2-categorical universal properties of
the comma∞-category construction: the former gives a strictly functorial action
but only of strictly commutative maps of cospans, while the latter gives an action
of oplax transformations of cospans that is only functorial up to isomorphism.
Mediating between these two constructions, use Lemma 1.2.19 and Proposition
4 As alluded to in Warning 3.2.9, there is a slight ambiguity in the 2-categorical data that encodes

a fibered equivalence. Proposition 3.6.4 provides a small boost to finish this proof.
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1.4.9 to rectify a pseudo-commutative diagram

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵

𝑟

𝑔

≅⇓𝛾 𝑝 ≅⇓𝛽 𝑞

𝑓

𝑔̄ ̄𝑓

into an equivalent strictly commutative diagram and prove that the induced map
Hom𝑝(𝑞, 𝑟) is equivalent to 𝛽 ↓ 𝛾.

Exercise 3.4.iv. Show that the functor between comma ∞-categories induced
by a diagram

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵
∼𝑟

𝑔

≅⇓𝛾 ∼ 𝑝 ≅⇓𝛽 ∼ 𝑞

𝑓

𝑔̄ ̄𝑓

in which 𝛽 and 𝛾 are isomorphisms and 𝑝, 𝑞, and 𝑟 are equivalences defines an
equivalence over 𝑟 × 𝑞.

Hom𝐴(𝑓, 𝑔) Hom𝐴̄( ̄𝑓, ̄𝑔)

𝐶 × 𝐵 ̄𝐶 × ̄𝐵
∼𝛽↓𝛾

(𝑝1,𝑝0) (𝑝1,𝑝0)

∼
𝑟×𝑞

3.5 Representable Comma ∞-Categories

Definition 3.4.1 constructs a comma ∞-category for any cospan. In the special
cases where one of the legs of the cospan is an identity, this provides two dual
mechanisms to encode a functor between ∞-categories as an ∞-category itself.

Definition 3.5.1 (left and right representations). Any functor𝑓∶ 𝐴 → 𝐵 admits
a left representation and a right representation as a comma ∞-category,
displayed below-left and below-right:

Hom𝐵(𝑓, 𝐵) Hom𝐵(𝐵, 𝑓)

𝐵 𝐴 𝐴 𝐵

𝑝1 𝑝0
𝜙
⇐

𝑝1 𝑝0
𝜙
⇐

𝑓 𝑓
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where we save space by depicting the left comma cone over 𝑓 displayed above-
left and the right comma cone over 𝑓 displayed above-right as inhabiting
triangles rather than squares.

By Proposition 3.4.11, the weak universal property of the comma cone char-
acterizes the comma span up to fibered equivalence over the product of the
codomain objects. Thus:

Definition 3.5.2. Given a cospan 𝐶 𝑔 𝐴 𝑓 𝐵, the comma ∞-category
Hom𝐴(𝑓, 𝑔) ↠ 𝐶 × 𝐵 is left representable if there exists a functor ℓ∶ 𝐵 → 𝐶
so that

Hom𝐴(𝑓, 𝑔) ≃𝐶×𝐵 Hom𝐶(ℓ, 𝐶)

and right representable if there exists a functor 𝑟∶ 𝐶 → 𝐵 so that

Hom𝐴(𝑓, 𝑔) ≃𝐶×𝐵 Hom𝐵(𝐵, 𝑟).

In this section, we prove a representability theorem: a comma ∞-category
Hom𝐴(𝑓, 𝑔) is right representable if and only if 𝑔∶ 𝐶 → 𝐴 admits an absolute
right lifting along 𝑓∶ 𝐵 → 𝐴, in which case the representing functor 𝑟∶ 𝐶 → 𝐵
defines the postulated lifting. We prove this result over the course of three
theorems, each strengthening the previous statement.

The first theorem characterizes those natural transformations

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟

that define absolute right lifting diagrams as those that induce fibered equiv-
alences Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓, 𝑔) between comma ∞-categories. The
second theorem proves that a functor 𝑟 defines an absolute right lifting of 𝑔
through 𝑓 just when Hom𝐴(𝑓, 𝑔) is right represented by 𝑟; the difference is that
no natural transformation 𝜌∶ 𝑓𝑟 ⇒ 𝑔 need be provided. The final theorem
gives a general right representability criterion that can be applied to construct a
right representation to Hom𝐴(𝑓, 𝑔) without a priori specifying the representing
functor 𝑟. Dual results characterize left representable comma ∞-categories.

Theorem 3.5.3. The triangle below-left defines an absolute right lifting diagram
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if and only if the induced functor below-right

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟 ⇝

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

(3.5.4)
defines a fibered equivalence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓, 𝑔).

In [123], Street and Walters interpret the equivalence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵
Hom𝐴(𝑓, 𝑔) encoding an absolute right lifting diagram as asserting that “𝑓 is
left adjoint to 𝑟 relative to 𝑔.” This notion of relative adjunction, first studied by
Ulmer [126], should be compared with the definitions of adjunction given in
Lemma 2.3.7 and Proposition 4.1.1.

Proof Suppose that (𝑟, 𝜌) defines an absolute right lifting of 𝑔 through 𝑓, and
consider the unique factorization of the comma cone under Hom𝐴(𝑓, 𝑔) through
𝜌 displayed by the left-hand pasting equality:

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0∃!𝜁
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐴(𝑓, 𝑔)

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑧

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

(3.5.5)
By 1-cell induction, the natural transformation 𝜁 factors through the right comma
cone over 𝑟 as displayed above-center. Substituting (3.5.4) into the bottom
portion of the above-right diagram, we see that 𝑦𝑧∶ Hom𝐴(𝑓, 𝑔) → Hom𝐴(𝑓, 𝑔)
is a functor that factors the comma cone for Hom𝐴(𝑓, 𝑔) through itself. Applying
the universal property of Proposition 3.4.7, it follows that there is a fibered
isomorphism 𝑦𝑧 ≅ idHom𝐴(𝑓,𝑔) over 𝐶 × 𝐵.

To prove that 𝑧𝑦 ≅ idHom𝐵(𝐵,𝑟) it suffices to argue similarly that the right
comma cone over 𝑟 restricts along 𝑧𝑦 to itself. Since (𝑟, 𝜌) is absolute right
lifting, it suffices to verify the equality 𝜙𝑧𝑦 = 𝜙 after pasting below with 𝜌. But
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now reversing the order of the equalities in (3.5.5) and (3.5.4) we have

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝑦

𝑝1 𝑝0

𝑧

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

which is exactly what we wanted to show. Thus, we see that if (𝑟, 𝜌) is an
absolute right lifting of 𝑔 through 𝑓, then the induced map (3.5.4) defines a
fibered equivalence Hom𝐵(𝐵, 𝑟) ≃ Hom𝐴(𝑓, 𝑔).

Now, conversely, suppose the functor 𝑦 defined by (3.5.4) is a fibered equiva-
lence and let us argue that (𝑟, 𝜌) is an absolute right lifting of 𝑔 through 𝑓. By
Proposition 3.4.11, the natural transformation displayed on the left-hand side
of the equality in (3.5.4) inherits the weak universal property of a comma cone
from Hom𝐴(𝑓, 𝑔). So Proposition 3.4.7 supplies a bijection displayed below-left

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑋

𝐶 𝐵

𝐴

𝑐 𝑏

𝛼
⇐

𝑔 𝑓

⎫
⎪⎪

⎬
⎪⎪
⎭

↭

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑋

𝐶 𝐵

Hom𝐵(𝐵, 𝑟)

𝑐 𝑏

𝑎

𝑝0𝑝1

⎫
⎪⎪

⎬
⎪⎪
⎭/≅

↭
⎧⎪
⎨⎪
⎩

𝑋

𝐶 𝐵

𝑐 𝑏𝜉
⇐

𝑟

⎫⎪
⎬⎪
⎭

between 2-cells over the cospan and fibered isomorphism classes of maps of
spans that is implemented, from center to left, by whiskering with the 2-cell
𝜌𝑝1 ⋅ 𝑓𝜙∶ 𝑓𝑝0 ⇒ 𝑔𝑝1 in the center of (3.5.4). Proposition 3.4.7 also applies to
the right comma cone 𝜙 over 𝑟∶ 𝐶 → 𝐵 giving us a second bijection, displayed
above-center-right between the same fibered isomorphism classes of maps of
spans and 2-cells over 𝑟. This second bijection is implemented, from center to
right, by pasting with the right comma cone 𝜙∶ 𝑝0 ⇒ 𝑟𝑝1. Combining these
yields a bijection between the 2-cells displayed on the right and the 2-cells
displayed on the left implemented by pasting with 𝜌, which is precisely the
universal property that characterizes absolute right lifting diagrams.

As a special case of this result:
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Corollary 3.5.6. The following are equivalent, and define what it means for a
functor 𝑓∶ 𝐴 → 𝐵 between ∞-categories to be fully faithful:

(i) The identity defines an absolute right lifting diagram:

𝐴

𝐴 𝐵

=

𝑓

𝑓

(ii) The identity defines an absolute left lifting diagram:

𝐴

𝐴 𝐵
=

𝑓

𝑓

(iii) For any ∞-category 𝑋 the induced functor

𝑓∗∶ hFun(𝑋, 𝐴) → hFun(𝑋, 𝐵)

is a fully faithful functor of 1-categories.
(iv) The functor induced by the identity 2-cell id𝑓 defines a fibered equiva-

lence 𝐴𝟚 ≃𝐴×𝐴 Hom𝐵(𝑓, 𝑓).

𝐴𝟚

𝐴 𝐴

Hom𝐵(𝑓, 𝑓)

𝑝1 𝑝0

∼ ⌜𝑓𝜅⌝

𝑝1 𝑝0

Proof The statement (iii) is an unpacking of the meaning of both (i) and (ii).
Theorem 3.5.3 specializes to prove (i)⇔(iv) or dually (ii)⇔(iv).

It is not surprising that postcomposition with a fully faithful functor of ∞-
categories induces a fully faithful functor of hom-categories in the homotopy
2-category, and in particular between the homotopy categories (see Definition
1.4.11). What is less apparent is that this condition is strong enough to capture
the ∞-categorical notion of fully faithfulness, when certainly it would not
be enough to merely require that the functor h𝑓∶ h𝐴 → h𝐵 is fully faithful.
The unexpected power of condition (iii) is that its statement quantifies over all
generalized elements 𝑎∶ 𝑋 → 𝐴 of 𝐴, in contrast to the objects of h𝐴 which
are limited to the elements 𝑎∶ 1 → 𝐴. This provides a retroactive justification
for our work in the homotopy 2-category.

Theorem 3.5.3 has another important consequence cited in the proof of Propo-
sition 2.4.7.
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Corollary 3.5.7. Cosmological functors preserve absolute lifting diagrams.

Proof Consider a cosmological functor 𝐹∶ 𝒦 → ℒ together with an absolute
right lifting diagram in 𝒦:

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟

By Theorem 3.5.3, the induced functor of (3.5.4) defines a fibered equivalence
𝑦∶ Hom𝐵(𝐵, 𝑟) ∼ Hom𝐴(𝑓, 𝑔) over 𝐶 × 𝐵.

Since cosmological functors preserve the simplicial limits and isofibrations of
(3.4.2), 𝐹 carries 𝑦 to a functor 𝐹𝑦∶ Hom𝐹𝐵(𝐹𝐵, 𝐹𝑟) → Hom𝐹𝐴(𝐹𝑓, 𝐹𝑔) over
𝐹𝐶 × 𝐹𝐵. By Lemma 1.3.2, this functor is again a fibered equivalence. Since
cosmological functors define 2-functors, this functor satisfies a pasting equation

Hom𝐹𝐵(𝐹𝐵, 𝐹𝑟)

𝐹𝐶 𝐹𝐵

𝐹𝐴

𝑝1 𝑝0𝐹𝜙
⇐

𝐹𝜌
⇐

𝑟

𝐹𝑔 𝐹𝑓

=

Hom𝐹𝐵(𝐹𝐵, 𝐹𝑟)

Hom𝐹𝐴(𝐹𝑓, 𝐹𝑔)

𝐹𝐶 𝐹𝐵

𝐹𝐴

𝑝1 𝑝0
∼ 𝐹𝑦

𝑝1 𝑝0

𝐹𝜙
⇐

𝐹𝑔 𝑓

in ℒ. By Theorem 3.5.3, this fibered equivalence witnesses the fact that

𝐹𝐵

𝐹𝐶 𝐹𝐴
⇓𝐹𝜌

𝐹𝑓

𝐹𝑔

𝐹𝑟

defines an absolute right lifting diagram in ℒ.

Having proven Theorem 3.5.3 our immediate aim is to strengthen it to show
that a fibered equivalence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓, 𝑔) implies that 𝑟∶ 𝐶 →
𝐵 defines an absolute right lifting of 𝑔 through 𝑓 without a previously specified
2-cell 𝜌∶ 𝑓𝑟 ⇒ 𝑔.

Theorem 3.5.8. Given a trio of functors 𝑟∶ 𝐶 → 𝐵, 𝑓∶ 𝐵 → 𝐴, and 𝑔∶ 𝐶 → 𝐴
there is a bijection between natural transformations as displayed below-left and
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fibered isomorphism classes of maps of spans as displayed below-right

⎧
⎪

⎨
⎪
⎩

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟

⎫
⎪

⎬
⎪
⎭

↭

⎧
⎪⎪

⎨
⎪⎪
⎩

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

Hom𝐴(𝑓, 𝑔)

𝑝1 𝑝0

𝑦

𝑝0𝑝1

⎫
⎪⎪

⎬
⎪⎪
⎭/≅

that is constructed by pasting with the right comma cone over 𝑟 and then applying
1-cell induction to factor through the comma cone for Hom𝐴(𝑓, 𝑔).

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

Moreover, a natural transformation 𝜌∶ 𝑓𝑟 ⇒ 𝑔 displays 𝑟 as an absolute right
lifting of 𝑔 through 𝑓 if and only if the corresponding map 𝑦∶ Hom𝐵(𝐵, 𝑟) →
Hom𝐴(𝑓, 𝑔) is an equivalence.

The second clause is the statement of Theorem 3.5.3, so it remains only to
prove the first. We show the claimed construction is a bijection by exhibiting its
inverse, the construction of which involves a rather mysterious lemma whose
significance will gradually become apparent.

Lemma 3.5.9. For any functor 𝑓∶ 𝐴 → 𝐵, the codomain projection functor
𝑝1∶ Hom𝐵(𝐵, 𝑓) ↠ 𝐴 from its right representation admits a right adjoint right
inverse5 𝑖 ≔ ⌜id𝑓⌝ induced from the identity 2-cell id𝑓, defining an adjunction
over 𝐴 whose counit is an identity and whose unit 𝜂∶ id ⇒ 𝑖𝑝1 satisfies the
5 A functor admits a right adjoint right inverse just when it is the left adjoint in an adjunction

whose counit is invertible (see §B.4). When the original functor is an isofibration, as is the case
here, any right adjoint right inverse adjunction can be upgraded to one in which the counit is an
identity, which can then be upgraded further to a fibered adjunction (see Definition 3.6.5 and
Lemma 3.6.9).
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conditions 𝜂𝑖 = id𝑖, 𝑝1𝜂 = id𝑝1, and 𝑝0𝜂 = 𝜙.

𝐴

𝐴 𝐵

𝑓
=

𝑓

=

𝐴

Hom𝐵(𝐵, 𝑓)

𝐴 𝐵

𝑓𝑖

𝑝1 𝑝0
𝜙⇐

𝑓

⇜
𝐴 Hom𝐵(𝐵, 𝑓)

𝐴

𝑖

⊥

𝑝1

𝑝1

This lemma figures prominently in the proof of the Yoneda lemma in §5.7 and
is also the main ingredient in a “cheap” version of the Yoneda lemma appearing
as Corollary 3.5.11.

Proof This adjunction is constructed via the weak universal properties of the
right comma cone over 𝑓. The identity 2-cell id𝑓 induces a functor 𝑖 ≔ ⌜id𝑓⌝
over the right comma cone over 𝑓 as displayed in the statement. Note that
𝑝1𝑖 = id𝐴, so we may take the counit to be the identity 2-cell. Since 𝜙𝑖 = id𝑓,
we have a pasting equality:

Hom𝐵(𝐵, 𝑓)

Hom𝐵(𝐵, 𝑓) 𝐴

Hom𝐵(𝐵, 𝑓) Hom𝐵(𝐵, 𝑓) Hom𝐵(𝐵, 𝑓)

𝐴 𝐵 𝐴 𝐵

𝑝0

𝑝1

𝜙⇐
𝑖𝑝1

=

𝑖
𝑓

𝑝1

𝑝1 𝑝0𝜙
⇐

=
𝑝1 𝑝0𝜙

⇐

𝑓 𝑓

which induces a 2-cell 𝜂∶ id ⇒ 𝑖𝑝1 with defining equations 𝑝1𝜂 = id𝑝1 and
𝑝0𝜂 = 𝜙. The first of these conditions provides one triangle equality; for the
other, we must verify that 𝜂𝑖 = id𝑖. By 2-cell conservativity, 𝜂𝑖 is an isomorphism
since 𝑝1𝜂𝑖 = id𝐴 and 𝑝0𝜂𝑖 = id𝑓 are both invertible. By naturality of whiskering,
we have

𝑖 𝑖

𝑖 𝑖

𝜂𝑖

𝜂𝑖 𝜂𝑖

𝑖𝑝1𝜂𝑖

and since 𝑝1𝜂 = id𝑝1 the bottom edge is an identity. So 𝜂𝑖 ⋅ 𝜂𝑖 = 𝜂𝑖 and since 𝜂𝑖
is an isomorphism cancelation implies that 𝜂𝑖 = id𝑖 as required.

One interpretation of Lemma 3.5.9 is best revealed through a special case:
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Corollary 3.5.10. For any element 𝑏∶ 1 → 𝐵, the identity at 𝑏 defines a
terminal element in Hom𝐵(𝐵, 𝑏).

Proof By Lemma 3.5.9, the codomain projection – which in this case reduces
to the unique functor !∶ Hom𝐵(𝐵, 𝑏) → 1 – admits a right adjoint right inverse
induced from its identity 2-cell. Thus, by Definition 2.2.1, this right adjoint
identifies a terminal element ⌜id𝑏⌝∶ 1 → Hom𝐵(𝐵, 𝑏) corresponding to the
identity morphism id𝑏∶ 𝑏 → 𝑏 in the homotopy category h𝐵.

The general version of Lemma 3.5.9 has a similar interpretation: id𝑓 induces
a terminal element in Hom𝐵(𝐵, 𝑓) “over 𝐴,” that is, in the sliced ∞-cosmos (see
Definition 3.6.8 and Example 3.6.12).

Proof of Theorem 3.5.8 It remains to construct an inverse to the function in
the statement that takes a natural transformation 𝑓𝑟 ⇒ 𝑔 and produces a fibered
isomorphism class of functors Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓, 𝑔) over 𝐶 × 𝐵. Our
construction makes use of the right adjoint right inverse 𝑖∶ 𝐶 → Hom𝐵(𝐵, 𝑟) of
Lemma 3.5.9. Given a functor Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓, 𝑔), restrict along 𝑖, and
paste with the comma cone for Hom𝐴(𝑓, 𝑔) to define a natural transformation
𝑓𝑟 ⇒ 𝑔.

Starting from a natural transformation 𝜌∶ 𝑓𝑟 ⇒ 𝑔, the composite of these
two functions constructs the natural transformation displayed below-left

𝐶

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑖

𝑟

𝑝1 𝑝0

𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

𝐶

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑖
𝑟

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=
𝐶 𝐵

𝐴

𝑟

𝑔
𝜌
⇐

𝑓

which equals the above-center pasted composite by the definition of 𝑦 from
𝜌, and equals the above-right composite since 𝜙𝑖 = id𝑟. Thus, when a natural
transformation 𝜌∶ 𝑓𝑟 ⇒ 𝑔 is encoded as a map 𝑦∶ Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓, 𝑔)
over 𝐶 × 𝐵, and then re-converted into a natural transformation, the original
natural transformation 𝜌 is recovered.

For the converse, starting with a map 𝑧∶ Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓, 𝑔) over
𝐶 × 𝐵, the composite of these two functions constructs an isomorphism class
of maps of spans 𝑤 displayed below-left by applying 1-cell induction for the
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comma cone for Hom𝐴(𝑓, 𝑔) to the composite natural transformation pasted
below-center:

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝑤

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

𝐶

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1

𝑝0

𝜙
⇐

𝑖

𝑟

𝑝1 𝑝0

𝑧

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

𝐶

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1

𝜂
⇐

𝑖

𝑝1 𝑝0

𝑧

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

By Lemma 3.5.9, there exists a natural transformation 𝜂∶ id ⇒ 𝑖𝑝1 so that
𝑝0𝜂 = 𝜙 – this gives the pasting equality above center – and 𝑝1𝜂 = id, which
tells us that the right-hand pasting diagram reduces to 𝜙𝑧. Proposition 3.4.7 now
implies that 𝑤 ≅ 𝑧 over 𝐶 × 𝐵.

A dual version of Theorem 3.5.8 represents natural transformations 𝑔 ⇒ 𝑓ℓ
as fibered isomorphism classes of maps Hom𝐵(ℓ, 𝐵) → Hom𝐴(𝑔, 𝑓) over 𝐵×𝐶.
Specializing these results to the case where one of 𝑓 or 𝑔 is the identity, we
immediately recover a “cheap” form of the Yoneda lemma:

Corollary 3.5.11. Given a parallel pair of functors, 𝑓, 𝑔∶ 𝐴 → 𝐵, there
are bijections between natural transformations as displayed below-center and
fibered isomorphism classes of maps between their left and right representations
as comma ∞-categories, as displayed below-left and below-right:

⎧
⎪⎪

⎨
⎪⎪
⎩

Hom𝐵(𝑔, 𝐵)

𝐵 𝐴

Hom𝐵(𝑓, 𝐵)

𝑝1 𝑝0

⌜𝛼∗⌝

𝑝0𝑝1

⎫
⎪⎪

⎬
⎪⎪
⎭/≅

↭ { 𝐴 𝐵
𝑓

𝑔
⇓𝛼 } ↭

⎧
⎪⎪

⎨
⎪⎪
⎩

Hom𝐵(𝐵, 𝑓)

𝐴 𝐵

Hom𝐵(𝐵, 𝑔)

𝑝1 𝑝0

⌜𝛼∗⌝

𝑝0𝑝1

⎫
⎪⎪

⎬
⎪⎪
⎭/≅

that are constructed by pasting with the left comma cone over 𝑔 and right comma
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cone over 𝑓, respectively:

Hom𝐵(𝑔, 𝐵)

𝐵 𝐴

𝑝1 𝑝0
⇐
𝜙

𝑔

𝑓

⇑𝛼

=

Hom𝐵(𝑔, 𝐵)

Hom𝐵(𝑓, 𝐵)

𝐵 𝐴

𝑝1 𝑝0
⌜𝛼∗⌝

𝑝1 𝑝0
𝜙
⇐

𝑓

Hom𝐵(𝐵, 𝑓)

𝐴 𝐵

𝑝1 𝑝0

𝑓

𝑔

⇓𝛼

⇐
𝜙 =

Hom𝐵(𝐵, 𝑓)

Hom𝐵(𝐵, 𝑔)

𝐴 𝐵

𝑝1 𝑝0
⌜𝛼∗⌝

𝑝1 𝑝0
𝜙
⇐

𝑔

and then applying 1-cell induction to factor through the left comma cone over 𝑓
in the former case or the right comma cone over 𝑔 in the latter.

Combining the results of this section, we prove one final representability
theorem that allows us to recognize when a comma ∞-category is right rep-
resentable in the absence of a predetermined representing functor. This result
specializes to give existence theorems for adjoint functors and for limits and
colimits in the next chapter.

Theorem 3.5.12. The comma ∞-category Hom𝐴(𝑓, 𝑔) associated to a cospan
𝐶 𝑔 𝐴 𝑓 𝐵 is right representable if and only if its codomain projection functor
admits a right adjoint right inverse

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝑝0𝑝1
⊥
𝑖

in which case the composite 𝑝0𝑖∶ 𝐶 → 𝐵 defines the representing functor and
the natural transformation encoded by the functor 𝑖∶ 𝐶 → Hom𝐴(𝑓, 𝑔) defines
an absolute right lifting of 𝑔 through 𝑓.

Proof Suppose that the comma Hom𝐴(𝑓, 𝑔) is represented on the right by a
functor 𝑟∶ 𝐶 → 𝐵. By Lemma 3.5.9, 𝑝1∶ Hom𝐵(𝐵, 𝑟) ↠ 𝐶 admits a right
adjoint right inverse 𝑖′, which composes with the fibered equivalence to define a
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right adjoint right inverse for the equivalent functor 𝑝1∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐶.

𝐶 Hom𝐵(𝐵, 𝑟) Hom𝐴(𝑓, 𝑔)

𝐶 × 𝐵

𝑖′

𝑖

(id𝐶,𝑟)

∼

(𝑝1,𝑝0) (𝑝1,𝑝0)

Note that 𝑟 = 𝑝0𝑖, and by the construction in the proof of Theorem 3.5.8,
the functor 𝑖∶ 𝐶 → Hom𝐴(𝑓, 𝑔) encodes an absolute right lifting diagram
𝜌∶ 𝑟𝑓 ⇒ 𝑔. Thus, it remains only to prove the converse.

To that end, suppose we are given a right adjoint right inverse adjunction
𝑝1 ⊣ 𝑖. Unpacking the definition, this provides an adjunction

𝐶 Hom𝐴(𝑓, 𝑔)

𝐶

𝑖

⊥

𝑝1

𝑝1

over 𝐶 whose counit is an identity and whose unit 𝜂∶ id ⇒ 𝑖𝑝1 satisfies the
conditions 𝜂𝑖 = id𝑖 and 𝑝1𝜂 = id𝑝1. By Theorem 3.5.8, to construct the fibered
equivalence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓, 𝑔) with 𝑟 ≔ 𝑝0𝑖, it suffices to demon-
strate that the natural transformation defined by restricting the comma cone for
Hom𝐴(𝑓, 𝑔) along 𝑖

𝐶

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑟𝑖

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

defines an absolute right lifting diagram.
By 1-cell induction any natural transformation 𝜒∶ 𝑓𝑏 ⇒ 𝑔𝑐 induces a functor

⌜𝜒⌝ as displayed below-left:

𝑋 Hom𝐴(𝑓, 𝑔) 𝐵

𝐶 𝐴

𝑏

⌜𝜒⌝

𝑐

𝑝1

𝑝0

⇓𝜙 𝑓

𝑔

=
𝑋 Hom𝐴(𝑓, 𝑔) Hom𝐴(𝑓, 𝑔) 𝐵

𝐶 𝐶 𝐴

𝑏

⌜𝜒⌝

𝑐

𝑝1
⇓𝜂 𝑝1

𝑝0

⇓𝜙 𝑓
𝑖

𝑔
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Inserting the triangle equality 𝑝1𝜂 = id𝑝1 as displayed above-right constructs
the desired factorization 𝑝0𝜂⌜𝜒⌝∶ 𝑏 ⇒ 𝑟𝑐 of 𝜒 through 𝜙𝑖.

In fact, given any natural transformation 𝜏0∶ 𝑏 ⇒ 𝑟𝑐 that defines a factoriza-
tion of 𝜒∶ 𝑓𝑏 ⇒ 𝑔𝑐 through 𝜙𝑖, the pair (id𝑐, 𝜏0) satisfies the compatibility con-
dition of Proposition 3.4.6(ii), inducing a natural transformation 𝜏∶ ⌜𝜒⌝ ⇒ 𝑖𝑐
so that id𝑐 = 𝑝1𝜏 and 𝜏0 = 𝑝0𝜏. We argue that the natural transformation 𝜏 is
unique, proving that the factorization 𝑝0𝜏∶ 𝑏 ⇒ 𝑟𝑐 is also unique.

To see this, note that the adjunction 𝑝1 ⊣ 𝑖 over 𝐶 exhibits the right adjoint
as a terminal element of the object 𝑝1∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐶 in the strict slice of
the homotopy 2-category over 𝐶.6 It follows, as in Lemma 2.2.5, that for any
object 𝑐∶ 𝑋 → 𝐶 and any morphism ⌜𝜒⌝∶ 𝑋 → Hom𝐴(𝑓, 𝑔) over 𝐶, there
exists a unique natural transformation ⌜𝜒⌝ ⇒ 𝑖𝑐 over 𝐶. Thus, there is a unique
natural transformation 𝜏∶ ⌜𝜒⌝ ⇒ 𝑖𝑐 with the property that 𝑝1𝜏 = id𝑐, and so
the factorization 𝑝0𝜏∶ 𝑏 ⇒ 𝑟𝑐 of 𝜒 through 𝜙𝑖 must also be unique.

In the next section, we discover that Theorem 3.5.12 may be expressed more
concisely as the assertion that a comma ∞-category Hom𝐴(𝑓, 𝑔) in an ∞-cos-
mos 𝒦 is right representable precisely when its codomain projection functor
𝑝1∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐶 admits a terminal element as an object of the sliced
∞-cosmos 𝒦/𝐶 (see Corollary 3.6.10). Dually, Hom𝐴(𝑓, 𝑔) is left representable
just when its domain projection functor admits an initial element as an object of
the sliced ∞-cosmos 𝒦/𝐵. There is a small gap between this statement and the
version proven in Theorem 3.5.12 having to do with the discrepancy between the
homotopy 2-category of the sliced∞-cosmos𝒦/𝐶 and the slice of the homotopy
2-category 𝔥𝒦 over 𝐶. This is the subject to which we now turn.

Exercises
Exercise 3.5.i. Anticipate Proposition 4.1.1 by exploring how one might encode
the existence of an adjunction 𝑓 ⊣ 𝑢 between a given opposing pair of functors
using comma ∞-categories.

Exercise 3.5.ii. Extend the result of Exercise 2.3.vi to show that for any equiv-
alence of cospans

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵

∼

≅

𝑔

∼

≅

∼

𝑓

𝑔̄ ̄𝑓

6 An object is a functor of ∞-categories 𝑐∶ 𝑋 → 𝐶, a 1-cell is a functor between the domain
∞-categories defining a strictly commutative triangle, and a 2-cell is a natural transformation
between such functors that whiskers to define an identity 2-cell with codomain 𝐶.
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there exists an absolute right lifting of 𝑔 through 𝑓 if and only if there exists an
absolute right lifting of ̄𝑔 through ̄𝑓.

Exercise 3.5.iii ([124, 3.7]). Use Theorem 3.5.3 and Corollary 3.5.6(iv) to
prove that a fully faithful functor 𝑓∶ 𝐴 → 𝐵 reflects all limits or colimits that
exist in 𝐴. Why does this argument not also show that 𝑓∶ 𝐴 → 𝐵 preserves
them?

3.6 Fibered Adjunctions and Fibered Equivalences

In Proposition 3.2.10, we discovered that the ∞-category 𝐴𝟚 of arrows in 𝐴
together with its codomain and domain evaluation functors (𝑝1, 𝑝0)∶ 𝐴𝟚 ↠
𝐴 × 𝐴 satisfies a weak universal property in the homotopy 2-category that
characterizes it up to equivalence over 𝐴 × 𝐴. Similarly, Proposition 3.4.11
tells us that the comma ∞-category associated to a given pair of functors with
common codomain is characterized up to fibered equivalence, as defined in
Definition 3.2.7.

As noted in Warning 3.2.9 there is some ambiguity regarding the 2-categorical
data required to specify a fibered equivalence that we now address head-on.
The issue is that, for an ∞-category 𝐵 in an ∞-cosmos 𝒦, the homotopy 2-
category 𝔥(𝒦/𝐵) of the sliced ∞-cosmos (see Proposition 1.2.22 and Definition
1.4.1) is not isomorphic to the 2-category (𝔥𝒦)/𝐵 of isofibrations, functors, and
2-cells over 𝐵 in the homotopy 2-category 𝔥𝒦. However, there is a canonical
comparison functor relating these 2-categories that satisfies a property we now
introduce:

Definition 3.6.1 (smothering 2-functor). A 2-functor 𝐹∶ 𝒜 → ℬ is smother-
ing if it is

• surjective on objects;
• full on 1-cells: for any pair of objects 𝐴,𝐴′ in 𝒜 and 1-cell 𝑘∶ 𝐹𝐴 → 𝐹𝐴′

in ℬ, there exists 𝑓∶ 𝐴 → 𝐴′ in 𝒜 with 𝐹𝑓 = 𝑘;
• full on 2-cells: for any parallel pair of 1-cells 𝑓, 𝑔∶ 𝐴 → 𝐴′ in 𝒜 and 2-cell

𝐹𝐴 𝐹𝐴′
𝐹𝑓

𝐹𝑔

⇓𝛽 inℬ, there exists a 2-cell 𝛼∶ 𝑓 ⇒ 𝑔 in𝒜with 𝐹𝛼 = 𝛽;

and
• conservative on 2-cells: for any 2-cell 𝛼 in 𝒜 if 𝐹𝛼 is invertible in ℬ then 𝛼

is invertible in 𝒜.

This is to say, a smothering 2-functor is a surjective-on-objects 2-functor that
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is “locally smothering,” meaning that the action on hom-categories is by a
smothering functor, as codified in Definition 3.1.2.

The prototypical example of a smothering 2-functor solves Exercise 1.4.vii.

Proposition 3.6.2. Let 𝐵 be an ∞-category in an ∞-cosmos 𝒦. There is a
canonical 2-functor

𝔥(𝒦/𝐵) (𝔥𝒦)/𝐵

from the homotopy 2-category of the sliced ∞-cosmos 𝒦/𝐵 to the 2-category of
isofibrations, functors, and 2-cells over 𝐵 in 𝔥𝒦 and this 2-functor is smothering.

This follows more or less immediately from Lemma 3.1.5 but we spell out
the details nonetheless.

Proof The 2-categories 𝔥(𝒦/𝐵) and (𝔥𝒦)/𝐵 have the same objects – isofibra-
tions with codomain 𝐵 – and the same 1-cells – functors between the domains
that commute with these isofibrations – so the canonical mapping may be defined
to act as the identity on underlying 1-categories.

By the definition of the sliced ∞-cosmos given in Proposition 1.2.22, a 2-cell
between functors 𝑓, 𝑔∶ 𝐸 → 𝐹 from 𝑝∶ 𝐸 ↠ 𝐵 to 𝑞∶ 𝐹 ↠ 𝐵 is a homotopy
class of 1-simplices in the quasi-category defined by the pullback of simplicial
sets below-left

Fun𝐵(𝐸, 𝐹) Fun(𝐸, 𝐹) (hFun)/𝐵(𝐸, 𝐹) hFun(𝐸, 𝐹)

𝟙 Fun(𝐸, 𝐵) 𝟙 hFun(𝐸, 𝐵)

⌟
𝑞∗

⌟
𝑞∗

𝑝 𝑝

Unpacking, a 2-cell 𝛼∶ 𝑓 ⇒ 𝑔 is represented by a 1-simplex 𝛼∶ 𝑓 → 𝑔 in
Fun(𝐸, 𝐹) that whiskers with 𝑞 to the degenerate 1-simplex on the vertex 𝑝 ∈
Fun(𝐸, 𝐵), and two such 1-simplices represent the same 2-cell if and only if they
bound a 2-simplex of the form displayed in (1.1.8) that also whiskers with 𝑞 to
the degenerate 2-simplex on 𝑝.

By contrast, a 2-cell in (𝔥𝒦)/𝐵 is a morphism in the category defined by the
pullback of categories above-right. Such 2-cells are represented by 1-simplices
𝛼∶ 𝑓 → 𝑔 in Fun(𝐸, 𝐹) that whisker with 𝑞 to 1-simplices in Fun(𝐸, 𝐵) that are
homotopic to the degenerate 1-simplex on 𝑝, and two such 1-simplices represent
the same 2-cell if and only if they are homotopic in Fun(𝐸, 𝐹).

Applying the homotopy category functor h∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 to the above-left
pullback produces a cone over the above-right pullback, inducing a canonical
map

h(Fun𝐵(𝐸, 𝐹)) (hFun)/𝐵(𝐸, 𝐹),
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which is the action on hom-categories of the canonical 2-functor 𝔥(𝒦/𝐵) →
(𝔥𝒦)/𝐵. By Lemma 3.1.5, this canonical map defines a bijective-on-objects
smothering functor. Thus, we have defined a 2-functor 𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 that
is bijective on 0- and 1-cells and locally smothering, as claimed.

Smothering 2-functors are not strictly speaking invertible, but nevertheless
2-categorical structures from the codomain can be lifted to the domain.

Lemma 3.6.3. Smothering 2-functors reflect and create equivalences.

Proof For any smothering 2-functor 𝐹∶ 𝒜 → ℬ and 1-cell 𝑓∶ 𝐴 → 𝐵 in
𝒜, if 𝐹𝑓∶ 𝐹𝐴 ∼ 𝐹𝐵 is an equivalence in ℬ, then by fullness on 1-cells, an
equivalence inverse 𝑔′∶ 𝐹𝐵 ∼ 𝐹𝐴 to 𝐹𝑓 lifts to a 1-cell 𝑔∶ 𝐵 → 𝐴 in 𝒜. By
fullness on 2-cells, the isomorphisms id𝐹𝐴 ≅ 𝑔′ ∘ 𝐹𝑓 and 𝐹𝑓 ∘ 𝑔′ ≅ id𝐹𝐵 also
lift to 𝒜 and by conservativity on 2-cells these lifted 2-cells are also invertible.
This proves that equivalences are reflected. To see that they are created, note
that any 𝑓′∶ 𝐹𝐴 ∼ 𝐹𝐵 inℬ lifts to a 1-cell 𝑓∶ 𝐴 → 𝐵, which is an equivalence
by the construction just given.

Applying Lemma 3.6.3 to the smothering 2-functor

𝔥(𝒦/𝐵) (𝔥𝒦)/𝐵

we resolve the ambiguity about the 2-categorical data of a fibered equivalence.

Proposition 3.6.4 (fibered equivalence data). Let 𝐵 be an ∞-category in an
∞-cosmos 𝒦.

(i) Any equivalence in (𝔥𝒦)/𝐵 lifts to an equivalence in 𝔥(𝒦/𝐵). That is,
fibered equivalences over 𝐵 may be specified by defining an opposing
pair of 1-cells 𝑓∶ 𝐸 → 𝐹 and 𝑔∶ 𝐹 → 𝐸 over 𝐵 together with invertible
2-cells id𝐸 ≅ 𝑔𝑓 and 𝑓𝑔 ≅ id𝐹 that lie over 𝐵 in 𝔥𝒦.

(ii) Moreover, if 𝑓∶ 𝐸 → 𝐹 is a map between isofibrations over 𝐵 that
admits an not-necessarily fibered equivalence inverse 𝑔∶ 𝐹 → 𝐸 with
not-necessarily fibered 2-cells id𝐸 ≅ 𝑔𝑓 and 𝑓𝑔 ≅ id𝐹, then this data is
isomorphic to a genuine fibered equivalence.

Thus, the forgetful 2-functor 𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 → 𝔥𝒦 reflects equivalences.

Proof The first statement is proven by Lemma 3.6.3 and Proposition 3.6.2.
The second statement, which asserts that the forgetful 2-functor (𝔥𝒦)/𝐵 → 𝔥𝒦
reflects equivalences, is left as Exercise 3.6.i, and requires only the 2-categorical
lifting property of isofibrations (see Proposition 1.4.9).
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This gives a 2-categorical proof of Proposition 1.2.22(vii), that for any ∞-
category 𝐵 in an ∞-cosmos 𝒦, the forgetful functor 𝒦/𝐵 → 𝒦 preserves and
reflects equivalences. The smothering 2-functor 𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 can also be
used to lift adjunctions that are fibered 2-categorically over 𝐵 to adjunctions in
the sliced ∞-cosmos 𝒦/𝐵.

Definition 3.6.5 (fibered adjunction). A fibered adjunction over an ∞-cate-
gory 𝐵 in an ∞-cosmos 𝒦 is an adjunction in the sliced ∞-cosmos 𝒦/𝐵.

𝐸 ⊥ 𝐹

𝐵

𝑓

ᵆ

We write 𝑓 ⊣𝐵 𝑢 to indicate that specified functors over 𝐵 are adjoint over 𝐵.

Lemma 3.6.6 (pullback and projection of fibered adjunctions).

(i) A fibered adjunction over 𝐵 pulls back along any functor 𝑘∶ 𝐴 → 𝐵 to
define a fibered adjunction over 𝐴.

(ii) A fibered adjunction over 𝐴 can be composed with any isofibration7

𝑝∶ 𝐴 ↠ 𝐵 to define a fibered adjunction over 𝐵.

Proof For any∞-cosmos𝒦, pullback along 𝑘∶ 𝐴 → 𝐵 defines a cosmological
functor 𝑘∗∶ 𝒦/𝐵 → 𝒦/𝐴, by Proposition 1.3.4(v), which descends to a 2-
functor 𝑘∗∶ 𝔥(𝒦/𝐵) → 𝔥(𝒦/𝐴) that carries fibered adjunctions over 𝐵 to fibered
adjunctions over 𝐴. This proves (i).

Composition with an isofibration 𝑝∶ 𝐴 ↠ 𝐵 also defines a 2-functor of slices
𝑝∗∶ 𝔥(𝒦/𝐴) → 𝔥(𝒦/𝐵). Thus, composition with an isofibration carries a fibered
adjunction over 𝐴 to a fibered adjunction over 𝐵, proving (ii).

In analogy with Lemma 3.6.3:

Lemma 3.6.7. If 𝐹∶ 𝒜 → ℬ is a smothering 2-functor, then any adjunction in
ℬ may be lifted to an adjunction in 𝒜. In particular, any adjunction in the slice
2-category (𝔥𝒦)/𝐵 of an ∞-cosmos 𝒦 lifts to a fibered adjunction over 𝐵.

Proof Exercise 3.6.iii.

Combining Definitions 3.6.5 and 2.2.1, we obtain notions of fibered initial
and terminal elements.
7 We require 𝑝 to be an isofibration due to our convention that the objects in sliced ∞-cosmoi are

isofibrations over a fixed base.
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Definition 3.6.8. Given an isofibration 𝑝∶ 𝐸 ↠ 𝐵, we say that 𝐸 admits an
initial element over 𝐵 or admits a terminal element over 𝐵 if there exists a
fibered left or right adjoint, respectively, to the unique functor from 𝑝 to id𝐵
over 𝐵:

𝐵 ⊥ 𝐸 𝐸 ⊥ 𝐵

𝐵 𝐵

𝑖

𝑝
𝑝

𝑝

𝑝

𝑡

That is, 𝐸 admits an initial or terminal element over 𝐵 just when 𝑝∶ 𝐸 ↠ 𝐵
admits an initial or terminal element when considered as an object of the sliced
∞-cosmos over 𝐵.

The next result shows that fibered initial or terminal elements exist just when
the isofibration 𝑝∶ 𝐸 ↠ 𝐵 admits a left adjoint right inverse or a right adjoint
right inverse, respectively.

Lemma 3.6.9. Let 𝑝∶ 𝐸 ↠ 𝐵 be any isofibration that admits a right adjoint
right inverse 𝑟′∶ 𝐵 → 𝐸. Then 𝑟′ is isomorphic to a functor 𝑟 that defines a
fibered adjunction:

𝐸 ⊥ 𝐵

𝐵
𝑝

𝑝

𝑟

Thus, an isofibration 𝑝∶ 𝐸 ↠ 𝐵 admits a right adjoint right inverse if and only
if 𝐸 admits a terminal element over 𝐵.

Proof Since an isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an ∞-cosmos 𝒦 defines an isofi-
bration in the homotopy 2-category 𝔥𝒦, the invertible counit 𝜖′∶ 𝑝𝑟′ ≅ id𝐵 of
the adjunction 𝑝 ⊣ 𝑟′ lifts to define a functor 𝑟∶ 𝐵 → 𝐸 together with a natural
isomorphism 𝛾∶ 𝑟′ ≅ 𝑟 so that 𝑝𝛾 = 𝜖′ and 𝑝𝑟 = id𝐵:

𝐵 𝐸 𝐵 𝐸

𝐵 𝐵

𝑟′

𝑝≅⇓𝜖′ =

𝑟′

𝑟
≅⇓𝛾

𝑝

By the construction left to the reader in Exercise 2.1.ii,𝑝 ⊣ 𝑟with unit 𝜂 ≔ 𝛾𝑝⋅𝜂′

defined by composing the original unit 𝜂′ with 𝛾 and with counit 𝜖 ≔ 𝜖′ ⋅ 𝑝𝛾−1.
In particular, since 𝑝𝛾 = 𝜖′, the counit 𝜖 is the identity 2-cell, and consequently
one of the triangle equality composites reduces to the assertion that 𝑝𝜂 = id𝑝.
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This constructs a right adjoint to 𝑝 considered as a functor in (𝔥𝒦)/𝐵. By
Lemma 3.6.7, this adjunction lifts along the smothering 2-functor of Proposition
3.6.2 to define a fibered adjunction over 𝐵 of the desired form in 𝔥(𝒦/𝐵) (see Ex-
ercise 3.6.iii). Definition 3.6.8 interprets the fibered adjunction just constructed
as defining a terminal element in 𝐸 over 𝐵.

With this observation, Theorem 3.5.12 may be summarized more compactly
as follows:

Corollary 3.6.10. For any cospan 𝐶 𝑔 𝐴 𝑓 𝐵, the comma ∞-category
Hom𝐴(𝑓, 𝑔) is right representable if and only if Hom𝐴(𝑓, 𝑔) admits a terminal
element over 𝐶 – in which case the representing functor defines an absolute
right lifting of 𝑔 through 𝑓.

Remark 3.6.11. In an ∞-cosmos of (∞, 1)-categories, the representability the-
orem can be improved still further to say that Hom𝐴(𝑓, 𝑔) is right representable
if and only if, for all elements 𝑐∶ 1 → 𝐶, the ∞-category Hom𝐴(𝑓, 𝑔𝑐) has a ter-
minal element (see Corollary 12.2.8). The proof requires “analytic” techniques,
in contrast with the purely synthetic reasoning in this chapter.

Example 3.6.12. By Lemmas 3.5.9 and 3.6.9, for any functor 𝑓∶ 𝐴 → 𝐵, there
is a fibered adjunction

𝐴 Hom𝐵(𝐵, 𝑓)

𝐴

⌜id𝑓⌝
⊥

𝑝1

𝑝1

which asserts that ⌜id𝑓⌝∶ 𝐴 → Hom𝐵(𝐵, 𝑓) defines a terminal element in
Hom𝐵(𝐵, 𝑓) over 𝐴.

By Lemma 3.6.6(i), we may pull back the fibered adjunction along any element
𝑎∶ 1 → 𝐴 to obtain an adjunction that identifies a terminal element in the fiber

1 Hom𝐵(𝐵, 𝑓𝑎)
⌜id𝑓⌝𝑎=⌜id𝑓𝑎⌝

⊥
! Hom𝐵(𝐵, 𝑓𝑎) Hom𝐵(𝐵, 𝑓)

1 𝐴

⌟
𝑝1

𝑎

generalizing the result of Corollary 3.5.10.

Example 3.6.13 (the fibered adjoints to composition). For any ∞-category
𝐴, the adjoints to the “composition” functor ∘∶ 𝐴𝟚 ×

𝐴
𝐴𝟚 → 𝐴𝟚 constructed in

Lemma 2.1.14 are constructed by composing a triple of adjoint functors that are
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fibered over the endpoint evaluation functors

𝟙 + 𝟙

𝟛 𝟚

(0,2) (0,1)
𝜍0

⊤

𝜍1
⊤
𝛿1

⇝

𝐴𝟛 𝐴𝟚

𝐴 × 𝐴

𝐴𝛿1

(𝑝2,𝑝0)

𝐴𝜍0

⊥

𝐴𝜍1
⊥

(𝑝1,𝑝0)

with an adjoint equivalence involving a functor 𝐴𝟛 ∼ 𝐴𝟚 ×
𝐴
𝐴𝟚, which also lies

over 𝐴 × 𝐴. Lemma 3.6.9 and its dual implies that these adjoint equivalences
can be lifted to fibered adjoint equivalences over 𝐴 × 𝐴, and now both adjoint
triples and hence the composite adjunctions are also fibered:

𝐴𝟚 ×
𝐴
𝐴𝟚 𝐴𝟚

𝐴 × 𝐴

∘

(𝑝2,𝑝0)

(−,iddom(−))

⊥

(idcod(−),−)
⊥

(𝑝1,𝑝0)

This fibered adjunction, which allows us to work at the∞-cosmos level rather
than purely in the homotopy 2-category, figures in the proof of a result that
allows us to convert limit and colimit diagrams into right and left Kan extension
diagrams (see Proposition 4.3.4).

Proposition 3.6.14. A cospan as displayed below-left admits an absolute right
lifting if and only if the cospan displayed below-right admits an absolute right
lifting

𝐵 Hom𝐴(𝑓, 𝐴)

𝐶 𝐴 𝐶 𝐴
⇓𝜌

𝑓
⇓𝜖

𝑝1

𝑔

𝑟

𝑔

𝑖

in which case the 2-cell 𝜖 is necessarily an isomorphism and the pair (𝑖, 𝜖) can
be chosen to be (⌜𝜌⌝, id𝑔).

Proof By Theorem 3.5.12 and Corollary 3.6.10, to verify the existence state-
ment it suffices to show that Hom𝐴(𝑓, 𝑔) admits a terminal element over 𝐶 if
and only if Hom𝐴(𝑝1, 𝑔) admits a terminal element over 𝐶.

From the defining pullback (3.4.2) that constructs the comma ∞-category
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Hom𝐴(𝑝1, 𝑔), we see that Hom𝐴(𝑝1, 𝑔) ≅ Hom𝐴(𝐴, 𝑔) ×𝐴 Hom𝐴(𝑓, 𝐴).

Hom𝐴(𝑝1, 𝑔) Hom𝐴(𝐴, 𝑔) 𝐴𝟚

𝐶 × Hom𝐴(𝑓, 𝐴) 𝐶 × 𝐴 𝐴 × 𝐴

Hom𝐴(𝑓, 𝐴) 𝐴

(𝑝1,𝑝0)
⌟

(𝑝1,𝑝0)
⌟

(𝑝1,𝑝0)

𝐶×𝑝1
𝜋

⌟ 𝑔×𝐴
𝜋

𝑝1

Thus, by Lemma 3.6.6, the composition-identity fibered adjunction of Example
3.6.13 pulls back along the functors 𝑔 × 𝑓∶ 𝐶 × 𝐵 → 𝐴×𝐴 to define a fibered
adjunction

Hom𝐴(𝑝1, 𝑔) ≅ Hom𝐴(𝐴, 𝑔) ×
𝐴

Hom𝐴(𝑓, 𝐴) Hom𝐴(𝑓, 𝑔)

𝐶 × 𝐵

∘

(𝑝1,𝑝0)

⊥

(−,iddom(−))

⊥
(idcod(−),−)

(𝑝1,𝑝0)

which then composes with the projection 𝜋∶ 𝐶 × 𝐵 ↠ 𝐶 to give a fibered
adjunction over 𝐶

Hom𝐴(𝑝1, 𝑔) Hom𝐴(𝑓, 𝑔)

𝐶

∘

𝑝1

⊥
⊥

𝑝1

between the codomain projection for Hom𝐴(𝑝1, 𝑔) and the codomain projection
for Hom𝐴(𝑓, 𝑔), considered as objects of the sliced ∞-cosmos over 𝐶. Since we
have right adjoints pointing in both directions, by Theorem 2.4.2, a terminal
element on either side is carried by the appropriate right adjoint to a terminal
element on the other side. This proves the equivalence of the absolute right
lifting conditions conditions.

Now we assume that either and thus both absolute right liftings exist. Ob-
serve that the rightmost adjoint (idcod(−), −)∶ Hom𝐴(𝑓, 𝑔) → Hom𝐴(𝑝1, 𝑔) is
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characterized up to fibered isomorphism by the pasting equality:

Hom𝐴(𝑓, 𝑔)

Hom𝐴(𝑝1, 𝑔)

𝐶 Hom𝐴(𝑓, 𝐴)

𝐴

𝑝1 ⌜𝜙⌝
(idcod(−),−)

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑝1

=

Hom𝐴(𝑓, 𝑔)

𝐶 Hom𝐴(𝑓, 𝐴)

𝐴

𝑝1 ⌜𝜙⌝

=

𝑔 𝑝1

where ⌜𝜙⌝∶ Hom𝐴(𝑓, 𝑔) → Hom𝐴(𝑓, 𝐴) is the functor that encodes the fac-
torization of the comma cone for Hom𝐴(𝑓, 𝑔) through the comma cone for
Hom𝐴(𝑓, 𝐴). By Theorem 3.5.12, the functor ⌜𝜌⌝∶ 𝐶 → Hom𝐴(𝑓, 𝑔) defines
a right adjoint right inverse to 𝑝1∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐶. Thus, by the argument
just given, the composite of ⌜𝜌⌝ and (idcod(−), −) defines a right adjoint right
inverse to 𝑝1∶ Hom𝐴(𝑝1, 𝑔) ↠ 𝐶, encoding the data of an absolute right lifting
of 𝑔 through 𝑝1, necessarily isomorphic to the pair (𝑖, 𝜖). The pasting equalities

𝐶

Hom𝐴(𝑓, 𝑔)

Hom𝐴(𝑝1, 𝑔)

𝐶 Hom𝐴(𝑓, 𝐴)

𝐴

⌜𝜌⌝

𝑝1 ⌜𝜙⌝
(idcod(−),−)

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑝1

=

𝐶

Hom𝐴(𝑓, 𝑔)

𝐶 Hom𝐴(𝑓, 𝐴)

𝐴

⌜𝜌⌝
⌜𝜌⌝

𝑝1 ⌜𝜙⌝

=

𝑔 𝑝1

=

Hom𝐴(𝑓, 𝐴)

𝐶 𝐴

=

𝑝1

𝑔

⌜𝜌⌝

demonstrate that this absolute right lifting diagram is given by (⌜𝜌⌝, id𝑔) as
claimed.

The following example hints at one application of Proposition 3.6.14.

Example 3.6.15. The left representation of a functor 𝐴𝑓∶ 𝐴𝑉 → 𝐴𝑈 induced
by cotensoring with a map of simplicial sets 𝑓∶ 𝑈 → 𝑉 is itself definable as a
cotensor with the simplicial set formed by attaching 𝑉 to the domain end of the
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cylinder 𝑈 × 𝟚 via the map 𝑓:

Hom𝐴(𝐴𝑓, 𝐴) ≅ 𝐴cone(𝑓) 𝐴𝑈×𝟚 𝑈 + 𝑈 𝑉 + 𝑈

𝐴𝑈 × 𝐴𝑉 𝐴𝑈 × 𝐴𝑈 𝑈 × 𝟚 cone(𝑓)

(𝑝1,𝑝0)
⌟

⌜𝜙⌝

(𝑝1,𝑝0)

𝑓+𝑈

⌜

id×𝐴𝑓

Proposition 3.6.14 establishes a correspondence between absolute right lifting
problems

𝐴𝑉 𝐴cone(𝑓)

𝐷 𝐴𝑈 𝐷 𝐴𝑈
⇓𝜌

𝐴𝑓

=

𝑝1

𝑑

𝑟

𝑑

𝑖

under which a single functor 𝑖∶ 𝐷 → 𝐴cone(𝑓) is used to encode the data of both
the functor

𝑟 ≔ 𝐷 𝐴cone(𝑓) 𝐴𝑉𝑖 𝑝0

and the natural transformation

⌜𝜌⌝ ≔ 𝐷 𝐴cone(𝑓) 𝐴𝑈×𝟚𝑖 ⌜𝜙⌝

Exercises
Exercise 3.6.i. Let 𝐵 be an object in a 2-category and consider a map

𝐸 𝐹

𝐵

𝑓

between isofibrations over 𝐵. Prove that if 𝑓 is an equivalence in the ambient
2-category then 𝑓 is also an equivalence in the slice 2-category of isofibrations
over 𝐵, 1-cells that form commutative triangles over 𝐵, and 2-cells that lie over
𝐵 in the sense that they whisker with the codomain isofibration to the identity
2-cell on the domain isofibration.

Exercise 3.6.ii. Under the correspondence of Corollary 3.5.11, show that the
following are equivalent:

(i) 𝛼∶ 𝑓 ⇒ 𝑔 is an isomorphism.
(ii) The functor ⌜𝛼∗⌝∶ Hom𝐵(𝐵, 𝑓) → Hom𝐵(𝐵, 𝑔) defines a fibered equiv-

alence over 𝐴 × 𝐵.
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(iii) The functor ⌜𝛼∗⌝∶ Hom𝐵(𝑔, 𝐵) → Hom𝐵(𝑓, 𝐵) defines a fibered equiv-
alence over 𝐵 × 𝐴.

Exercise 3.6.iii. Let 𝐹∶ 𝒜 → ℬ be a smothering 2-functor. Use Lemma 2.1.11
to show that any adjunction inℬ can be lifted to an adjunction in𝒜. Demonstrate
furthermore that if we have previously specified a lift of the objects, 1-cells,
and either the unit or counit of the adjunction in ℬ, then there is a lift of the
remaining 2-cell that combines with the previously specified data to define an
adjunction in 𝒜. This proves a more precise version of Lemma 3.6.7.

Exercise 3.6.iv. Extend the proof of Proposition 3.6.14 to prove that a square
preserves the absolute right lifting (𝑟, 𝜌) if and only if the induced square pre-
serves the absolute right lifting (𝑖, 𝜖):

𝐵 𝐵′ Hom𝐴(𝑓, 𝐴) Hom𝐴′(𝑓′, 𝐴′)

𝐶 𝐴 𝐴′ 𝐶 𝐴 𝐴′
⇓𝜌

𝑓

𝑏

𝑓′
⇓𝜖

𝑝1

Hom𝑎(𝑏,𝑎)

𝑝1

𝑔

𝑟

𝑎 𝑔

𝑖

𝑎
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Adjunctions, Limits, and Colimits II

In Chapter 2, we develop the basic theory of adjunctions between ∞-categories
and limits and colimits of diagrams valued in ∞-categories by characterizing
these notions in terms of absolute lifting diagrams in the homotopy 2-category
of ∞-categories, functors, and natural transformations in an ∞-cosmos. While
absolute lifting diagrams are expedient for proving theorems relating adjunc-
tions, limits, and colimits, they do not obviously express the familiar universal
properties associated to these notions. In this chapter, we use the comma ∞-
categories of Chapter 3 as a vehicle to give precise expressions to these universal
properties and prove that new characterizations of adjunctions, limits, and col-
imits are equivalent to the previous definitions. In fact, many of the main results
in this section are mere special cases of the general theorems characterizing
representable comma ∞-categories.

Using the theory of comma∞-categories, in §4.1 we quickly prove a variety of
results describing the universal property of adjunctions. In particular, Theorem
3.5.8 specializes in Proposition 4.1.1 to characterize adjoint pairs of functors
𝑓∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 via a “transposing equivalence”

Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢),

while Corollary 3.6.10 specializes in Proposition 4.1.6 to give a criterion that
guarantees that a left or right adjoint to a given functor exists.

In an interlude in §4.2, we introduce the ∞-category of cones over or under a
diagram as a comma ∞-category. When the indexing shape for the diagrams is
given by a simplicial set, an equivalent model can be built from Joyal’s join and
slice constructions. The ∞-categories of cones over or under a diagram feature
prominently in the study of the universal properties of limits and colimits in
§4.3. There we see that Theorem 3.5.8 specializes to prove Proposition 4.3.1,
characterizing a limit of a diagram as a right representation for the ∞-category

133
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of cones, while Corollary 3.6.10 specializes in Proposition 4.3.2 to characterize
a limit cone as a terminal element in the ∞-category of cones.

Since the proofs of the main results in this chapter appear in Chapter 3 where
they are developed in a more general setting, we are able to focus our efforts
here on applications. In §4.4 we introduce pointed ∞-categories, which have a
zero element that is both initial and terminal, and show how this may be used to
construct the loops ⊢ suspension adjunction. Pointed ∞-categories that admit
fiber and cofiber sequences, which define a common family of exact triangles,
are called stable. While exploring the properties of stable ∞-categories, we
encounter a number of equivalent characterizations, enumerated in Theorem
4.4.12.

The fibered equivalences that characterize adjunctions, limits, and colimits
can be understood as ∞-categorical analogues of Eilenberg and Mac Lane’s
famous natural equivalences [42]. To express this “naturality,” we observe that
arrows in the base ∞-categories act covariantly functorially on the fibers of the
codomain projection functor and contravariantly functorially on the fibers of
the domain projection functor associated to a comma ∞-category. This is the
subject of Chapter 5.

4.1 The Universal Property of Adjunctions

An adjunction between an opposing pair of functors can equally be encoded
by a “transposing equivalence” between their left and right representations as
comma ∞-categories.

Proposition 4.1.1 (adjunction as fibered equivalence). An opposing pair of
functors 𝑢∶ 𝐴 → 𝐵 and 𝑓∶ 𝐵 → 𝐴 define an adjunction 𝑓 ⊣ 𝑢 if and only if
Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢).

This is a special case of Theorem 3.5.8, so no further argument is required,
but we proffer a short proof nevertheless to review the results proven in §3.5.

Proof If 𝑓 ⊣ 𝑢, then its counit 𝜖∶ 𝑓𝑢 ⇒ id𝐴 defines an absolute right lifting
diagram by Lemma 2.3.7. By Theorem 3.5.8, the functor induced by the left-hand
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pasted composite

Hom𝐵(𝐵, 𝑢)

𝐴 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜖
⇐

ᵆ

𝑓

=

Hom𝐵(𝐵, 𝑢)

Hom𝐴(𝑓, 𝐴)

𝐴 𝐵

𝑝1 𝑝0

⌜𝜖⋅𝑓(−)⌝

𝑝1 𝑝0𝜙
⇐

𝑓

defines a fibered equivalence Hom𝐵(𝐵, 𝑢) ≃𝐴×𝐵 Hom𝐴(𝑓, 𝐴). We interpret this
result as asserting that in the presence of an adjunction 𝑓 ⊣ 𝑢, the right comma
cone over 𝑢 transposes to define the left comma cone over 𝑓.1

Conversely, from a fibered equivalence Hom𝐵(𝐵, 𝑢) ≃𝐴×𝐵 Hom𝐴(𝑓, 𝐴), The-
orem 3.5.8 tells us that one can extract a 2-cell that defines an absolute right
lifting diagram

𝐵

𝐴 𝐴
⇓𝜖

𝑓ᵆ

which by Lemma 2.3.7 then defines the counit of an adjunction 𝑓 ⊣ 𝑢.

Observation 4.1.2 (the transposing equivalence). To justify referring to the
induced functor

⌜𝜖 ⋅ 𝑓(−)⌝∶ Hom𝐵(𝐵, 𝑢) ∼ Hom𝐴(𝑓, 𝐴)

as a transposing equivalence, recall that the transpose of a 2-cell 𝜒∶ 𝑏 ⇒ 𝑢𝑎
across the adjunction 𝑓 ⊣ 𝑢 is computed by the left-hand pasting diagram below:

𝑋

𝐴 𝐵

𝐴

𝑏𝑎 𝜒
⇐

𝜖
⇐

ᵆ

𝑓

=

𝑋

Hom𝐵(𝐵, 𝑢)

𝐴 𝐵

𝐴

⌜𝜒⌝
𝑏𝑎

𝑝1 𝑝0𝜙
⇐

𝜖
⇐

ᵆ

𝑓

=

𝑋

Hom𝐵(𝐵, 𝑢)

Hom𝐴(𝑓, 𝐴)

𝐴 𝐵

⌜𝜒⌝

𝑏𝑎

𝑝1 𝑝0

⌜𝜖⋅𝑓(−)⌝

𝑝1 𝑝0
𝜙
⇐

𝑓

1 If desired, an inverse equivalence can be constructed by applying the dual of Theorem 3.5.8 to
the absolute left lifting diagram presented by the unit.
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By the weak universal property of the right comma cone over 𝑢, the 2-cell
𝜒 is represented by the induced functor ⌜𝜒⌝∶ 𝑋 → Hom𝐵(𝐵, 𝑢), which then
composes with the transposing equivalence to define a functor ⌜𝜖 ⋅ 𝑓(𝜒)⌝∶ 𝑋 →
Hom𝐴(𝑓, 𝐴) that represents the transpose of 𝜒, by the pasting diagram equalities
from right to left. This observation also justifies our notation, in which we name
the fibered equivalence ⌜𝜖 ⋅ 𝑓(−)⌝ after the formula for adjoint transposition.

Corollary 4.1.3. An pair of functors 𝑢∶ 𝐴 → 𝐵 and 𝑓∶ 𝐵 → 𝐴 define an
adjunction 𝑓 ⊣ 𝑢 if and only if there is an equivalence Hom𝐴(𝑓𝑏, 𝑎) ≃𝑋×𝑌
Hom𝐵(𝑏, 𝑢𝑎) for any pair of generalized elements 𝑎∶ 𝑋 → 𝐴 and 𝑏∶ 𝑌 → 𝐵.

Proof When 𝑓 ⊣ 𝑢, pullback along 𝑎 × 𝑏∶ 𝑋 × 𝑌 → 𝐴 × 𝐵 defines a cos-
mological functor that carries the equivalence Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢)
of Proposition 4.1.1 to an equivalence Hom𝐴(𝑓𝑏, 𝑎) ≃𝑋×𝑌 Hom𝐵(𝑏, 𝑢𝑎). The
converse is proven by the special case where the generalized elements are the
identity functors id𝐴 and id𝐵.

Remark 4.1.4. In particular, the equivalence of Proposition 4.1.1 pulls back to
define an equivalence of internal mapping spaces, introduced in Definition 3.4.9.
In Corollary 12.2.15, we see that in an ∞-cosmos of (∞, 1)-categories a natural
transformation 𝜖∶ 𝑓𝑢 ⇒ id𝐴 defines the counit of an adjunction if and only
if the map ⌜𝜖 ⋅ 𝑓(−)⌝∶ Hom𝐵(𝐵, 𝑢) → Hom𝐴(𝑓, 𝐴) defines equivalences of
internal mapping spaces Hom𝐵(𝑏, 𝑢𝑎) ≃ Hom𝐴(𝑓𝑏, 𝑎) for any pair of elements
𝑎∶ 1 → 𝐴 and 𝑏∶ 1 → 𝐵.

Comma ∞-categories also provide a vehicle for expressing the universal
properties of unit and counit transformations.

Proposition 4.1.5 (the universal property of units and counits). Consider an
adjunction

𝐵 𝐴
𝑓

⊥
ᵆ

with unit 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and counit 𝜖∶ 𝑓𝑢 ⇒ id𝐴 .

Then for each element 𝑎∶ 1 → 𝐴, the component 𝜖𝑎 defines a terminal element
of Hom𝐴(𝑓, 𝑎), and for each element 𝑏∶ 1 → 𝐵, the component 𝜂𝑏 defines an
initial element of Hom𝐵(𝑏, 𝑢).

Proof The fibered equivalence Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢) of Proposition
4.1.1 pulls back, by Corollary 4.1.3, to define equivalences

Hom𝐴(𝑓, 𝑎) ≃𝐵 Hom𝐵(𝐵, 𝑢𝑎) and Hom𝐴(𝑓𝑏, 𝐴) ≃𝐴 Hom𝐵(𝑏, 𝑢).

By Corollary 3.5.10, idᵆ𝑎 induces a terminal element in Hom𝐵(𝐵, 𝑢𝑎) and by
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Lemma 2.2.7 its image across the equivalence Hom𝐵(𝐵, 𝑢𝑎) ∼ Hom𝐴(𝑓, 𝑎)
is again a terminal element. By Observation 4.1.2 this element represents the
transposed 2-cell: the component of the counit 𝜖 at the element 𝑎.

The universal property of unit and counit components captured in Proposition
4.1.5 gives the main idea behind the adjoint functor theorems. In an ∞-cosmos
of (∞, 1)-categories, a functor 𝑓∶ 𝐵 → 𝐴 admits a right adjoint just when for
each element 𝑎∶ 1 → 𝐴, the∞-category Hom𝐴(𝑓, 𝑎) admits a terminal element
(see Corollary 12.2.7).2 The image of this terminal element under the domain
projection functor 𝑝0∶ Hom𝐴(𝑓, 𝑎) ↠ 𝐵 defines the element 𝑢𝑎∶ 1 → 𝐵 and
the comma cone defines the component of the counit at 𝑎. The universal property
of the counit components is then used to extend the mapping on elements to a
functor 𝑢∶ 𝐴 → 𝐵.

An analogous result that is true in a generic∞-cosmos is obtained by replacing
the quantifier “for each element 𝑎∶ 1 → 𝐴” with “for each generalized element
𝑎∶ 𝑋 → 𝐴,” in which case the meaning of “terminal element” should be
enhanced to “terminal element over 𝑋” (see Definition 3.6.8). Since every
generalized element factors through the universal generalized element, namely
the identity functor at 𝐴, it suffices to prove:

Proposition 4.1.6. A functor 𝑓∶ 𝐵 → 𝐴 admits a right adjoint if and only if
Hom𝐴(𝑓, 𝐴) admits a terminal element over 𝐴. Dually, 𝑓∶ 𝐵 → 𝐴 admits a left
adjoint if and only if Hom𝐴(𝐴, 𝑓) admits an initial element over 𝐴.

Proof By Proposition 4.1.1, 𝑓∶ 𝐵 → 𝐴 admits a right adjoint if and only if
the comma ∞-category Hom𝐴(𝑓, 𝐴) is right representable, which by Corollary
3.6.10 is the case just when Hom𝐴(𝑓, 𝐴) admits a terminal element over 𝐴.

The same suite of results from §3.5–§3.6 specialize to theorems that encode
the universal properties of limits and colimits. Before exploring these, we first
construct the ∞-category of cones over or under a diagram.

Exercises
Exercise 4.1.i (4.3.13). Specialize Proposition 4.1.1 to the case of adjunctions

1 𝐴
𝑖

⊥
!

and 1 𝐴
𝑡
⊥
!

2 Recall from Example 2.3.11 that a terminal element is a colimit of the identity functor. The
technical conditions in Freyd’s general adjoint functor theorem and special adjoint functor
theorem are deployed to reduce this large colimit to a small colimit and guarantee its existence
(see [104, §4.6] for a 1-categorical exposition of these results). Analogous theorems have been
proven in the (∞, 1)-categorical context by Nguyen, Raptis, and Schrade [88].
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to discover an alternate characterization of initial and terminal elements.

Exercise 4.1.ii. For any parallel pair of fully specified adjunctions

𝐵 𝐴
𝑓

⊥
ᵆ

with unit 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and counit 𝜖∶ 𝑓𝑢 ⇒ id𝐴, and

𝐵 𝐴
𝑓′

⊥
ᵆ′

with unit 𝜂′∶ id𝐵 ⇒ 𝑢′𝑓′ and counit 𝜖′∶ 𝑓′𝑢′ ⇒ id𝐴 .

there is a bijection between natural transformations 𝛼∶ 𝑓′ ⇒ 𝑓 and 𝛽∶ 𝑢 ⇒ 𝑢′

as a special case of the mates correspondence (see Definition B.3.3). Argue
that the transposing equivalence of Proposition 4.1.1 is natural with respect
to precomposing with a 2-cell 𝛼∶ 𝑓′ ⇒ 𝑓 or postcomposing with its mate
𝛽∶ 𝑢 ⇒ 𝑢′ (see Corollary 3.5.11) by proving that there is a fibered natural
isomorphism over 𝐴 × 𝐵 between the functors:

Hom𝐴(𝑓, 𝐴) Hom𝐴(𝑓′, 𝐴)

Hom𝐵(𝐵, 𝑢) Hom𝐵(𝐵, 𝑢′)

⌜𝛼∗⌝

∼⌜ᵆ(−)⋅𝜂⌝ ∼ ⌜ᵆ′(−)⋅𝜂′⌝

⌜𝛽∗⌝

4.2 ∞-Categories of Cones

The comma ∞-category construction can be used to define the ∞-category of
cones over or under a given diagram. Since these ∞-categories feature centrally
in the description of the universal properties of limits and colimits, we present a
few equivalent models for this construction.

A cone over a diagram 𝑑∶ 1 → 𝐴𝐽 with summit 𝑎∶ 1 → 𝐴 is a natural
transformation 𝜆Δ𝑎 ⇒ 𝑑, where Δ∶ 𝐴 → 𝐴𝐽 is the constant diagram functor of
Definition 2.3.1. This motivates the following definition.

Definition 4.2.1 (the ∞-category of cones). Let 𝑑∶ 1 → 𝐴𝐽 be a 𝐽-shaped
diagram in an ∞-category 𝐴. The ∞-category of cones over 𝑑 is the comma
∞-category Hom𝐴𝐽(Δ, 𝑑) from the constant diagram functor Δ to 𝑑, while the
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∞-category of cones under 𝑑 is the comma ∞-category Hom𝐴𝐽(𝑑, Δ).

Hom𝐴𝐽(Δ, 𝑑) Hom𝐴𝐽(𝑑, Δ)

1 𝐴 𝐴 1

𝐴𝐽 𝐴𝐽

𝑝1 𝑝0

𝜙
⇐

𝑝1 𝑝0

𝜙
⇐

𝑑 Δ Δ 𝑑

By replacing the diagram leg of the cospans, Definition 4.2.1 can be modified
to allow 𝑑∶ 𝐷 → 𝐴𝐽 to be a family of diagrams. In the universal case, where 𝑑 is
the identity functor id𝐴𝐽 ∶ 𝐴𝐽 → 𝐴𝐽, this defines the ∞-category Hom𝐴𝐽(Δ, 𝐴𝐽)
of cones over or under any diagram of shape 𝐽.

In the case where the indexing shape 𝐽 is a simplicial set (as opposed to an
∞-category in a cartesian closed ∞-cosmos), there is another model of the
∞-category of cones over or under a diagram that may be constructed using
the simplicial join construction first developed by Ehlers and Porter [40]. The
equivalence of models is a consequence of the equivalence between the join
operation and the so-called “fat join” introduced by Joyal [63, §9]. As Lemma
4.2.3 reveals, a particular instance of the fat join construction gives the shape of
the cones appearing in Definition 4.2.1. We now introduce these notions.

Definition 4.2.2 (fat join). The fat join of simplicial sets 𝐼 and 𝐽 is the simplicial
set constructed by the following pushout:

(𝐼 × 𝐽) ⨿ (𝐼 × 𝐽) 𝐼 ⨿ 𝐽

𝐼 × 𝟚 × 𝐽 𝐼 ⋄ 𝐽

𝜋𝐼⨿𝜋𝐽

⌜

from which it follows that

(𝐼 ⋄ 𝐽)𝑛 ≔ 𝐼𝑛 ⨿ ( ∐
[𝑛]↠[1]

𝐼𝑛 × 𝐽𝑛) ⨿ 𝐽𝑛.

Note there is a natural map 𝐼 ⋄𝐽 ↠ 𝟚 induced by the projection 𝜋∶ 𝐼×𝟚×𝐽 ↠ 𝟚
so that 𝐼 is the fiber over 0 and 𝐽 is the fiber over 1:

𝐼 ⨿ 𝐽 𝐼 ⋄ 𝐽

𝟙 + 𝟙 𝟚

⌟

(0,1)

The ∞-categories of cones over or under any 𝐽-shaped diagram can be re-
described as follows.
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Lemma 4.2.3. For any simplicial set 𝐽 and ∞-category 𝐴 in an ∞-cosmos 𝒦,
we have natural isomorphisms

Hom𝐴𝐽(Δ, 𝐴𝐽) ≅ 𝐴𝟙⋄𝐽 and Hom𝐴𝐽(𝐴𝐽, Δ) ≅ 𝐴𝐽⋄𝟙.

Proof The simplicial cotensor 𝐴(−)∶ 𝑠𝒮𝑒𝑡op → 𝒦 carries the pushout of Defi-
nition 4.2.2 to the pullback squares that define the left and right representations
of Δ∶ 𝐴 → 𝐴𝐽 as a comma ∞-category:

𝐴𝟙⋄𝐽 (𝐴𝐽)𝟚 𝐴𝐽⋄𝟙 (𝐴𝐽)𝟚

𝐴𝐽 × 𝐴 𝐴𝐽 × 𝐴𝐽 𝐴 × 𝐴𝐽 𝐴𝐽 × 𝐴𝐽

⌟
(𝑝1,𝑝0)

⌟
(𝑝1,𝑝0)

id×Δ Δ×id

Definition 4.2.4 (join, D.2.6). The join of simplicial sets 𝐼 and 𝐽 is the simplicial
set 𝐼 ⋆ 𝐽

𝐼 ⨿ 𝐽 𝐼 ⋆ 𝐽

𝟙 + 𝟙 𝟚

⌟

(0,1)

with (𝐼 ⋆ 𝐽)𝑛 ∶= 𝐼𝑛 ⨿ ( ∐
0≤𝑘<𝑛

𝐼𝑛−𝑘−1 × 𝐽𝑘) ⨿ 𝐽𝑛

and with the vertices of these 𝑛-simplices oriented so that there is a canonical
map 𝐼⋆𝐽 → 𝟚 so that 𝐼 is the fiber over 0 and 𝐽 is the fiber over 1 (see Definitions
D.2.2 and D.2.6 or the original sources [40] and [61, §3] for more details).

The join functor − ⋆ 𝐽∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 preserves connected colimits but not
the initial object or other coproducts, but cocontinuity is achieved by replacing
the codomain by the slice category under 𝐽: the functor − ⋆ 𝐽∶ 𝑠𝒮𝑒𝑡 → 𝐽/𝑠𝒮𝑒𝑡
preserves all colimits (see Lemma D.2.7). Contextualized in this way, the join
admits a right adjoint, defined by Joyal’s slice construction, which carries a
simplicial map 𝑓∶ 𝐽 → 𝑋 to a simplicial set traditionally denoted by 𝑋/𝑓.

Proposition 4.2.5 (join ⊣ slice adjunction). The join functors admit right
adjoints defined by the natural bijections:

𝑠𝒮𝑒𝑡 𝐼/𝑠𝒮𝑒𝑡
𝐼⋆−

⊥
−/−

{ Δ[𝑛] ℎ/𝑋 } ≔ {
𝐼

𝐼 ⋆ Δ[𝑛] 𝑋
ℎ }

𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡
−⋆𝐽

⊥
−/−

{ Δ[𝑛] 𝑋/𝑘 } ≔ {
𝐽

Δ[𝑛] ⋆ 𝐽 𝑋
𝑘 } .

Proof The simplicial set 𝑋/𝑘 is defined to have 𝑛-simplices corresponding to
maps Δ[𝑛] ⋆ 𝐽 → 𝑋 under 𝐽, with the right action by the simplicial operators
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[𝑚] → [𝑛] given by precomposition with Δ[𝑚] → Δ[𝑛]. Since the join functor
− ⋆ 𝐽∶ 𝑠𝒮𝑒𝑡 → 𝐽/𝑠𝒮𝑒𝑡 preserves colimits, this extends to a bijection between
maps 𝐼 → 𝑋/𝑘 and maps 𝐼 ⋆ 𝐽 → 𝑋 under 𝐽 that is natural in 𝐼 and in 𝑘∶ 𝐽 →
𝑋.

Notation 4.2.6. For any simplicial set 𝐽, we write

𝐽◃ ≔ 𝟙 ⋆ 𝐽 and 𝐽▹ ≔ 𝐽 ⋆ 𝟙

and write⊤ for the cone vertex of 𝐽◃ and⊥ for the cone vertex of 𝐽▹ contributed
by the terminal simplicial set 𝟙. These simplicial sets are equipped with canonical
inclusions

𝐽◃ 𝐽 𝐽▹

As the terminology suggests, the join and fat join constructions define equiv-
alent indexing shapes, in the following sense.

Proposition 4.2.7 (join vs fat join). For any simplicial sets 𝐼 and 𝐽 and any
∞-category 𝐴, there is a natural equivalence

𝐴𝐼⋆𝐽 𝐴𝐼⋄𝐽

𝐴𝐼⨿𝐽

∼

res res

Proof There is a canonical map of simplicial sets

(𝐼 × 𝐽) ⨿ (𝐼 × 𝐽) 𝐼 ⨿ 𝐽

𝐼 × 𝟚 × 𝐽 𝐼 ⋄ 𝐽 𝐼 ⋆ 𝐽

𝟚

𝜋𝐼⨿𝜋𝐽

⌜

that commutes with the inclusions of the fibers 𝐼 ⨿𝐽 and lies over the projections
to 𝟚. An 𝑛-simplex in 𝐼 ⋄ 𝐽 that does not lie in either fiber is given by the data of
a triple (𝛼∶ [𝑛] ↠ [1], 𝜎 ∈ 𝐼𝑛, 𝜏 ∈ 𝐽𝑛). The dashed map carries this simplex to
the pair (𝜎|{0,…,𝑘} ∈ 𝐼𝑘, 𝜏|{𝑘+1,…,𝑛} ∈ 𝐽𝑛−𝑘−1) representing an 𝑛-simplex of 𝐼⋆𝐽,
where 𝑘 ∈ [𝑛] is the maximal vertex in 𝛼−1(0). Proposition D.6.3, or Lurie’s
[78, 4.2.1.2], prove that this map induces a natural equivalence 𝑄𝐼⋆𝐽 ∼ 𝑄𝐼⋄𝐽

of quasi-categories over 𝑄𝐽 × 𝑄𝐼. Taking 𝑄 to be the functor space Fun(𝑋, 𝐴)
proves the claimed equivalence for general ∞-categories.
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Corollary 4.2.8. For any simplicial set 𝐽 and ∞-category 𝐴, there are comma
squares

𝐴𝐽◃ 𝐴𝐽▹

𝐴𝐽 𝐴 𝐴 𝐴𝐽

𝐴𝐽 𝐴𝐽

res ev⊤

𝜙
⇐

ev⊥ res

𝜙
⇐

Δ Δ

(4.2.9)

which pull back over a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 to define equivalent
models for the ∞-categories of cones over or under 𝑑.

Hom𝐴𝐽(Δ, 𝑑) ≃ 𝐴/𝑑 𝐴𝐽◃ Hom𝐴𝐽(𝑑, Δ) ≃ 𝑑/𝐴 𝐴𝐽▹

𝐷 × 𝐴 𝐴𝐽 × 𝐴 𝐴 × 𝐷 𝐴 × 𝐴𝐽

⌟
res

⌟
res

𝑑×id id×𝑑

Proof Proposition 4.2.7 constructs fibered equivalences 𝐴𝟙⋄𝐽 ≃𝐴𝐽×𝐴 𝐴𝐽◃ and
𝐴𝐽⋄𝟙 ≃𝐴×𝐴𝐽 𝐴𝐽

▹. By Lemma 4.2.3, 𝐴𝟙⋄𝐽 and 𝐴𝐽⋄𝟙 are comma ∞-categories.
Thus, Proposition 3.4.11 implies that the fibered equivalences equip 𝐴𝐽◃ and
𝐴𝐽▹ with comma cones, satisfying the weak universal property of Proposition
3.4.6. The natural transformations in (4.2.9) are represented by the horizontal
composites

𝐽 ⨿ 𝐽 𝟙 ⨿ 𝐽 𝐽 ⨿ 𝐽 𝐽 ⨿ 𝟙

𝐽 × 𝟚 𝟙 ⋄ 𝐽 𝐽◃ 𝐽 × 𝟚 𝐽 ⋄ 𝟙 𝐽▹

𝟚 𝟚

⌜ ⌜

which yield natural transformations upon cotensoring into 𝐴:

𝐴𝐽◃ (𝐴𝐽)𝟚 𝐴𝐽 𝐴𝐽▹ (𝐴𝐽)𝟚 𝐴𝐽

Δ ev⊤

res

𝑝0

𝑝1

⇓𝜅

Δ ev⊥

res

𝑝0

𝑝1

⇓𝜅

The fibered equivalences pullback to define equivalent models for the ∞-cate-
gories of cones over or under a fixed family of diagrams 𝑑.
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Warning 4.2.10. In the statement of Corollary 4.2.8 and elsewhere it is con-
venient to borrow Joyal’s slice notation for the fibers of the restriction maps
over a diagram 𝑑∶ 1 → 𝐴𝐽. This usage is justified by Proposition D.6.4, which
proves that 𝐴/𝑑 ≃𝐴 Hom𝐴𝐽(Δ, 𝑑) and 𝑑/𝐴 ≃𝐴 Hom𝐴𝐽(𝑑, Δ) in the ∞-cosmos of
quasi-categories. Note, however, that in the ∞-cosmos of quasi-categories the
strict fibers are not isomorphic to Joyal’s slice quasi-categories (see Exercise
4.2.ii) but are merely equivalent to them.

Exercises
Exercise 4.2.i. Compute Δ[𝑛] ⋆ Δ[𝑚] and Δ[𝑛] ⋄ Δ[𝑚] and define a section

Δ[𝑛] ⋆ Δ[𝑚] → Δ[𝑛] ⋄ Δ[𝑚]

to the map constructed in the proof of Proposition 4.2.7.

Exercise 4.2.ii. Compute the fiber of 𝐴𝐽◃ ↠ 𝐴𝐽 over 𝑑∶ 1 → 𝐴𝐽 in the ∞-
cosmos of quasi-categories and prove that this quasi-category is not isomorphic
to 𝐴/𝑑.

Exercise 4.2.iii ([63, 3.5]). The category of simplicial sets, as a category
of presheaves, is locally cartesian closed, meaning that the pullback functor
associated to any map 𝑓∶ 𝑈 → 𝑉 has a right adjoint Π𝑓 called the dependent
product or pushforward.

𝑠𝒮𝑒𝑡/𝑉 𝑠𝒮𝑒𝑡/𝑈
𝑓∗

⊥
Π𝑓

Show that the join 𝐼 ⋆ 𝐽 can be defined as an object of 𝑠𝒮𝑒𝑡/𝟚 as the dependent
product of !+!∶ 𝐼 + 𝐽 → 1 + 1 along 1 + 1 ↪ 𝟚.

4.3 The Universal Property of Limits and Colimits

To describe the universal properties of limits and colimits we return to the general
context of Definition 2.3.1, simultaneously considering diagrams valued in an
∞-category that are indexed by either a simplicial set or another ∞-category,
in the case where the ambient ∞-cosmos is cartesian closed. As was the case
for Proposition 4.1.1, Theorem 3.5.8 specializes immediately to the setting of
Definition 2.3.8 to prove:
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Proposition 4.3.1 (co/limits represent cones). A family of diagrams 𝑑∶ 𝐷 →
𝐴𝐽 admits a limit if and only if the ∞-category of cones Hom𝐴𝐽(Δ, 𝑑) over 𝑑 is
right representable

Hom𝐴𝐽(Δ, 𝑑) ≃𝐷×𝐴 Hom𝐴(𝐴, ℓ),

in which case the representing functor ℓ∶ 𝐷 → 𝐴 defines the limit functor.
Dually, a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 admits a colimit if and only if the
∞-category of cones Hom𝐴𝐽(𝑑, Δ) under 𝑑 is left representable

Hom𝐴𝐽(𝑑, Δ) ≃𝐴×𝐷 Hom𝐴(𝑐, 𝐴),

in which case the representing functor 𝑐∶ 𝐷 → 𝐴 defines the colimit functor.

Corollary 3.6.10 specializes to tell us that such representations can be encoded
by terminal or initial elements, a result which is easiest to interpret for a single
diagram rather than a family of diagrams.

Proposition 4.3.2 (limits as terminal cones). A diagram 𝑑∶ 1 → 𝐴𝐽 of shape
𝐽 in an ∞-category 𝐴

(i) admits a limit if and only if the ∞-category Hom𝐴𝐽(Δ, 𝑑) of cones over
𝑑 admits a terminal element, in which case the terminal element defines
a limit cone, and

(ii) admits a colimit if and only if the ∞-category Hom𝐴𝐽(𝑑, Δ) of cones
under 𝑑 admits an initial element, in which case the initial element
defines the colimit cone.

The uniqueness of limit and colimit cones up to isomorphism follows by
applying Lemma 2.2.3. Alternatively, this can be proven from the absolute
lifting diagram characterization (see Exercise 2.3.vi).

Remark 4.3.3. Corollary 3.6.10 applies equally to say that a family of diagrams
𝑑∶ 𝐷 → 𝐴𝐽 admits a limit just when Hom𝐴𝐽(Δ, 𝑑) admits a terminal element
over 𝐷 and admits a colimit just when Hom𝐴𝐽(𝑑, Δ) admits an initial element
over 𝐷.

For aesthetic reasons, we state the following two results for diagrams indexed
by simplicial sets so that we may deploy more elegant notation that may be
easier to interpret. As Exercise 4.3.ii reveals, there is no mathematical reason to
restrict to this special case.3

3 Indeed, the proof in fact uses the codomain projection functor 𝑝1∶ Hom𝐴𝐽(Δ,𝐴𝐽) ↠ 𝐴𝐽 in
place of the equivalent isofibration res∶ 𝐴𝐽◃ ↠ 𝐴𝐽, and thus the plainer argument applies
equally in the case of diagrams indexed by ∞-categories 𝐽 in cartesian closed ∞-cosmoi that
may or may not have a join operation available for indexing shapes.
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Proposition 4.3.4. An ∞-category 𝐴 admits a limit of a family of diagrams
𝑑∶ 𝐷 → 𝐴𝐽 indexed by a simplicial set 𝐽 if and only if there exists an absolute
right lifting of 𝑑 through the restriction functor

𝐴𝐽◃

𝐷 𝐴𝐽
⇓𝜖

res

𝑑

ran𝑑

When these equivalent conditions hold, 𝜖 is necessarily an isomorphism and
may be chosen to be the identity.

Proof By Definition 2.3.8, a family of diagrams 𝑑 admits a limit if and only
if it admits an absolute right lifting through Δ∶ 𝐴 → 𝐴𝐽. By Proposition
3.6.14, this absolute lifting exists if and only if 𝑑 admits an absolute right lifting
through codomain projection functor 𝑝1∶ Hom𝐴𝐽(Δ, 𝐴𝐽) ↠ 𝐴𝐽, in which case
the natural isomorphism of this latter absolute right lifting diagram is invertible.
By Corollary 4.2.8, the restriction functor res∶ 𝐴𝐽◃ ↠ 𝐴𝐽 is equivalent to this
codomain projection functor, so Exercise 3.5.ii implies that absolute right liftings
of 𝑑 through 𝑝1 are equivalent to absolute right liftings of 𝑑 through res. If this
absolute lifting diagram is inhabited by an invertible 2-cell, the isomorphism
lifting property of the isofibration proven in Proposition 1.4.9 can be used to
replace the functor ran∶ 𝐷 → 𝐴𝐽◃ with an isomorphic functor, yielding a strictly
commutative triangle that remains an absolute right lifting diagram by Exercise
2.3.vi.

Proposition 4.3.4 specializes to give a structured characterization of those
∞-categories that admit all limits or all colimits of a particular shape (see
Definition 2.3.2).

Corollary 4.3.5. An ∞-category 𝐴 admits all limits indexed by a simplicial
set 𝐽 if and only if the restriction functor below-left admits a fibered right adjoint
over 𝐴𝐽, and 𝐴 admits all colimits indexed by a simplicial set 𝐽 if and only if the
restriction functor below-right admits a fibered left adjoint over 𝐴𝐽.

𝐴𝐽◃ 𝐴𝐽 𝐴𝐽▹ 𝐴𝐽
res

⊥
ran res

⊥
lan

Proof By Proposition 4.3.4 and Lemma 2.3.7, 𝐴 admits all 𝐽-shaped limits
if and only if the functor res∶ 𝐴𝐽◃ ↠ 𝐴𝐽 admits a right adjoint right inverse.
Since the restriction functor is an isofibration, Lemma 3.6.9 applies to rectify
the right adjoint right inverse into a fibered adjunction.
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We now apply the general theory we have developed to particular indexing
shapes.

Definition 4.3.6 (tensors and cotensors). Let 𝐾 be a simplicial set and let
𝑎∶ 1 → 𝐴 be an element of an ∞-category 𝐴. The tensor 𝐾 ⊗ 𝑎 of 𝑎 by 𝐾 is
the colimit of the constant 𝐾-indexed diagram valued at 𝑎, while the cotensor
𝑎𝐾 of 𝑎 by 𝐾 is the limit of the same diagram. Thus, the tensor and cotensor
functors can be defined by the absolute lifting diagrams:

𝐴 𝐴

𝐴 𝐴𝐾 𝐴 𝐴𝐾
⇑𝜆

Δ
⇓𝜌

Δ

Δ

𝐾⊗−

Δ

(−)𝐾

By Theorem 3.5.3, these absolute lifting diagrams define fibered equivalences

Hom𝐴(𝐾 ⊗ −,𝐴) ≃𝐴×𝐴 Hom𝐴𝐾(Δ, Δ) ≃𝐴×𝐴 Hom𝐴(𝐴, (−)𝐾)

which compose to define the fibered equivalence encoding an adjunction between
the tensor and cotensor functors:

𝐴 𝐴
𝐾⊗−

⊥
(−)𝐾

By Corollary 4.1.3, the fibered equivalences that express the universal prop-
erties of tensors and cotensors pullback over elements 𝑎, 𝑥∶ 1 → 𝐴 to define
equivalences of mapping spaces:

Hom𝐴(𝐾 ⊗ 𝑎, 𝑥) ≃ Hom𝐴𝐾(Δ𝑎, Δ𝑥) ≅ Hom𝐴(𝑎, 𝑥)𝐾 and
Hom𝐴(𝑥, 𝑎𝐾) ≃ Hom𝐴𝐾(Δ𝑥, Δ𝑎) ≅ Hom𝐴(𝑥, 𝑎)𝐾.

Definition 4.3.7 (span and cospan). A span in an ∞-category 𝐴 is a diagram
indexed by the simplicial set ≔ Λ0[2] formed by gluing two 1-simplices
along their domain vertices. Dually, a cospan in 𝐴 is a diagram indexed by
the simplicial set ≔ Λ2[2] formed by gluing two 1-simplices along their
codomain vertices. Cospans and spans in an ∞-category 𝐴 may be defined by
gluing together a pair of arrows along their common codomains or domains,
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respectively:

𝑋 𝑋

𝐴 𝐴𝟚 𝐴 𝐴𝟚

𝐴𝟚 𝐴 𝐴𝟚 𝐴

𝑓

𝑔

𝑔∨𝑓

ℎ

𝑘

𝑘∧ℎ

⌟
𝑝1

⌟
𝑝0

𝑝1 𝑝0

Definition 4.3.8 (pushout and pullback). A pushout in an ∞-category 𝐴 is a
colimit indexed by the simplicial set , while a pullback in an ∞-category 𝐴
is a limit indexed by the simplicial set . Cones over diagrams of shape or
cones under diagrams of shape define commutative squares, diagrams of
shape

≔ ▹ ≅ 𝟚 × 𝟚 ≅ ◃.

A pullback square in an ∞-category 𝐴 is an element of 𝐴 that defines an
absolute right lifting of its underlying cospan:

𝐴 𝐴

1 𝐴 1 𝐴

=

res

=

res

When 𝐴 admits all pullbacks, the pullback squares can be characterized as
those elements of 𝐴 at which the component of the unit of the adjunction
res ⊣ ran of Corollary 4.3.5 is an isomorphism (see Exercise 4.3.v). Dually, a
pushout square in 𝐴 is an element of 𝐴 that defines an absolute left lifting
of its underlying span, i.e., an element at which the component of the counit of
the adjunction lan ⊣ res is an isomorphism. The notion of a family 𝑋 → 𝐴 of
pushout or pullback squares is defined analogously.

Pullback squares may be characterized by absolute lifting diagrams, which
proves useful for establishing their basic calculus. For this, we make use of the
following lemma.

Lemma 4.3.9. Consider a family of arrows 𝑓∶ 𝑋 → 𝐴𝟚 representing a natural
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transformation 𝑋 𝐴
𝑏

𝑎
⇓𝑓 . Then there is a span

𝐴/𝑓

Hom𝐴(𝐴, 𝑏) Hom𝐴(𝐴, 𝑎)

𝑋 × 𝐴

∼𝑝01 𝑝02

∼

𝑓∗

(𝑝1,𝑝0) (𝑝1,𝑝0)

so that any section to the trivial fibration 𝑝01 composes with 𝑝02 to define a
functor 𝑓∗ representing postcomposition with 𝑓, and every functor in the fibered
isomorphism class of 𝑓∗ arises this way.4 Moreover, 𝑓 represents a natural
isomorphism 𝑓∶ 𝑎 ≅ 𝑏 if and only if the isofibration 𝑝02 is a trivial fibration.

Proof By forming the pullbacks of each column, the span of cospans below
defines the objects and maps of the span in the statement:

𝐴𝟚 𝐴𝟛 𝐴𝟚

𝐴 𝐴

𝐴 × 𝐴 𝐴𝟚 × 𝐴 𝐴 × 𝐴

𝑋 × 𝐴 𝑋 × 𝐴 𝑋 × 𝐴

(𝑝1,𝑝0)

𝑝01 𝑝02

(𝑝12,𝑝0)

∼

(𝑝1,𝑝0)⌞ ⌟

𝑝0×id 𝑝1×id

𝑏×id 𝑓×id 𝑎×id

Note that the maps to the pullbacks in the tops squares respectively define a
trivial fibration and an isofibration. Thus, by Proposition C.1.12, the induced
map 𝑝01∶ 𝐴/𝑓 ∼ Hom𝐴(𝐴, 𝑏) is a trivial fibration while the induced map
𝑝02∶ 𝐴/𝑓 ↠ Hom𝐴(𝐴, 𝑎) is an isofibration.

In particular, from the pullbacks below-left, we see that sections to the trivial
fibration 𝑝01 correspond to maps Hom𝐴(𝐴, 𝑏) → 𝐴𝟛 that extend the composable
pair of arrows 𝜙∶ Hom𝐴(𝐴, 𝑏) → 𝐴𝟚 and 𝑓𝑝1∶ Hom𝐴(𝐴, 𝑏) → 𝐴𝟚 to a 2-
4 Corollary 3.5.11 defines a bijection between natural transformations 𝛼∶ 𝑏 ⇒ 𝑎 in the homotopy

2-category and functors ⌜𝛼∗⌝∶ Hom𝐴(𝐴, 𝑏) → Hom𝐴(𝐴, 𝑎) up to fibered isomorphism. Here
we slightly alter our notation because we are starting from a family of arrows 𝑓∶ 𝑋 → 𝐴𝟚

rather than from the natural transformation represented by that family.
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simplex in Fun(Hom𝐴(𝐴, 𝑏), 𝐴).

𝐴/𝑓 𝐴𝟛

Hom𝐴(𝐴, 𝑏) 𝐴 𝐴𝟚

𝑋 𝐴𝟚 𝐴

∼𝑝01

⌟ ∼

𝑝1
⌟

𝑝12

𝑝01

⌟
𝑝1

𝑓 𝑝0

𝑏𝑝1

𝑝0 𝑎𝑝1

𝑓𝑝1𝜙

Similarly, the pullback

Fun𝑋×𝐴(Hom𝐴(𝐴, 𝑏),Hom𝐴(𝐴, 𝑎)) Fun(Hom𝐴(𝐴, 𝑏), 𝐴)𝟚

𝟙 Fun(Hom𝐴(𝐴, 𝑏), 𝐴) × Fun(Hom𝐴(𝐴, 𝑏), 𝐴)

⌟
(𝑝1,𝑝0)

(𝑝1𝑎,𝑝0)

shows that functors 𝑓∗∶ Hom𝐴(𝐴, 𝑏) → Hom𝐴(𝐴, 𝑎) correspond to choices of
representatives 𝑓𝑝1 ⋅ 𝜙∶ Hom𝐴(𝐴, 𝑏) → 𝐴𝟚 for the composite arrow (compare
with the proof of Corollary 3.5.11). Thus, every section defines a map in the
correct fibered isomorphism class of functors, and conversely, since each triple
of arrows that define a commutative diagram in hFun(Hom𝐴(𝐴, 𝑏), 𝐴) bound
some 2-simplex in Fun(Hom𝐴(𝐴, 𝑏), 𝐴) (see Lemma 1.1.12) every representing
functor arises in this way.

Finally, by Exercise 3.6.ii and Corollary 3.5.11, 𝑓∶ 𝑏 ⇒ 𝑎 is an isomorphism
if and only if the functor 𝑓∗∶ Hom𝐴(𝐴, 𝑏) → Hom𝐴(𝐴, 𝑎) is a fibered equiva-
lence. By the 2-of-3 property, it follows that 𝑓 is an isomorphism if and only if
𝑝02 is a trivial fibration.

Lemma 4.3.10 (pullbacks as absolute lifting diagrams). A commutative square
in an ∞-category 𝐴 is a pullback square if and only if the induced natural
transformation (id𝑎, 𝑣) is an absolute right lifting diagram

𝑑 𝑏 Hom𝐴(𝐴, 𝑏)

𝑐 𝑎 1 Hom𝐴(𝐴, 𝑎)

ᵆ

𝑣 𝑤 𝑓 ⇓(id𝑎,𝑣)
𝑓∗

𝑔 𝑔

ᵆ

The statement requires some explanation. A commutative square 𝑠∶ 1 → 𝐴
defines an element of Fun(1, 𝐴) , the data of which is given by the four vertices
𝑑, 𝑏, 𝑐, 𝑎∶ 1 → 𝐴 and five 1-simplices 𝑢, 𝑣, 𝑓, 𝑔, 𝑤∶ 1 → 𝐴𝟚 in the underlying
quasi-category 𝐴0 ≔ Fun(1, 𝐴) of 𝐴, displayed above-left, together with a pair
of unnamed 2-simplices that witness commutativity 𝑓𝑢 = 𝑤 = 𝑔𝑣 in h𝐴 ≔
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hFun(1, 𝐴). By Proposition 3.4.7, the composite 𝑓∗𝑢 is isomorphic to 𝑓𝑢. By
2-cell induction, the natural transformation (id𝑎, 𝑣)∶ 𝑓𝑢 ⇒ 𝑔 displayed above-
right may be constructed by specifying its domain and codomain components,
the former of which we take to be 𝑣∶ 𝑑 ⇒ 𝑐 and the latter of which we take to
be id𝑎.

Proof By Corollary 4.2.8, the fiber of the restriction functor

𝐴𝑔∨𝑓 𝐴

1 𝐴

⌟
res

𝑔∨𝑓

is equivalent to the ∞-category of cones over the cospan diagram 𝑔 ∨ 𝑓. By
Proposition 4.3.2, to show that the commutative square defines a pullback
diagram is to show that (𝑣, 𝑓, 𝑢, 𝑔)∶ 1 → 𝐴𝑔∨𝑓 defines a terminal element.
Similarly, by Corollary 3.6.10, the pair (𝑢, (id𝑎, 𝑣)) defines an absolute right
lifting diagram if and only if it represents a terminal element in the comma ∞-
category HomHom𝐴(𝐴,𝑎)(𝑓∗, 𝑔). We claim that 𝐴𝑔∨𝑓 and HomHom𝐴(𝐴,𝑎)(𝑓∗, 𝑔) are
equivalent via maps that identify these elements, which proves the biconditional.

To see this, note that the simplicial square can be formed by gluing two
2-simplices along their diagonal edge, giving rise to the pullback below-left:

𝐴 𝐴𝟛 HomHom𝐴(𝐴,𝑎)(𝑓∗,Hom𝐴(𝐴, 𝑎)) Hom𝐴(𝐴, 𝑎)𝟚

𝐴𝟛 𝐴𝟚 Hom𝐴(𝐴, 𝑏) Hom𝐴(𝐴, 𝑎)

⌟
𝑝02

⌟
𝑝0

𝑝02 𝑓∗

We argue that maps in the cospan whose pullback defines the comma ∞-cat-
egory displayed above-right are each equivalent to pullbacks of the functor
𝑝02∶ 𝐴𝟛 ↠ 𝐴𝟚 to suitable fibers. By Lemma 4.3.9, the map 𝑝02∶ 𝐴𝟛 ↠ 𝐴𝟚

pulls back to a map equivalent to 𝑓∗ on the fibers over 𝑓 and 𝑎 respectively, so it
remains to consider the map 𝑝0.

By applying (−)𝟚 to the pullback diagram that defines Hom𝐴(𝐴, 𝑎) we obtain
a pullback square that factors as a composite of two pullbacks:

• 𝐴𝟛 ≅ 𝐴𝟚⋆𝟙

Hom𝐴(𝐴, 𝑎)𝟚 𝐴𝟚⋄𝟙 𝐴𝟚×𝟚

1 𝐴 𝐴𝟚

∼
⌟

∼

𝑝2⌟ ⌟
𝑝𝟚1

𝑎 Δ
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Due to the equivalence 𝐴𝟚⋆𝟙 ≃ 𝐴𝟚⋄𝟙 of Proposition 4.2.7, the left-hand pull-
back square shows that Hom𝐴(𝐴, 𝑎)𝟚 is equivalent to the fiber of 𝑝2∶ 𝐴𝟛 ↠
𝐴 along 𝑎∶ 1 → 𝐴. Modulo this equivalence, the domain projection map
𝑝0∶ Hom𝐴(𝐴, 𝑎)𝟚 ↠ Hom𝐴(𝐴, 𝑎) is equivalent to the map induced from

𝐴𝟛 𝐴𝟚

𝐴

𝑝02

𝑝2 𝑝1

on fibers over 𝑎∶ 1 → 𝐴. The codomain projection 𝑝1∶ Hom𝐴(𝐴, 𝑎)𝟚 ↠
Hom𝐴(𝐴, 𝑎) is similarly equivalent to the pullback of the fibered projection map
𝑝12∶ 𝐴𝟛 ↠ 𝐴𝟚 over 𝑎∶ 1 → 𝐴.

Putting this together, the comma ∞-category HomHom𝐴(𝐴,𝑎)(𝑓∗,Hom𝐴(𝐴, 𝑎))
is equivalent to the limit of the diagram:

• 𝐴 𝐴𝟛 𝐴𝟚

𝐴𝟛 𝐴𝟚

1 𝐴𝟚

⌟ ⌟
𝑝02

𝑝12

𝑝12

𝑝02

𝑓

The codomain projection 𝑝1∶ HomHom𝐴(𝐴,𝑎)(𝑓∗,Hom𝐴(𝐴, 𝑎)) ↠ Hom𝐴(𝐴, 𝑎)
is the pullback of the top-horizontal composite in the above diagram along the
inclusion Hom𝐴(𝐴, 𝑎) → 𝐴𝟚. So the comma∞-category HomHom𝐴(𝐴,𝑎)(𝑓∗, 𝑔) is
equivalent to the limit below-left, which rearranges into the pullback below-right
that defines the fiber 𝐴𝑔∨𝑓, proving the claimed equivalence:

• • 1

• 𝐴 𝐴𝟛 𝐴𝟚

𝐴𝟛 𝐴𝟚

1 𝐴𝟚

⌟ ⌟
𝑔

⌟ ⌟
𝑝02

𝑝12

𝑝12

𝑝02

𝑓

𝐴𝑔∨𝑓 𝐴

1 𝐴

⌟
res

𝑔∨𝑓

There is a nonidentity automorphism of the simplicial set 𝟚×𝟚, which induces
a “transposition” automorphism of 𝐴 . By symmetry, a commutative square in
𝐴 is a pullback if and only if its transposed square is a pullback. This gives a dual
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form of Lemma 4.3.10 with the roles of 𝑓 and 𝑔 and of 𝑢 and 𝑣 interchanged. As
a corollary, we can easily prove that pullback squares compose both “vertically”
and “horizontally” and can be cancelled from the “right” and “bottom.”

Proposition 4.3.11 (composition and cancelation of pullback squares). Given
a composable pair of commutative squares in 𝐴 and their composite rectangle
defined via the equivalence 𝐴𝟛×𝟚 ≃ 𝐴 ×

𝐴𝟚
𝐴

𝑝 𝑑 𝑏

𝑒 𝑐 𝑎

𝑥

𝑦 𝑧

ᵆ

𝑣 𝑤 𝑓

ℎ 𝑔

if the right-hand square is a pullback, then the left-hand square is a pullback if
and only if the composite rectangle is a pullback.

Proof By Lemma 4.3.10, we are given an absolute right lifting diagram

Hom𝐴(𝐴, 𝑐)

1 Hom𝐴(𝐴, 𝑎)
⇓(id𝑎,ᵆ)

𝑔∗

𝑓

𝑣

By Lemma 2.4.1, the composite diagram

Hom𝐴(𝐴, 𝑒)

Hom𝐴(𝐴, 𝑐)

1 Hom𝐴(𝐴, 𝑎)

⇓(id𝑐,𝑥)
ℎ∗

⇓(id𝑎,ᵆ)
𝑔∗

𝑓

𝑣

𝑦

is an absolute right lifting diagram if and only if the top triangle is an absolute
right lifting diagram. By Lemma 4.3.10, this is exactly what we wanted to
show.

Remark 4.3.12. The result of Proposition 4.3.11 also holds for 𝑋-indexed
families of commutative squares, by which we mean diagrams 𝑋 → 𝐴 , or
equivalently, elements of Fun(𝑋, 𝐴) . The proof is the same, making use of a
generalization of Lemma 4.3.10 which states that an 𝑋-indexed commutative
square valued in an∞-category 𝐴 in an∞-cosmos𝒦 as below-left is a pullback
square if and only if the induced 2-cell (id𝑎, 𝑣) below-right is an absolute right
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lifting diagram in 𝒦/𝑋:

𝑑 𝑏 Hom𝐴(𝐴, 𝑏)

𝑐 𝑎 𝑋 Hom𝐴(𝐴, 𝑎)

𝑋

ᵆ

𝑣 𝑤 𝑓 ⇓(id𝑎,𝑣)
𝑓∗

𝑝1
𝑔 𝑔

ᵆ

𝑝1

This characterization of 𝑋-indexed pullback squares can be proven by re-imple-
menting the construction given in the proof of Lemma 4.3.10, using comma
∞-categories and simplicial limits in the sliced ∞-cosmos 𝒦/𝑋, as described in
Proposition 1.2.22, in place of the analogous constructions in 𝒦. Were it not for
the more complicated notation involved, we would have presented this general
proof instead of its special case above.

Alternatively, this extension can be deduced from the result we prove here.
A diagram 𝑠∶ 𝑋 → 𝐴 in 𝒦 also defines a 𝑋-indexed commutative square
in the ∞-cosmos 𝒦/𝑋 valued in 𝜋∶ 𝐴 × 𝑋 → 𝑋. This takes the form of a
functor (𝑠, id𝑋)∶ 𝑋 → 𝐴 × 𝑋 over 𝑋. It’s easy to verify that a diagram valued
in 𝜋∶ 𝐴 × 𝑋 ↠ 𝑋 whose component at 𝑋 is the identity has a limit in 𝒦/𝑋
if and only if the 𝐴 component of the diagram has a limit in 𝒦. Since id𝑋 is
the terminal object of 𝒦/𝑋, this object is the ∞-category 1 ∈ 𝒦/𝑋, so Lemma
4.3.10 applies in the ∞-cosmos 𝒦/𝑋 to prove the general case of 𝑋-indexed
families of commutative squares in 𝒦.

As discussed in Example 2.3.10, terminal and initial elements are special
cases of limits and colimits, respectively, where the diagram shape is empty. For
any ∞-category 𝐴, the ∞-category 𝐴∅ ≅ 1 of empty diagrams in 𝐴 is terminal.
Thus, there is a unique ∅-indexed diagram in 𝐴. It follows immediately from
the construction of the comma ∞-categories in Definition 4.2.1, that both of the
∞-categories of cones over or under the unique empty diagram are isomorphic
to 𝐴. In the case of cones over an empty diagram, the domain-evaluation functor,
carrying a cone to its summit, is the identity on 𝐴, while in the case of cones
under the empty diagram, the codomain-evaluation functor, carrying a cone
to its nadir, is the identity on 𝐴. The following characterization of terminal
elements can be deduced as a special case of Proposition 4.3.1, though we find
it easier to argue from Proposition 4.1.1.

Proposition 4.3.13. An element 𝑎∶ 1 → 𝐴 of an ∞-category 𝐴

(i) defines a terminal element of 𝐴 if and only if the domain projection
functor 𝑝0∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴 is a trivial fibration, and
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(ii) defines an initial element of 𝐴 if and only if the codomain projection
functor 𝑝1∶ Hom𝐴(𝑎, 𝐴) ↠ 𝐴 is a trivial fibration.

Proof Recall from Definition 2.2.1, that an element is terminal if and only if
it is right adjoint to the unique functor

1 𝐴
𝑎
⊥
!

By Proposition 4.1.1, ! ⊣ 𝑎 if and only if there is an equivalence Hom1(!, 1) ≃𝐴
Hom𝐴(𝐴, 𝑡). By the defining pullback (3.4.2) for the comma ∞-category, the
left representation of !∶ 𝐴 → 1 is 𝐴 itself, with domain projection functor the
identity. So the component of the equivalence Hom𝐴(𝐴, 𝑎) ∼ 𝐴 over 𝐴 must be
the domain projection functor 𝑝0∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴, and we conclude that 𝑎
is a terminal element if and only if this isofibration is a trivial fibration.

Digression 4.3.14 (terminal elements of a quasi-category). In the ∞-cosmos
of quasi-categories, the domain of the isofibration 𝑝0∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴 is
equivalent over 𝐴 to the slice quasi-category 𝐴/𝑎, defined in Proposition 4.2.5
(see Corollary D.6.6). Via this equivalence, Proposition 4.3.13 proves that 𝑎 is
terminal if and only if the projection 𝐴/𝑎 ↠ 𝐴 is a trivial fibration in the sense
of Definition 1.1.25, which transposes to Joyal’s original definition of a terminal
element of a quasi-category. See Proposition F.1.1 for an expanded discussion.

Exercises
Exercise 4.3.i (pointwise limits in functor ∞-categories). Suppose 𝐴 admits
the limit ℓ∶ 𝐷 → 𝐴 of a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 of shape 𝐽. Prove
that the diagram ∞-category 𝐴𝐾 admits limits of the corresponding family of
𝐽-shaped diagrams 𝑑𝐾∶ 𝐷𝐾 → (𝐴𝐽)𝐾 ≅ (𝐴𝐾)𝐽 defined “pointwise in 𝐾” by the
functor ℓ𝐾∶ 𝐷𝐾 → 𝐴𝐾.5

Exercise 4.3.ii. State and prove versions of Proposition 4.3.4 and Corollary
4.3.5 that apply to a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 indexed by an ∞-category
𝐽 in a cartesian closed ∞-cosmos.

Exercise 4.3.iii. Let 𝑎 be an element of an ∞-category 𝐴 and let 𝐾 and 𝐿 be
5 If 𝐾 is an ∞-category in a cartesian closed ∞-cosmos 𝒦 this can be proven directly by arguing

in the homotopy 2-category, but another proof applies simultaneously to this case and to the
case where 𝐾 is a simplicial set: use the fact that the cosmological functor (−)𝐾∶ 𝒦 → 𝒦
preserves the equivalence of Proposition 4.3.1.
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simplicial sets. Prove that if 𝐴 has tensors and cotensors then these operations
are associative in the sense that the elements

𝐾⊗(𝐿⊗𝑎) ≅ (𝐾×𝐿)⊗𝑎 ≅ 𝐿⊗(𝐾⊗𝑎) and (𝑎𝐿)𝐾 ≅ 𝑎𝐾×𝐿 ≅ (𝑎𝐾)𝐿

are isomorphic.

Exercise 4.3.iv. Prove that if 𝐴 has a terminal element 𝑡 then for any element 𝑎
the mapping space Hom𝐴(𝑎, 𝑡) is contractible, i.e., is equivalent to the terminal
∞-category 1.6

Exercise 4.3.v. Suppose 𝐴 admits pullbacks and consider a family of commu-
tative squares 𝑑∶ 𝐷 → 𝐴 . Show that the following are equivalent:

(i) The commutative triangle

𝐴

𝐷 𝐴

=

res𝑑

res𝑑

is an absolute right lifting diagram.
(ii) The component of the unit of the adjunction res ⊣ ran

𝐷 𝐴 𝐴

𝐴

𝑑

res
⇓𝜂

ran

is invertible.

Exercise 4.3.vi. Prove that a square in 𝐴 is a pullback if and only if its “trans-
posed” square, defined by composing with the involution 𝐴 ≅ 𝐴 induced
from the automorphism of 𝟚 × 𝟚 that swaps the “off-diagonal” elements, is a
pulllback square.

Exercise 4.3.vii. Show that any ∞-category that has pullbacks and a terminal
element admits binary products.

4.4 Pointed and Stable ∞-Categories

In this section, we study ∞-categories with special exactness properties, admit-
ting certain finite limit and colimit constructions, which coincide.
6 The converse implication holds in ∞-cosmoi of (∞, 1)-categories, as argued in the proof of

Proposition F.1.1.
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Definition 4.4.1 (pointed ∞-category). An ∞-category 𝐴 is pointed if it
admits a zero element: an element ∗∶ 1 → 𝐴 that is both initial and terminal.

Recall Lemma 2.2.2, which enumerates the data required to present an initial
or terminal element. To show that an element ∗∶ 1 → 𝐴 defines a zero element it
suffices to define a pair of natural transformations 𝜌∶ ∗! ⇒ id𝐴 and 𝜉∶ id𝐴 ⇒ ∗!
so that the components 𝜌∗∶ ∗ ⇒ ∗ and 𝜉∗∶ ∗ ⇒ ∗ are isomorphisms in h𝐴.
Here 𝜌 is the counit of the adjunction ∗ ⊣ ! that witnesses the initiality of the zero
element and 𝜉 is the unit of the adjunction ! ⊣ ∗ that witnesses the terminality
of the zero element.

The counit 𝜌 is represented by a functor ⌜𝜌⌝∶ 𝐴 → 𝐴𝟚, whose domain
component is constant at ∗ and whose codomain component is id𝐴, that we
refer to as the family of points of 𝐴. Dually, the unit 𝜉 is represented by a
functor ⌜𝜉⌝∶ 𝐴 → 𝐴𝟚, whose domain component is id𝐴 and whose codomain
component is constant at ∗, that we refer to as the family of copoints.

Lemma 4.4.2 (pointed ∞-categories of based elements). If 𝐴 is an ∞-category
with a terminal element 𝑡∶ 1 → 𝐴 then the ∞-category Hom𝐴(𝑡, 𝐴) is pointed,
with ⌜id𝑡⌝∶ 1 → Hom𝐴(𝑡, 𝐴) serving as its zero element. Moreover all pointed
∞-categories arise in this manner.

Proof If 𝐴 is a pointed ∞-category with zero element ∗∶ 1 → 𝐴 then by
Proposition 4.3.13, 𝑝1∶ Hom𝐴(∗, 𝐴) ∼ 𝐴 defines an equivalence between 𝐴
and an ∞-category of the form described in the statement. Since the codomain
projection functor 𝑝1 carries the element ⌜id∗⌝ of Hom𝐴(∗, 𝐴) to the zero el-
ement of 𝐴, Lemma 2.2.7 tells us that ⌜id∗⌝ must define a zero element of
Hom𝐴(∗, 𝐴).

Now suppose only that 𝐴 has a terminal element 𝑡∶ 1 → 𝐴. By Corollary
3.5.10, ⌜id𝑡⌝ defines an initial element of Hom𝐴(𝑡, 𝐴), so it remains only to
show that this element is also terminal. By Lemma 2.2.2, our task is to define a
natural transformation

Hom𝐴(𝑡, 𝐴) Hom𝐴(𝑡, 𝐴)

1!
⇓𝜂

⌜id𝑡⌝

witnessing the terminality of ⌜id𝑡⌝. By Proposition 3.4.6, we may use 2-cell
induction to induce 𝜂 from a pair of natural transformations (𝑝1𝜏, 𝑝0𝜏) satisfying
a compatibility condition. Here necessarily 𝑝0𝜏 = id!, since its codomain ∞-
category is terminal, and we define 𝑝1𝜏 to be 𝜉𝑝1, where 𝜉 is the unit of the
adjunction ! ⊣ 𝑡. The compatibility condition of Proposition 3.4.6(ii) follows
from the triangle equality relation 𝜉𝑡 = id𝑡.
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The component 𝜂⌜id𝑡⌝ is induced from the pair of identity 2-cells (𝜉𝑡, id!), so
by 2-cell conservativity, 𝜂⌜id𝑡⌝ is invertible. By Lemma 2.2.2, this is enough to
witness the terminality of ⌜id𝑡⌝.

Pointed ∞-categories permit familiar constructions from homotopy theory.
By Definition 4.3.7, gluing two copies of the family of points ⌜𝜌⌝∶ 𝐴 → 𝐴𝟚

along their codomains defines a family of cospans ̌𝜌 ≔ ⌜𝜌⌝∨⌜𝜌⌝∶ 𝐴 → 𝐴 .
Dually, there is a family of spans ̂𝜉 ≔ ⌜𝜉⌝∧⌜𝜉⌝∶ 𝐴 → 𝐴 defined by gluing
the family of copoints ⌜𝜉⌝∶ 𝐴 → 𝐴𝟚 to itself along their domains.

Definition 4.4.3 (loops and suspension). A pointed ∞-category 𝐴 admits
loops if it admits a limit of the family of cospans ̌𝜌, in which case the limit
functor Ω∶ 𝐴 → 𝐴 is called the loops functor. Dually, a pointed ∞-category
𝐴 admits suspensions if it admits a colimit of the family of spans ̂𝜉, in which
case the colimit functor Σ∶ 𝐴 → 𝐴 is called the suspension functor.

𝐴 𝐴

𝐴 𝐴 𝐴 𝐴
⇓

Δ
⇑

Δ

̌𝜌

Ω

̂𝜉

Σ

Importantly, if 𝐴 admits loops and suspensions, then the loops and suspension
functors are adjoint:

Proposition 4.4.4 (the loops-suspension adjunction). If 𝐴 is a pointed ∞-cate-
gory that admits loops and suspensions, then the loops functor is right adjoint
to the suspension functor

𝐴 𝐴
Ω
⊥
Σ

The main idea of the proof is easy to describe. If 𝐴 admits all pullbacks and
all pushouts, then Corollary 4.3.5 supplies adjunctions

𝐴 𝐴 𝐴
ran
⊥
res

res
⊥
lan

that are fibered over 𝐴 × 𝐴 upon evaluating at the intermediate vertices of
the commutative square. Pulling back along (∗, ∗)∶ 1 → 𝐴 × 𝐴, pins these
vertices at the zero element. Since the zero element is initial and terminal, the
∞-categories of pullback and pushout diagrams of this form are both equivalent
to 𝐴 and the pulled-back adjoints now coincide with the loops and suspension
functors.
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The only subtlety in the proof that follows is that we have assumed weaker
hypotheses: that 𝐴 admits only loops and suspensions, but perhaps not all
pullbacks and pushouts.

Proof The family of cospans ̌𝜌 lands in a subobject 𝐴∗ of 𝐴 defined below-
left that is comprised of those cospans whose source elements are pinned at the
zero element ∗ of 𝐴.

𝐴 𝐴

𝐴∗ 𝐴 𝐴∗ Hom𝐴(∗, 𝐴)

1 𝐴 × 𝐴 Hom𝐴(∗, 𝐴) 𝐴

̌𝜌
̌𝜌∗

∼

⌜𝜌⌝

̌𝜌∗

∼
⌜𝜌⌝⌟

∼

∼

⌟

∼ 𝑝1

(∗,∗)
∼
𝑝1

From a second construction of𝐴∗ displayed above-right and the characterization
of initiality given in Proposition 4.3.13, we conclude from the 2-of-3 property
of equivalences first that the family of points ⌜𝜌⌝∶ 𝐴 → 𝐴𝟚 restricts to define
an equivalence ⌜𝜌⌝∶ 𝐴 ∼ Hom𝐴(∗, 𝐴) and then that the induced diagram
̌𝜌∗∶ 𝐴 ∼ 𝐴∗ is an equivalence. Dually, the family of spans ̂𝜉 ∶ 𝐴 → 𝐴 defines

an equivalence ̂𝜉∗∶ 𝐴 ∼ 𝐴∗ when its codomain is restricted to the subobject of
spans whose target elements are pinned at the zero element ∗.

By Proposition 4.3.4, a pointed ∞-category 𝐴 admits loops or admits sus-
pensions if and only if there exist absolute lifting diagrams as below-left and
below-right, respectively

𝐴 𝐴

𝐴 𝐴 𝐴 𝐴
≅⇓

res
≅⇑

res

̌𝜌

ran

̂𝜉

lan

and moreover we may take these natural isomorphisms to be identities. Doing
so allows us to define restricted lifts

𝐴∗ 𝐴 𝐴∗ 𝐴

𝐴 𝐴∗ 𝐴 𝐴 𝐴∗ 𝐴

=

⌟
res∗ res

=

res∗
⌟

res

̌𝜌∗

ran∗

̂𝜉∗

lan∗

which we argue again define absolute right and left lifting diagrams, respec-
tively. The right- and left-handed arguments are dual, so we focus our attention
on the former. By Theorem 3.5.3 the absolute right lifting diagram defines
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a fibered equivalence Hom𝐴 (𝐴 , ran) ≃𝐴×𝐴 Hom𝐴 (res, ̌𝜌), which may be
pulled back along the inclusion of the subobject 𝐴∗ ↪ 𝐴 of commutative
squares in 𝐴 whose intermediate vertices are pinned at the zero element to yield
a fibered equivalence over 𝐴 × 𝐴∗ . We claim that these ∞-categories pull back
to ∞-categories that are equivalent to Hom𝐴∗

(𝐴∗ , ran∗) and Hom𝐴∗
(res∗, ̌𝜌∗),

respectively.
To see this, first observe that the universal property of the zero element implies

that Hom𝐴(∗, ∗) is contractible (see Proposition 4.3.13) and therefore the outer
square is equivalent to the pullback

1 Hom𝐴(∗, ∗) 𝐴𝟚

1 𝐴 × 𝐴

∼

⌜id∗⌝

⌟∼ (𝑝1,𝑝0)

(∗,∗)

Since the top and bottom faces of the commutative prism are strict pullbacks

(𝐴 )𝟚 (𝐴 )𝟚 𝐴𝟚 × 𝐴𝟚

(𝐴∗ )𝟚 (𝐴∗ )𝟚 1

𝐴 × 𝐴 𝐴 × 𝐴 𝐴 × 𝐴 × 𝐴 × 𝐴

𝐴∗ × 𝐴∗ 𝐴∗ × 𝐴∗ 1

res𝟚

(𝑝1,𝑝0)×(𝑝1,𝑝0)⌝ res𝟚∗ ⌝
(id∗,id∗)

⌟
≃

res× res

res∗× res∗
⌝ ⌝ (∗,∗,∗,∗)

it follows that the left and middle vertical faces are also pullbacks up to equiva-
lence. We use the latter of these and the commutative cube

Hom𝐴 (res, ̌𝜌) (𝐴 )𝟚

Hom𝐴∗
(res∗, ̌𝜌∗) (𝐴∗ )𝟚

𝐴 × 𝐴 𝐴 × 𝐴

𝐴 × 𝐴∗ 𝐴∗ × 𝐴∗

⌟

⌟
̌𝜌×res

̌𝜌∗×res∗
⌝

to conclude that the comma ∞-category Hom𝐴 (res, ̌𝜌) pulls back along the
inclusion 𝐴∗ ↪ 𝐴 to an ∞-category that is equivalent to Hom𝐴∗

(res∗, ̌𝜌∗),
as claimed. Similarly, from the former pullback up to equivalence, we con-
clude that Hom𝐴 (𝐴 , ran) pulls back to an ∞-category that is equivalent to
Hom𝐴∗

(𝐴∗ , ran∗).
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In this way we obtain fibered equivalences

Hom𝐴∗
(𝐴∗ , ran∗) ≃𝐴×𝐴∗

Hom𝐴∗
(res∗, ̌𝜌∗) and

Hom𝐴∗
(lan∗, 𝐴∗ ) ≃𝐴∗×𝐴 Hom𝐴∗

( ̂𝜉∗, res∗).

which, by Theorem 3.5.8, encode absolute liftings of ̌𝜌∗ and ̂𝜉∗ through the
restriction functors:

𝐴∗ 𝐴∗ 𝐴∗ 𝐴∗

𝐴 𝐴∗ 𝐴∗ 𝐴∗ 𝐴 𝐴∗ 𝐴∗ 𝐴∗

≅⇓
res∗ ⇝

≅⇓
res∗

≅⇑
res∗ ⇝

≅⇑
res∗

̌𝜌∗

ran∗ ran∗

̂𝜉∗

lan∗ lan∗

Restricting along the inverse equivalences 𝐴∗
∼ 𝐴 and 𝐴∗

∼ 𝐴 to ̌𝜌∗ and ̂𝜉∗
and pasting with the invertible 2-cell we obtain absolute lifting diagrams whose
bottom edge is the identity.

By Lemma 2.3.7, these lifting diagrams define adjunctions:

𝐴 ≃ 𝐴∗ 𝐴∗ 𝐴∗ ≃ 𝐴
ran∗

⊥
res∗

res∗

⊥
lan∗

which compose to the desired adjunction Σ ⊣ Ω.

Definition 4.4.5 (fiber and cofiber). An arrow 𝑓∶ 1 → 𝐴𝟚 from 𝑥 to 𝑦 in a
pointed ∞-category 𝐴 admits a fiber if 𝐴 admits a pullback of the cospan
formed by 𝑓 and the component ⌜𝜌𝑦⌝ of the family of points. The pullback
square defined by the absolute right lifting diagram

𝐴

1 𝐴
≅⇓

resfib

⌜𝜌𝑦⌝∨𝑓

is referred to as the fiber sequence for 𝑓. Dually, 𝑓 admits a cofiber if 𝐴 admits
a pushout of the span formed by 𝑓 and the component ⌜𝜉𝑥⌝ of the family of
copoints, in which case the pushout square

𝐴

1 𝐴
≅⇑

rescofib

⌜𝜉𝑥⌝∧𝑓

defines the cofiber sequence for 𝑓.
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Fiber and cofiber sequences in𝐴 define commutative squares whose lower-left
vertex is the zero element ∗.

fib(𝑓) 𝑥 𝑥 𝑦

∗ 𝑦 ∗ cofib(𝑓)

⌟
𝑓

𝑓

⌜

The data of such squares is given by a commutative triangle in 𝐴 – an element
of 𝐴𝟛 – involving a diagonal arrow that we have neglected to draw, together with
a nullhomotopy of that diagonal edge – a witness that this edge factors through
the zero element in h𝐴. A commutative square in 𝐴 whose lower-left vertex is
the zero element is referred to as a triangle in 𝐴.

We can now state the first of several equivalent characterizations of stable ∞-
categories. This notion and the results that follow are due to Lurie first appearing
in a preprint [77] later incorporated into the first chapter of Higher Algebra [80].

Definition 4.4.6 (stable ∞-category). A stable ∞-category is a pointed ∞-
category 𝐴 in which

(i) every morphism admits a fiber and a cofiber: that is, there exist absolute
lifting diagrams

𝐴 𝐴

𝐴𝟚 𝐴 𝐴𝟚 𝐴
≅⇓

res
≅⇑

resfib

⌜𝜌cod⌝∨id

cofib

⌜𝜉dom⌝∧id

(ii) and a triangle in 𝐴 defines a fiber sequence if and only if it also defines
a cofiber sequence. Such triangles are called exact triangles.

As a means of familiarizing ourselves with this definition, we prove:

Lemma 4.4.7. Let 𝐴 be a stable ∞-category and let 𝐽 be either a simplicial set
or another ∞-category in the case where the ambient ∞-cosmos 𝒦 is cartesian
closed. Then 𝐴𝐽 is again a stable ∞-category.

Proof By Proposition 2.1.7, the cosmological functor (−)𝐽∶ 𝒦 → 𝒦 pre-
serves the adjunctions

𝐴 1 𝐴 1 𝐴𝐽 1𝐽 ≅ 1 𝐴𝐽 1𝐽 ≅ 1
!

⊥
∗ !

⊥
∗

⇝
!𝐽

⊥
∗𝐽 !𝐽

⊥
∗𝐽

that exhibit the universal properties of the zero element ∗∶ 1 → 𝐴. Thus, we
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see that 𝐴𝐽 is a pointed ∞-category, whose basepoint is the constant 𝐽-shaped
functor valued at ∗.

Similarly, by Corollary 3.5.7, the cosmological functor (−)𝐽∶ 𝒦 → 𝒦 pre-
serves the absolute lifting diagrams of 4.4.6(i) that define fiber and cofiber
sequences. Since res𝐽∶ (𝐴 )𝐽 ↠ (𝐴 )𝐽 is isomorphic to res∶ (𝐴𝐽) ↠ (𝐴𝐽)
and similarly for the functor restricting from a square to its underlying span,
these absolute lifting diagrams define fiber and cofiber sequences in 𝐴𝐽.

Finally, condition 4.4.6(ii) can be re-expressed as the assertion that the com-
mutative triangle below-left is absolute left lifting and the triangle below-right
is absolute right lifting:

𝐴 𝐴

𝐴𝟚 𝐴 𝐴𝟚 𝐴

=

res

=

resfib

res ∘fib

cofib

res ∘ cofib

which is to say that fiber sequences in 𝐴 are also cofiber sequences and cofiber
sequences in 𝐴 are also fiber sequences. By applying Corollary 3.5.7 once more,
we see that the same exactness property holds in 𝐴𝐽. Thus 𝐴𝐽 is stable.

Stable ∞-categories in fact admit all pushouts and all pullbacks, and such
squares coincide. Squares that are both pushouts and pullbacks are called exact
squares.

Proposition 4.4.8 (pullbacks and pushouts in stable ∞-categories). A stable
∞-category admits all pushouts and all pullbacks, and moreover, a square is
pushout if and only if it is a pullback.

Proof Given a generic family of cospans 𝑔 ∨ 𝑓∶ 𝑋 → 𝐴 in 𝐴, form the
cofiber of 𝑓 followed by the fiber of the composite map 𝑞𝑔∶ 𝑐 → 𝑎 → cofib𝑓:

fib(𝑞𝑔) 𝑏 ∗

𝑐 𝑎 cofib(𝑓)

ᵆ

𝑣
⌟

𝑓

⌟

⌜
𝑔 𝑞

(4.4.9)

By Definition 4.4.6(ii), the cofiber sequence 𝑏 → 𝑎 → cofib(𝑓) is also a fiber
sequence. By the pullback cancelation result of Proposition 4.3.11, we conclude
that fib(𝑞𝑔) computes the pullback of the cospan 𝑔 ∨ 𝑓.

To see that this pullback square is also a pushout, form the fiber of the map 𝑣:

fib(𝑣) fib(𝑞𝑔) 𝑏

∗ 𝑐 𝑎

⌟

⌜

ᵆ

𝑣
⌟

𝑓

𝑔
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By the pullback composition result of Proposition 4.3.11, fib(𝑣) is also the fiber
of the map 𝑓. By Definition 4.4.6(ii), the fiber sequences fib(𝑣) → fib(𝑞𝑔) → 𝑐
and fib(𝑣) → 𝑏 → 𝑎 are also cofiber sequences. Now by the pushout cancelation
result of Proposition 4.3.11, we see that the right-hand pullback square is also a
pushout square. A dual argument proves that pushouts exist and coincide with
pullbacks.

Digression 4.4.10 (on the use of generalized elements to define functors). The
first paragraph of the proof just given takes a generic family of cospans and
constructs a rectangular diagram (4.4.9), to which Proposition 4.3.11 can be
applied (by Remark 4.3.12). By the Yoneda lemma, a construction given as a
mapping on generalized elements defines an arrow internally to the ∞-cosmos,
in this case taking the form of a functor 𝐴 → 𝐴𝟛×𝟚, as we now illustrate by
unpacking each of the steps.7 First, we build, from the generic cospan, the dashed
arrow below-left, which forms a diagram that glues this cospan to the cofiber
sequence associated to one of its legs:

𝐴𝟚

𝐴 𝐴 𝐴

𝐴 𝐴𝟚

cofibres↓

⌟
res↓

res↓

𝐴𝟚

𝐴 𝐴 𝐴 𝐴

𝐴 𝐴

fibres→→

⌟
res

res

The simplicial set ≅ ∪↓ does not include the composite 1-simplex from
the lower-left vertex to the lower-right vertex but this can be attached by filling
an inner horn, resulting in an equivalent ∞-category that we also denote by 𝐴 .
Next we attach the fiber sequence associated to that composite arrow, gluing
the exterior rectangle onto the diagram of shape , defining the dashed arrow
above-right.

The simplicial set is a subset of the rectangle diagram shape 𝟛 × 𝟚. In the
notation of (4.4.9) what is missing is the map 𝑢 and the left-hand square, which
we induce by the universal property of the fiber sequence 𝑏 → 𝑎 → cofib(𝑓),
encoded by the absolute right lifting diagram below-left. There is a functor
(𝑔, id, id)∶ × 𝟚 → inducing the natural transformation 𝛾 below-center,
7 Indeed, this functor can be understood as the result of applying the construction to the universal

generalized element, which is always given by the identity. The motivation for the conceit of
considering a generic cospan 𝑔 ∨ 𝑓∶ 𝑋 → 𝐴 in place of the universal cospan id∶ 𝐴 → 𝐴
is to introduce some human-readable notation.
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which then factors as below-right:

𝐴 𝐴 𝐴 𝐴 𝐴

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴
=

res

res

⇓𝛾 res =

res

⇓𝜐

=

res

res

res

res res

res

The composite functor

𝐴 𝐴 𝐴 ×𝟚 𝐴𝟛×𝟚⌜𝜐⌝ res

builds the diagram on display in (4.4.9) from a generic cospan.

A stable ∞-category admits loops and suspensions, formed by taking fibers
of the arrows in the family of points and cofibers of arrows in the family of
copoints, respectively.

Proposition 4.4.11 (loops and suspension in stable ∞-categories). If 𝐴 is a
stable ∞-category, the loops and suspension functors define inverse adjoint
equivalences

𝐴 𝐴
∼
Ω

⊥

∼Σ

Proof In the proof of Proposition 4.4.4, the adjunction Σ ⊣ Ω is constructed
as a composite of adjunctions

𝐴 ≃ 𝐴∗ 𝐴∗ 𝐴∗ ≃ 𝐴
ran∗

⊥
res∗

res∗

⊥
lan∗

that construct fiber and cofiber sequences. By Proposition 2.1.9, the unit and
counit of this composite adjunction are given by

𝐴 𝐴 𝐴

𝐴∗ 𝐴∗ 𝐴∗ 𝐴∗

𝐴 𝐴 𝐴

lan∗

Σ

⇓≅ Σ⇓𝜖
lan∗

res∗
⇓𝜂

res∗ res∗

⇓≅ res∗ran∗ Ω

Ω

ran∗

By Definition 4.3.8, the unit of res∗ ⊣ ran∗ restricts to an isomorphism on the
subobject of pushout squares. In a stable ∞-category, the cofiber sequences in
the image of lan∗∶ 𝐴 → 𝐴∗ are pullback squares, so this tells us that 𝜂lan∗ is
an isomorphism. Dually, the fiber sequences in the image of ran∗∶ 𝐴 → 𝐴∗
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are pushout squares, which tells us that 𝜖ran∗ is an isomorphism. Hence, the
unit and counit of Σ ⊣ Ω are invertible, so these functors define an adjoint
equivalence.

The results just proven suggest several equivalent characterizations of stable
∞-categories. The equivalence of condition (iii) is due to Groth [49, §3], who
works in the closely related setting of stable derivators and also discusses further
equivalent conditions not mentioned here. The remaining equivalences are
established by Lurie in [77]. The proof that (iv)⇒(i) is an adaptation of a clever
argument of Harpaz appearing as [51, 2.4].

Theorem 4.4.12 (equivalent characterizations of stable ∞-categories). In a
pointed ∞-category 𝐴 the following are equivalent, and characterize the stable
∞-categories:

(i) 𝐴 admits fibers and cofibers, and fiber and cofiber sequences coincide.
(ii) 𝐴 admits pullbacks and pushouts, and pullback and pushout squares

coincide.
(iii) 𝐴 admits pullbacks and pushouts, and the pullback functor lim∶ 𝐴 →

𝐴 preserves pushouts while the pushout functor colim∶ 𝐴 → 𝐴 pre-
serves pullbacks.

(iv) 𝐴 admits cofibers and the suspension functor is an equivalence.
(v) 𝐴 admits fibers and the loops functor is an equivalence.

Proof Proposition 4.4.8 proves the equivalence (i)⇔(ii), while Proposition
4.4.11 proves (i)⇒(iv) and (i)⇒(v). So it remains to prove (ii)⇔(iii) as well as
the converses of these latter implications, which are dual.

Assuming (ii), we may apply Lemma 4.4.7 to see that the diagram ∞-cate-
gories 𝐴 and 𝐴 are stable. In particular, lim∶ 𝐴 → 𝐴 and colim∶ 𝐴 →
𝐴 are functors between stable ∞-categories that preserve all limits and all
colimits, respectively, by virtue of Theorem 2.4.2. Since pushout and pullback
squares coincide, we see that pushouts are preserved by the pullback functor
and pullbacks are preserved by the pushout functor, proving (iii).

Now assume (iii). By Exercise 3.6.iv to say that the pushout functor preserves
pullbacks is equally to say that the functor lan∶ 𝐴 → 𝐴 preserves pullbacks,
meaning that the left-hand composite is isomorphic to the right-hand absolute
right lifting diagram:

(𝐴 ) (𝐴 ) (𝐴 )

(𝐴 ) (𝐴 ) (𝐴 ) (𝐴 ) (𝐴 ) (𝐴 )

res

lan

res ≅ resran

lan lan

ran
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To see that any pullback square in 𝐴 is also a pushout square, consider the
diagram𝜓∶ 𝐴 → 𝐴 × depicted below-left, that expands a cospan 𝑎 → 𝑐 ← 𝑏
to a cospan of spans by restricting along an appropriate functor × →
that sends five elements to the terminal vertex of and two elements apiece to
the remaining two vertices.

𝑏 𝑏

𝑏 𝑏

𝑐 𝑐

𝑐

𝑎 𝑐 𝑎 𝑐

𝑐 𝑐 𝑐 𝑐

𝑎 𝑐 𝑎 𝑐

𝑐 𝑐

By Exercise 2.3.iv, when we compose with lan ∶ (𝐴 ) → (𝐴 ) we obtain
the diagram above-right in which each of the dashed squares are pushouts. By
Exercise 4.3.i, the functor ran∶ (𝐴 ) → (𝐴 ) is naturally isomorphic to the
functor ran ∶ (𝐴 ) → (𝐴 ) . Thus, composing with this functor forms the
pullbacks of the dotted cospans, which by Exercise 2.3.iv yields the diagram

𝑝 𝑏

𝑏 𝑏

𝑎 𝑐

𝑐 𝑐

𝑎 𝑐

𝑐 𝑐

𝑎 𝑐

𝑐 𝑐

where 𝑝 is the pullback of the original span 𝑎 → 𝑐 ← 𝑏. On account of the
natural isomorphism lan ∘ ran ≅ ran ∘ lan this diagram is also produced by
first forming the pullbacks of the dotted spans and then taking the pushouts of
each cospan. In this way we see that the solid-arrow pullback square above-left
is also a pushout. The dual construction completes the proof that (iii)⇒(ii).

It remains to prove (iv)⇒(i). Assuming (iv), the first task is to show that
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any cofiber sequence 𝑑∶ 𝐷 → 𝐴 is also a fiber sequence, which is to say the
diagram

𝐴

𝐷 𝐴 𝐴
⇓

Δ

𝑑

𝑑

𝑑⊤

res

ev⊤

is absolute right lifting, where the natural transformation arises from the functor
×𝟚 → that defines the canonical cone induced by a commutative square over

its underlying cospan. By Theorem 3.5.3, to show that this diagram is absolute
right lifting, it suffices to show that the induced map defines a fibered equivalence
Hom𝐴(𝐴, 𝑑⊤) ≃𝐷×𝐴 Hom𝐴 (Δ, 𝑑 ). Since Σ∶ 𝐴 ∼ 𝐴 is an equivalence, by
Proposition 3.4.5 the maps of cospans

𝐷 𝐴 𝐴 𝐷 𝐴 𝐴

𝐷 𝐴 𝐴 𝐷 𝐴 𝐴

𝑑⊤

∼ Σ

𝑑

∼ Σ

Δ

Σ𝑑⊤ Σ Σ𝑑 ΔΣ

induce equivalences of comma ∞-categories over 𝐷 × 𝐴 displayed vertically
below.

Hom𝐴(𝐴, 𝑑⊤) Hom𝐴 (Δ, 𝑑 )

Hom𝐴(Σ, Σ𝑑⊤) Hom𝐴 (ΔΣ, Σ𝑑 )

∼

Σ
≃

≃ ∼ Σ

Our task is to define the dashed diagonal morphism in such a way that we may
apply Proposition 3.4.11 to argue that the diagram commutes up to fibered
isomorphism. By the 2-of-6 property of the equivalences in an ∞-cosmos (see
Remark 1.2.21 and Exercise 1.4.iii) it follows that the top horizontal map defines
a fibered equivalence witnessing the fact that the cofiber sequence is also a fiber
sequence.

To explain the construction of this map, it is helpful to give names to the
generalized elements in the cofiber sequence 𝑑∶ 𝐷 → 𝐴 as depicted in the
square below-left:

𝑎 𝑏 ∗

∗ 𝑐 Σ𝑎
⌜ ⌜

Here 𝑎∶ 𝐷 → 𝐴 represents the generalized element 𝑑⊤. Since the cofiber
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sequence 𝑎 → 𝑏 → 𝑐 defines a pushout square, when we restrict to its right-
hand edge 𝑏 → 𝑐 and form the cofiber, the resulting element is isomorphic to
the suspension Σ𝑎 by Proposition 4.3.11. In particular, we have an absolute left
lifting diagram of the following form:

𝐴 𝐴

𝐷 𝐴 𝐴 𝐴𝟚 𝐴
⇑≅

Σ

⇑𝜆
Δ

𝑑

𝑑

𝑎=𝑑⊤

res

ev⊤

res↓

cofib

id∧⌜𝜉dom⌝

the natural transformation component of which is represented by a functor ⌜𝜆⌝
that we restrict to the ∞-category of cones over 𝑑 for later use:

Hom𝐴 (Δ, 𝑑 ) 𝐷 𝐴 ×𝟚𝑝1 ⌜𝜆⌝
𝑐 𝑏 ∗

Σ𝑎 Σ𝑎 Σ𝑎

By Proposition 4.2.7, the comma ∞-category Hom𝐴 (Δ, 𝑑 ) is equivalent to
the pullback

Hom𝐴 (Δ, 𝑑 ) ≃ 𝐴/𝑑 𝐴

𝐷 × 𝐴 𝐴 × 𝐴

⌜𝜙⌝

(𝑝1,𝑝0)
⌟

(res,ev⊤)

𝑑 ×𝐴

Here ⌜𝜙⌝ defines a square as displayed below-left, where 𝑧∶ Hom𝐴 (Δ, 𝑑 ) →
𝐴 represents the generalized element 𝑝0∶ Hom𝐴 (Δ, 𝑑 ) ↠ 𝐴 that projects to
the summit of a cone over 𝑑

∗ 𝑧 ∗ 𝑧 ∗

𝑐 𝑏 𝑐 𝑏 ∗

This square may be extended to the map of spans above-right by gluing on the
square defined by the functor of co-points:

Hom𝐴 (Δ, 𝑑 ) 𝐴 𝐴𝟚

𝐴 ×𝟚 𝐴

𝐴 𝐴𝟚
⌜𝜙⌝

⌜𝜇⌝

⌜𝜙⌝ res↓

⌜𝜉⌝𝟚

res

res

⌟
res↓

res↓
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The diagrams ⌜𝜇⌝ and ⌜𝜆⌝ glue together to form a diagram Hom𝐴 (Δ, 𝑑 ) →
𝐴 ×𝟛 as below

∗ 𝑧 ∗

𝑐 𝑏 ∗

Σ𝑎 Σ𝑎 Σ𝑎

from which we extract a composite map of cospans defining the natural transfor-
mation below-left:

Hom𝐴 (Δ, 𝑑 ) 𝐷 𝐴 𝐴 Hom𝐴 (Δ, 𝑑 ) 𝐷 𝐴 𝐴

𝐴 𝐴 𝐴 𝐴

𝑝0

𝑝1

⇑𝜇∘𝜆

𝑑⊤ Σ

Δ = 𝑝0

𝑝1

∃!⇑𝜁

⇑

𝑑⊤ Σ

Δ

̂𝜉 ̂𝜉

Σ

This factors through the absolute left lifting diagram of Definition 4.4.3 defining
a natural transformation 𝜁. By 1-cell induction, 𝜁 defines the sought-for functor
⌜𝜁⌝∶ Hom𝐴 (Δ, 𝑑 ) → Hom𝐴(Σ, Σ𝑑⊤) over 𝐷×𝐴, which completes the proof
that the cofiber sequence 𝑎 → 𝑏 → 𝑐 is also a fiber sequence.

Now to show that every arrow 𝑓∶ 𝑎 → 𝑏 admits a fiber, start by forming
its cofiber. Since Σ is an equivalence, there exists some element 𝑘 of 𝐴 so that
cofib(𝑓) ≅ Σ𝑘. By what we have just proven, both of the cofiber sequences
𝑎 → 𝑏 → Σ𝑘 and 𝑘 → ∗ → Σ𝑘 are fiber sequences, and in particular the
right-hand square below is both a pushout and a pullback.

𝑘 𝑎 ∗

∗ 𝑏 cofib(𝑓) ≅ Σ𝑘

𝑓
⌜

⌟

Thus, the outer rectangle factors through the right-hand square and this compos-
ite rectangle, which is given as a pushout, is also a pullback. Now by pullback
cancelation, the left-hand square is a pullback defining the fiber 𝑘 ≅ fib(𝑓) of
𝑓∶ 𝑎 → 𝑏.

To see that the fiber sequence 𝑘 → 𝑎 → 𝑏 is also a cofiber sequence, form
the cofiber sequence 𝑘 → 𝑎 → 𝑐. Our task is to show that the dashed map from
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the front face of the cube below-left to the back face is an isomorphism:

𝑘 𝑎

𝑘 𝑎

∗ 𝑐

∗ 𝑏

⌟

⌜⌟

𝑧 ∗

𝑤 ∗

𝑘 𝑎

𝑘 𝑎

∗ 𝑐

∗ 𝑏

𝑒 ⌟

⌟

⌟

⌜⌟

Since Σ is an equivalence, there exists an arrow 𝑒∶ 𝑧 → 𝑤 in 𝐴 whose image
under Σ is isomorphic to the induced map 𝑐 → 𝑏. The cofiber sequences 𝑧 →
∗ → 𝑐 and 𝑤 → ∗ → 𝑏 are also fiber sequences, so by pullback cancelation we
see that the induced upper front and back squares in the prism above-left are
pullbacks. From this we see that 𝑒∶ 𝑧 → 𝑤 is a map between two fibers of 𝑘 → 𝑎.
Thus 𝑒 is an isomorphism and the isomorphism 𝑐 ≅ Σ𝑧 ≅ Σ𝑤 ≅ 𝑏 reveals that
the original fiber sequence 𝑘 → 𝑎 → 𝑏 is also a cofiber sequence.

Remark 4.4.13. In fact, stable ∞-categories have all finite limits and finite
colimits, meaning limits and colimits indexed by simplicial sets with finitely
many nondegenerate simplices. More generally, any ∞-category with pullbacks
and a terminal element admits all finite limits, which can be defined by induction
over the dimension of the simplicial set (see [78, 4.4.2.4], [112, 6.3.9]). It follows
from this construction and condition (iii) of Theorem 4.4.12 that in a stable
∞-category the limit and colimit functors for any finite diagram shape preserve
all finite colimits and all finite limits.

Definition 4.4.14. A pointed ∞-category 𝐴 admits binary direct sums when
there exists a bifunctor ⊕∶ 𝐴 × 𝐴 → 𝐴 that defines both the binary product
and coproduct and so that the legs of the colimit and limit cones

𝐴 𝐴

𝐴 × 𝐴 𝐴 × 𝐴 𝐴 × 𝐴 𝐴 × 𝐴
⇑(𝜄1,𝜄2)

Δ
⇓(𝜌1,𝜌2)

Δ
⊕ ⊕

satisfy the following relations involving the zero map (see Exercise 4.4.ii):

𝜌1 ∘ 𝜄1 = id, 𝜌1 ∘ 𝜄2 = 0, 𝜌2 ∘ 𝜄1 = 0, and 𝜌2 ∘ 𝜄2 = id

Lemma 4.4.15. Stable ∞-categories admit finite direct sums.
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Proof We argue that a stable ∞-category 𝐴 has binary direct sums and leave it
to Exercise 4.4.iii to extend Exercise 2.3.i to show that 𝐴 has finite direct sums.
The direct sum bifunctor can be defined as a pullback over the zero element:

⊕∶ 𝐴 × 𝐴 𝐴 𝐴
⌜𝜉𝜋1⌝∨⌜𝜉𝜋2⌝ lim

By Exercise 4.3.vii, this construction guarantees that direct sums are products.
To see that the direct sum is also a coproduct, consider the diagram 𝐴×𝐴 →

𝐴⊞ whose image at a generalized element (𝑎, 𝑏)∶ 𝑋 → 𝐴×𝐴 is depicted below:

∗ 𝑎 ∗

𝑏 𝑎 ⊕ 𝑏 𝑏

∗ 𝑎 ∗

⌟
⌜𝜌𝑏⌝

⌜𝜌𝑎⌝

⌟
𝜄𝑎

⌜𝜉𝑎⌝

⌜𝜌𝑏⌝

⌟
⌜𝜉𝑏⌝

𝜄𝑏

⌟
𝜋𝑎

𝜋𝑏

⌜𝜉𝑏⌝

⌜𝜌𝑎⌝ ⌜𝜉𝑎⌝

Here the vertical and horizontal composite morphisms are identities, and the
right-hand rectangle and lower rectangle are defined by restricting along a
projection functor 𝟚 × 𝟚 → 𝟚 and then using the universal property of the lower-
right-hand pullback to factor through that square. By Exercise 2.3.iv, each of
these rectangles are themselves pullbacks so by Proposition 4.3.11, we see that
the upper-right-hand and lower-left-hand squares so constructed are pullbacks
as well, and thus so too is the upper-left-hand square, by the same reasoning.
Since 𝐴 is stable, this pullback is a pushout witnessing the fact that the direct
sum is also a coproduct.

Note by construction that the composites of the coproduct inclusions and
product projections are either identities or nullhomotopic. Thus, these biproducts
are direct sums.

Digression 4.4.16 (the homotopy category of a stable ∞-category). When
an ordinary 1-category has binary direct sums, its hom-sets can be equipped
with a canonically defined commutative monoid structure in such a way that
composition defines a bilinear map. For a parallel pair of morphisms 𝑓, 𝑔∶ 𝑥 →
𝑦, their sum is defined to be the composite

𝑓 + 𝑔 ≔ 𝑥 𝑥 ⊕ 𝑥 𝑦 ⊕ 𝑦 𝑦Δ 𝑓⊕𝑔 ∇ (4.4.17)

By Lemma 2.3.3, the zero element and finite direct sums in a stable ∞-category
descend to define a zero element and finite direct sums on its homotopy category.
In fact, the homotopy category h𝐴 of a stable∞-category𝐴 is additive, meaning
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that the commutative monoids h𝐴(𝑥, 𝑦) defined by (4.4.17) are in fact abelian
groups (i.e., each morphism admits an additive inverse) [80, 1.1.2.9].

In fact, Lurie proves in [80, 1.1.2.14] that if 𝐴 is a stable ∞-category, then
its homotopy category h𝐴 is triangulated in the sense of Verdier [127]. A tri-
angulated category is an additive category h𝐴 that admits a self-equivalence
Σ∶ h𝐴 ∼ h𝐴 together with specified distinguished triangles

𝑥 𝑦 𝑧 Σ𝑥
𝑓 𝑔 ℎ

satisfying six axioms. From the vantage point of the 1-category, the distinguished
triangles are additional data. In particular, there is no canonical way to define
the distinguished triangles for a category of diagrams valued in a triangulated
category. Lurie’s insight is that this structure borne by the homotopy category
may be captured by a property of the ∞-category, namely stability. He declares
a triple (𝑓, 𝑔, ℎ) of morphisms in h𝐴 to be a distinguished triangle if there
exist representing arrows (𝑓, 𝑔, ℎ) in 𝐴 that assemble into a pushout rectangle
of the following form:

𝑥 𝑦 ∗

∗ 𝑧 Σ𝑥

𝑓

⌜
𝑔

⌜
ℎ

Thus, at the level of the ∞-category 𝐴, there is an essentially unique way
to extend an arrow 𝑓∶ 𝑥 → 𝑦 to a distinguished triangle. In particular, the
famous “octahedral axiom” is a consequence of the composition and cancelation
property for pushout rectangles of Proposition 4.3.11: given a composable pair
of morphisms 𝑘∶ 𝑤 → 𝑥 and 𝑓∶ 𝑥 → 𝑦 in a stable ∞-category 𝐴, the diagram
of pushout squares

𝑤 𝑥 𝑦 ∗

∗ cofib(𝑘) cofib(𝑓𝑘) Σ𝑤 ∗

∗ cofib(𝑓) Σ𝑥 Σ(cofib(𝑘))

𝑘

⌜

𝑓

⌜ ⌜

⌜ ⌜ ⌜

defines a distinguished triangle

cofib(𝑘) cofib(𝑓𝑘) cofib(𝑓) Σ(cofib(𝑘))

compatibly with given distinguished triangles extending 𝑘, 𝑓, and 𝑓𝑘.
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Exercises
Exercise 4.4.i. Arguing in the homotopy category, show that if an ∞-category
𝐴 admits an initial element 𝑖 and a terminal element 𝑡, and there exists an arrow
𝑡 → 𝑖, then 𝐴 is a pointed ∞-category.

Exercise 4.4.ii. If 𝐴 is a pointed ∞-category and 𝑓, 𝑔∶ 𝑋 → 𝐴 are functors
define a canonical zero map

𝑋 𝐴
𝑓

𝑔

⇓0

that factors through the constant functor at the zero element.

Exercise 4.4.iii. Show that any pointed ∞-category that admits binary direct
sums admits finite direct sums.

Exercise 4.4.iv. A functor 𝑓∶ 𝐴 → 𝐵 between stable ∞-categories is exact
if it preserves zero elements as well as fiber and cofiber sequences. Show that
exact functors also preserve exact squares.
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Fibrations and Yoneda’s Lemma

The aim in this chapter is to describe an ∞-categorical encoding of the con-
travariant functor represented by an element 𝑏∶ 1 → 𝐵 of an ∞-category 𝐵,
informally defined to send an element 𝑥 of 𝐵 to the mapping space Hom𝐵(𝑥, 𝑏)
of Definition 3.4.9. By Proposition 3.4.10, such representable functors take val-
ues in discrete ∞-categories, which correspond to “spaces” or “∞-groupoids”
in ∞-cosmoi of (∞, 1)-categories.

In contrast with the situation in ordinary 1-category theory, in∞-category the-
ory it is challenging to explicitly describe the representable functors as functors
between∞-categories. The complexity arises in establishing the∞-functoriality
of this mapping, which must encode homotopy coherently functorial actions
of the arrows in 𝐵 in each dimension, data that proves too elaborate to easily
enumerate even in this fundamental special case. What turns out to be easier to
describe is the ∞-categorical analogue of the “category of elements” associated
to the mapping 𝑥 ↦ Hom𝐵(𝑥, 𝑏) together with its associated projection to 𝐵. In
fact, we are quite familiar with this ∞-category already: It is the “right repre-
sented” comma ∞-category Hom𝐵(𝐵, 𝑏) equipped with its domain projection
functor 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵whose fiber over 𝑥∶ 1 → 𝐵 recovers the mapping
space Hom𝐵(𝑥, 𝑏).

It remains to explain the sense in which 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 expresses
the contravariantly functorial of arrows in 𝐵 on its fibers. This functor enjoys a
special property that allows one to lift natural transformations valued in 𝐵 in
an essentially unique way to natural transformations valued in Hom𝐵(𝐵, 𝑏) with
specified codomains. A special case of this lifting defines the precomposition

174
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functor 𝑓∗ associated to an arrow 𝑓∶ 𝑥 → 𝑦 in the homotopy category h𝐵:

Hom𝐵(𝑦, 𝑏)

Hom𝐵(𝐵, 𝑏)

Hom𝐵(𝑥, 𝑏)

1

𝐵

1

𝑓∗

⌟

𝑝0

𝜒𝑓

⌟
𝑦

𝑥

𝑓

Roughly speaking, an isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration just
when the arrows of 𝐵 act contravariantly functorially on the fibers and a cocarte-
sian fibration when the arrows of 𝐵 act covariantly functorially on the fibers. The
functor 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is an example of a discrete cartesian fibration,
whose fibers are discrete ∞-categories. When 𝑏∶ 𝑋 → 𝐵 is a generalized ele-
ment, the domain projection functor 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 remains a cartesian
fibration, but loses this discreteness property.

One of the properties that characterizes a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 is
an axiom that says that for any 2-cell with codomain 𝐵 and specified lift of its
target 1-cell, there is a lifted 2-cell with codomain 𝐸 with that 1-cell as its target.
In particular, this lifting property can be applied in the case where the 2-cell in
question is a whiskered composite of an arrow in the homotopy category of 𝐵
as below-left and the lift of the source 1-cell is the canonical inclusion of the
fiber over its codomain.

𝐸𝑏 𝐸 𝐸𝑏 𝐸

𝐸𝑎

1 𝐵 1 𝐵

ℓ𝑏

⌟

=𝑝
𝛽∗

𝛽∗(ℓ𝑏)
⇑𝜒𝛽

ℓ𝑏

𝑝ℓ𝑎⌟
𝑏

𝑎

⇑𝛽

𝑎

(5.0.1)

In this case the domain 𝛽∗(ℓ𝑎) of the lifted cell 𝜒𝛽 displayed above right lies
strictly above the codomain of the original 2-cell, and thus factors through the
pullback defining its fiber. This defines a functor 𝛽∗∶ 𝐸𝑏 → 𝐸𝑎, the “action” of
the arrow 𝛽 on the fibers of 𝑝. This action is not strict but rather functorial up to
isomorphism in a sense explored in Exercise 5.2.ii.1 The up-to-isomorphism
1 Considerably more is true: There is a contravariant homotopy coherent diagram indexed by the

underlying quasi-category of 𝐵 and valued in the Kan complex enriched category of discrete
∞-categories [111, 6.1.16].
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functoriality of these action maps arises from a universal property required of
the specified lifted 2-cells, namely that they are cartesian arrows in a sense we
define in §5.1.

Cartesian fibrations are introduced in §5.2, where the first examples are also
established. The main theorem in this section characterizes cartesian fibrations
in terms of the presence of adjoints to certain canonically defined functors. The
structure-preserving maps between cartesian fibrations are commutative squares
called cartesian functors, preserving the cartesian natural transformations. In
§5.3, we see that these can similarly be characterized relative to the adjunctions
constructed in §5.2.

In §5.4 we study the dual cocartesian fibrations, for which there exist lifts
of natural transformations with a specified domain functor. By a dual of the
construction displayed in (5.0.1), when 𝑝∶ 𝐸 ↠ 𝐵 is a cocartesian fibration
an arrow 𝛽∶ 𝑎 → 𝑏 in h𝐵 defines a functor 𝛽∗∶ 𝐸𝑎 → 𝐸𝑏. An isofibration 𝑝
that is simultaneously a cartesian fibration and a cocartesian fibration is called
a bifibration.2 In this case Proposition 5.4.7 proves that the induced functors
𝛽∗ ⊣ 𝛽∗ are adjoints.

In §5.6, we show that when 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration in an∞-cosmos
the induced functor 𝑝∗∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) defines a cartesian fibration
of quasi-categories. The converse also holds, under the additional condition that
restriction along any 𝑓∶ 𝑌 → 𝑋 defines a cartesian functor.

The special classes of discrete cartesian fibrations and discrete cocartesian
fibrations are studied in §5.5. This chapter concludes in §5.7 with a version of
the Yoneda lemma for the discrete cartesian fibration 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵
that is represented by the element 𝑏∶ 1 → 𝐵. Its formulation was inspired by a
paper of Street “Fibrations and Yoneda’s lemma in a 2-category” [118],3 the
debt to which we acknowledge in the title of this section.

5.1 Cartesian Arrows

Before defining the notion of cartesian fibration we describe the weak universal
property enjoyed by certain “upstairs” natural transformations. Recall from

Proposition 3.2.6 that any natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 is represented

by a functor ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 so that 𝑝0⌜𝜓⌝ = 𝑒′ and 𝑝1⌜𝜓⌝ = 𝑒 and such
2 In [78, §2.4.7], Lurie uses the term “bifibration” to refer to a different class of functors: the

modules of Chapter 7.
3 The closest analogue to Street’s Yoneda Lemma [118, 16] appears as Theorem 7.4.8.
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representations are unique up to fibered isomorphism. The representing 𝑋-
shaped arrow ⌜𝜓⌝ in 𝐸 defines a 1-arrow (aka a 1-simplex) in the functor space
Fun(𝑋, 𝐸) from 𝑒′ to 𝑒.

Definition 5.1.1 (𝑝-cartesian arrow). Consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵. An
𝑋-shaped arrow ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 in 𝐸 is 𝑝-cartesian if the dashed map defined
by the pullback of the Leibniz cotensor is a trivial fibration:

𝐸/𝜓 𝐸𝟛

• 𝐵𝟛 ×
𝐵
𝐸

𝑋 𝐸𝟚

⌟ 𝛿⋔̂𝑝

𝑝12

⌟
𝑝12

⌜𝜓⌝

where 𝛿∶ ↪ 𝟛 is the inclusion whose image is the cospan 0 → 2 ← 1 in
𝟛 and 𝑝12 is defined by restricting along the inclusion 𝑖12∶ 𝟚 ↪ 𝟛 with image
indicated by the subscript.

A natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 with codomain 𝐸 is 𝑝-cartesian if

any representing functor ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 is 𝑝-cartesian. By Exercise 3.3.i, this is
well-defined. We freely switch between the perspectives presented by a natural
transformation 𝜓∶ 𝑒′ ⇒ 𝑒 and a representing arrow ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚.4

There are various equivalent ways to formulate the definition of 𝑝-cartesian
arrows.

Lemma 5.1.2. For any isofibration 𝑝∶ 𝐸 ↠ 𝐵, an arrow ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 with
codomain 𝑒∶ 𝑋 → 𝐸 is 𝑝-cartesian if and only if the dashed square induced by
4 We also indulge in some streamlined notation, writing 𝐸/𝜓 for the ∞-category defined in

Warning 4.2.10 using the notation 𝐸/⌜𝜓⌝, and writing ⌜𝑝𝜓⌝ and ⌜𝜓𝑓⌝ for the composite arrows
𝑝𝟚⌜𝜓⌝ and ⌜𝜓⌝𝑓.
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the hypercube

𝐸/𝜓 Hom𝐸(𝐸, 𝑒)

𝐸𝟛 𝐸𝟚

𝑋 𝑋

𝐸𝟚 𝐸

𝐵/𝑝𝜓 Hom𝐵(𝐵, 𝑝𝑒)

𝐵𝟛 𝐵𝟚

𝑋 𝑋

𝐵𝟚 𝐵

𝑝12

𝑝02

𝑝1
⌜𝜓⌝ 𝑒𝑝1

𝑝12

𝑝02

𝑝1
⌜𝑝𝜓⌝ 𝑝𝑒

𝑝1

(5.1.3)

is weakly cartesian, meaning that the induced map is a trivial fibration:

𝐸/𝜓 𝐵/𝑝𝜓 ×
Hom𝐵(𝐵,𝑝𝑒)

Hom𝐸(𝐸, 𝑒)∼

Proof In fact the induced map in the dashed square is isomorphic to the induced
map of Definition 5.1.1. First note that the solid-arrow squares in the hypercube
(5.1.3) are pullbacks, so by the hypercube pullback lemma5 the pullback in the
dashed square is equally the limit of the diagram

𝐵𝟛 ×
𝐵𝟚
𝐸𝟚 𝐸𝟚

𝑋 𝑋

𝐸 ×
𝐵
𝐵𝟚 𝐸

𝐵𝟛 𝐵𝟚

𝑋 𝑋

𝐵𝟚 𝐵

𝑝1

𝑝𝟚
𝑒

𝑝
𝑝02

𝑝1
⌜𝑝𝜓⌝

𝑝𝑒

𝑝1

𝑝12

where now the dotted-arrow squares are the pullbacks. Thus, our map is isomor-
phic to the top dashed map in the cube in which the front and back faces are the
5 The hypercube pullback lemma observes that the limit of a diagram of shape × can be

computed by first forming the pullbacks in the left factor and then forming the pullback of the
resulting cospan, or by first forming the pullbacks in the right factor and then forming the
pullback of the resulting cospan.
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pullbacks defining its domain and codomain:

𝐸/𝜓 𝐸𝟛

• 𝐵𝟛 ×
𝐵𝟚
𝐸𝟚

• 𝐵𝟛 ×
𝐵
𝐸

𝑋 𝐸𝟚

𝑋 𝐵𝟚 ×
𝐵
𝐸

𝑖02⋔̂𝑝

⌟ ⌟
⌜𝜓⌝

𝑖1⋔̂𝑝

⌜𝑝𝜓⌝

The induced map to the pullback in the right face is 𝛿 ⋔̂ 𝑝∶ 𝐸𝟛 ↠ 𝐵𝟛 ×𝐵 𝐸 ,
as can be verified by constructing another hypercube. By pullback composition
and cancellation, this map pulls back to the dashed map in the left face, but
since the bottom edge is an identity, this agrees with the top dashed map. Note
the diagram displayed in Definition 5.1.1 is embedded as the back prism in this
cube.

The next several lemmas develop various stability properties for the class of
𝑝-cartesian transformations defined relative to a fixed isofibration 𝑝∶ 𝐸 ↠ 𝐵.

Lemma 5.1.4 (stability under restriction). If ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 is 𝑝-cartesian then
so is its restriction along any functor 𝑓∶ 𝑌 → 𝑋.

Proof By Definition 5.1.1, if 𝜓 is 𝑝-cartesian we have a trivial fibration

𝐸/𝜓𝑦 𝐸/𝜓 𝐸𝟛

• • 𝐵𝟛 ×
𝐵
𝐸

𝑌 𝑋 𝐸𝟚

∼
⌟

∼
⌟ 𝛿⋔̂𝑝

𝑝12

⌟ ⌟
𝑝12

𝑓 ⌜𝜓⌝

that pulls back to define a trivial fibration which exhibits ⌜𝜓𝑓⌝ as a 𝑝-cartesian
arrow.

We now demonstrate that the class of 𝑝-cartesian transformations is closed
under vertical composition and left cancelation in the homotopy 2-category.

Lemma 5.1.5. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration and consider natural transfor-
mations so that 𝜓″ = 𝜓 ⋅ 𝜓′ and so that 𝜓 is 𝑝-cartesian. Then 𝜓′ is 𝑝-cartesian
if and only if 𝜓″ is 𝑝-cartesian.
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Proof By Lemma 1.1.12, for any triple of arrows ⌜𝜓″⌝, ⌜𝜓′⌝, ⌜𝜓⌝∶ 𝑋 → 𝐸𝟛

representing natural transformations so that 𝜓″ = 𝜓⋅𝜓′, there exists a 2-simplex
in Fun(𝑋, 𝐸) represented by a functor ⌜𝜏⌝∶ 𝑋 → 𝐸𝟛 with boundary given by
these specified representative functors:

𝑒′

𝑒″ 𝑒

𝜓𝜓′

𝜓″

𝜏

By cotensoring the lower-left diagram of categories into 𝐸, restricting to the
complements of the initial vertices 0 ∈ 𝕟, and pulling back along ⌜𝜏⌝∶ 𝑋 → 𝐸𝟛

and its face, we obtain the lower-right diagram of ∞-categories, in which the
bottom square is weakly cartesian (see Lemma 4.3.9 for more details about
the construction of the outer spans and a proof that the maps 𝑝01 are trivial
fibrations).

𝟚 𝟛 𝟚

𝟜
𝟛 𝟛

𝟚

𝑖01

𝑖01

𝑖013

𝑖02

𝑖02𝑖012 𝑖023

𝑖01𝑖02

⇝

Hom𝐸(𝐸, 𝑒″) 𝐸/𝜓″ Hom𝐸(𝐸, 𝑒)

𝐸/𝜏
𝐸/𝜓′ 𝐸/𝜓

Hom𝐸(𝐸, 𝑒′)

∼𝑝01 𝑝02

∼ 𝑝013

∼𝑝012 𝑝023⌟
≃

𝑝02

∼

𝑝01 𝑝02

∼
𝑝01

The isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a natural transformation from this diagram
onto a similar diagram built for ⌜𝑝𝜏⌝∶ 𝑋 → 𝐵𝟛.6

The trivial fibration 𝐸/𝜓 ∼ 𝐵/𝑝𝜓 ×Hom𝐵(𝐵,𝑝𝑒) Hom𝐸(𝐸, 𝑒) of Lemma 5.1.2
pulls back to define the displayed dashed trivial fibration that commutes with
the induced maps from 𝐸/𝜏.

𝐸/𝜏 𝐸/𝜓 Hom𝐸(𝐸, 𝑒)
•

•

•

𝐵/𝑝𝜏 𝐵/𝑝𝜓 Hom𝐵(𝐵, 𝑝𝑒)

𝑝023

∼

𝑝02

⌟

∼

⌟
⌟

𝑝023 𝑝02

By the 2-of-3 property for equivalences, if either dotted map is a trivial fibration,
then both are.
6 A better way to build this diagram is to implement this construction in the ∞-cosmos of

isofibrations defined in Proposition 6.1.1, which tells us additionally that the maps to the
pullbacks in each naturality square are isofibrations.
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These diagrams induce a commutative square displayed in the interior of the
cube from the upper dotted map to the map that detects whether 𝜓′ is 𝑝-cartesian

𝐸/𝜓′ 𝐸/𝜏

Hom𝐸(𝐸, 𝑒′) 𝐸/𝜓
• •

𝐵/𝑝𝜓′ 𝐵/𝑝𝜏

Hom𝐵(𝐵, 𝑝𝑒′) 𝐵/𝑝𝜓

∼𝑝012

∼

⌟
∼ ⌟

∼

∼

By the 2-of-3 property, if either of these maps is a trivial fibration, so is the
other. A similar square defined using 𝑝013∶ 𝐸/𝜏 ∼ 𝐸/𝜓″ demonstrates that the
lower dotted map is a trivial fibration if and only if 𝐸/𝜓″ ↠ 𝐵/𝑝𝜓″ ×Hom𝐵(𝐵,𝑝𝑒)
Hom𝐸(𝐸, 𝑒) is. Thus, these conditions are equivalent when 𝜓 is 𝑝-cartesian.

The isomorphism stability of the 𝑝-cartesian arrows is expressed by the
following suite of observations:

Lemma 5.1.6. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration.

(i) Natural isomorphisms with codomain 𝐸 define 𝑝-cartesian arrows.
(ii) Any 𝑝-cartesian lift of a natural isomorphism is a natural isomorphism.
(iii) The class of 𝑝-cartesian arrows is closed under pre- and postcomposition

with natural isomorphisms.

Proof By Lemma 4.3.9, 𝜓∶ 𝑒′ ⇒ 𝑒 is an isomorphism if and only if the map
𝑝02∶ 𝐸/𝜓 ↠ Hom𝐸(𝐸, 𝑒) that defines the top horizontal arrow in the weakly
cartesian square of Lemma 5.1.2 is a trivial fibration. So if 𝜓 is invertible, then
both horizontal arrows of Lemma 5.1.2 are trivial fibrations, and the square is
automatically weakly cartesian, proving (i). For (ii), if 𝑝𝜓 is invertible, then the
bottom horizontal in this square is a trivial fibration, and thus if 𝜓 is weakly
cartesian, 𝑝02∶ 𝐸/𝜓 ↠ Hom𝐸(𝐸, 𝑒) is a composite of trivial fibrations, proving
that𝜓 is invertible. The final property (iii) follows from (i) and Lemma 5.1.5.

We get considerable mileage from two more sophisticated characterizations
of 𝑝-cartesian arrows.

Theorem 5.1.7. For an isofibration 𝑝∶ 𝐸 ↠ 𝐵 and an arrow ⌜𝜓⌝∶ 𝑋 →

𝐸𝟚 representing a natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 the following are

equivalent:
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(i) 𝜓 is 𝑝-cartesian.
(ii) The commutative triangle defines an absolute right lifting diagram:

𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝)
=

𝑖1⋔̂𝑝
⌜𝜓⌝

⌜𝑝𝜓⌝

where

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

𝑝1

𝑖1⋔̂𝑝

𝑝𝟚

𝑝1

⌜𝜙⌝

⌟
𝑝1

𝑝

(iii) There is an absolute right lifting diagram with 𝑝1𝜖 = 𝜓 and 𝑝0𝜖 = id𝑝𝑒′

𝐸

𝑋 Hom𝐵(𝐵, 𝑝)
⇓𝜖

Δ𝑝𝑒′

⌜𝑝𝜓⌝

where

𝐸 𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

Δ𝑝

Δ
𝑝𝟚

𝑝1

⌜𝜙⌝

⌟
𝑝1

𝑝

At a high level, the equivalence between the three characterizations of a
𝑝-cartesian arrow is easy to explain. By Definition 5.1.1 and Theorem 3.5.3,
each of three statements asserts that some map between ∞-categories is an
equivalence, and these three maps turn out to be equivalent to each other. But
the geometry of this equivalence is quite subtle, as the proof reveals.

Proof We prove (i)⇒(ii)⇒(iii)⇒(i).
(i)⇒(ii): We use the condition of Definition 5.1.1 to prove that ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚

defines an absolute right lifting of ⌜𝑝𝜓⌝ through 𝑖1 ⋔̂ 𝑝. By Theorem 3.5.3,
our task is to show that the functor induced by the identity 2-cell defines an
equivalence between comma ∞-categories. In this case, the desired map, dis-
played below-left is a pullback of the Leibniz cotensor of 𝑝 with the inclusion
𝜄∶ ⊔ ↪

Hom𝐸𝟚(𝐸𝟚, ⌜𝜓⌝) 𝐸

HomHom𝐵(𝐵,𝑝)(𝑖1 ⋔̂ 𝑝, ⌜𝑝𝜓⌝) 𝐵 ×
𝐵⊔
𝐸⊔

𝑋 𝐸𝟚

⌟ 𝜄⋔̂𝑝

𝑝∗1

⌟
𝑝∗1

⌜𝜓⌝

(5.1.8)
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Since the inclusion 𝜄 factors as below-left, by Proposition C.2.9(vi), the Leibniz
cotensor factors as below-right:

𝟛

⊔

𝟛

⌜

𝛿

⌞
⇝

𝐸 𝐵 ×
𝐵
𝐸 𝐵 ×

𝐵⊔
𝐸⊔

𝐸 𝐵 ×
𝐵⊔
𝐸⊔

( ↪ )⋔̂𝑝

𝜄⋔̂𝑝

∼

⌟

∼
(⊔↪ )⋔̂𝑝

and since ⊔ ↪ is a pushout of an inner horn inclusion, the second of these
maps is a trivial fibration. Since ↪ is a pushout of 𝛿, ( ↪ ) ⋔̂ 𝑝 is
a pullback of 𝛿 ⋔̂ 𝑝. From hypothesis (i), we know that the latter map pulls
back along ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 to a trivial fibration. Thus the former map does as
well, and so the dashed map in (5.1.8) is a trivial fibration, proving the claimed
absolute lifting diagram in (ii).

(ii)⇒(iii): The constant diagram functor Δ∶ 𝐸 → 𝐸𝟚 is defined by restricting
along the functor !∶ 𝟚 → 𝟙, and thus is left adjoint right inverse to the domain
projection functor 𝑝0:

𝟙 𝟚 ⇝ 𝐸 𝐸𝟚
0
⊤
! Δ

⊥
𝑝0

In particular, by Lemma 2.3.7 the counit 𝜈∶ Δ𝑝0 ⇒ id defines an absolute right
lifting of the identity through Δ. By Lemma 2.4.1, this absolute lifting diagram
composes with the absolute lifting diagram of (ii) to define an absolute lifting
diagram with the properties required by (iii):

𝐸

𝐸𝟚 𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝)

⇓𝜈
Δ𝑝

Δ𝑝0

= 𝑖1⋔̂𝑝

𝑒′

⌜𝜓⌝

⌜𝑝𝜓⌝

(iii)⇒(i): By Theorem 3.5.3, an absolute right lifting diagram, such as given
in (iii), supplies a fibered equivalence. For a generic absolute right lifting di-
agram as below-left, the fibered equivalence Hom𝐵(𝐵, 𝑟) ∼

𝐶×𝐵 Hom𝐴(𝑓, 𝑔)
may be constructed by composing the dashed maps in the diagram below-right,
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constructing this map as a restriction of the dotted composition map (see Lemma
2.1.14):

𝐵 Hom𝐴(𝑓, 𝑔) 𝐶 × 𝐵

𝐶 𝐴 𝐴𝟛⟨𝜌,𝑓(−)⟩ 𝐴𝟛 𝐴𝟚 𝐴 × 𝐴

Hom𝐵(𝐵, 𝑟) 𝐶 ×
𝐶

Hom𝐵(𝐵, 𝑟) 𝐴𝟚 ×
𝐴
𝐴𝟚

⇓𝜌
𝑓 ⇝

(𝑝1,𝑝0)

⌟
𝑔×𝑓

𝑔

𝑟 ∘

∼ ⌟

∼ (𝑝12,𝑝01)

𝑝02

≅
⌜𝜌⌝×

𝑓𝑟
𝑓𝟚

∼
∘

By the 2-of-3 property, the restriction map ∘∶ 𝐴𝟛⟨𝜌,𝑓(−)⟩ ∼ Hom𝐴(𝑓, 𝑔) is an
equivalence.

Applied to the absolute right lifting diagram of (iii), this constructs a trivial
fibration

Hom𝐵(𝐵, 𝑝)𝟛⟨𝜖,Δ𝑝(−)⟩ HomHom𝐵(𝐵,𝑝)(Δ𝑝, ⌜𝑝𝜓⌝)∼𝑝02 (5.1.9)

The domain of (5.1.9) is the limit of the diagram, computed by first pulling back
the rows then forming the pullback of the resulting cospan

𝐵𝟚×𝟛 𝐵𝟛 𝐸𝟛

𝐵𝟚×𝟚 ×
𝐵𝟚
𝐵𝟚×𝟚 𝐵𝟚 ×

𝐵
𝐵𝟚 𝐸𝟚 ×

𝐸
𝐸𝟚

𝑋 ×
𝐵
𝐵𝟚 𝑋 ×

𝐵
𝐵𝟚 𝑋 ×

𝐸
𝐸𝟚

𝑝1∗

∼ ∼

𝑝𝟛

∼

𝑝1∗×𝑝1
𝑝1∗ 𝑝

⌜𝜖⌝×
Δ
Δ ⌜𝑝𝜓⌝×

id
id ⌜𝜓⌝×

id
id

𝑝

but by the hypercube pullback lemma it could equally be formed as the pullback
of the induced cospan between the pullbacks of the columns:

Hom𝐵(𝐵, 𝑝𝑒′) ×
𝐵𝟚×

𝐵𝟚×𝟛 𝐵/𝑝𝜓 𝐸/𝜓
𝑝1∗ 𝑝

and thus we seek a better understanding of the pullback of the left-hand column.
Since 𝜖∶ Δ𝑝𝑒′ ⇒ ⌜𝑝𝜓⌝ has 𝑝0𝜖 = id𝑝𝑒′, we may choose a representing
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functor ⌜𝜖⌝ that factors through the pullback

Hom𝐵(𝐵, 𝑝)𝟚

𝑋 𝐵𝟚×𝟚 𝐵𝟚×𝟚

𝐵 𝐵

⌜𝜖⌝

𝑝𝑒′

⌜𝜖⌝′

⌟
res

Δ

𝟚 × 𝟚

𝟚 × 𝟛

𝟙 𝟚 × 𝟚

𝟚 𝟚 × 𝟛

⌜

𝟚×𝑖12

𝑠

⌜𝑖1

defined by degenerating the initial cospan in the simplicial set 𝟚×𝟚 as indicated
by the pushout of simplicial sets in the back face of the cube. Pulling back along
Δ∶ 𝐵𝟚 → 𝐵𝟚×𝟚 implements a similar quotienting in the left-hand square of
𝟚 × 𝟛, as illustrated in the front face of the cube, where 𝑠∶ → 𝟚 sends the
left two objects to 0 and the right three objects to 1. Thus, we see that the map
(5.1.9) is defined by the pullback of the map 𝑞 in the following diagram along
⌜𝜖⌝′.

𝐵𝟚×𝟛 ×
𝐵𝟛
𝐸𝟛 𝐸𝟛

𝐵𝟚×𝟛 ×
𝐵
𝐸 𝐵𝟛 ×

𝐵
𝐸

𝐵𝟚× ×
𝐵
𝐸

𝑋 𝐵𝟚×𝟚 ×
𝐵𝟚
𝐸𝟚 𝐸𝟚

∼𝑥

𝑞

𝛿⋔̂𝑝

∼𝑦

∼ 𝑧

𝑝12

⌜𝜖⌝′

⌜𝜓⌝

We claim that the maps labeled 𝑥, 𝑦, and 𝑧 are all trivial fibrations. It will
then follow from the 2-of-3 property that if the pullback of 𝑞 along ⌜𝜖⌝′ is an
equivalence, as given by the absolute right lifting diagram of (iii), then the
pullback of 𝛿 ⋔̂ 𝑝 along ⌜𝜓⌝ is an equivalence, proving (i).

The trivial fibrations 𝑥 and 𝑦 are both pullbacks of the restriction map 𝐵𝟚×𝟛 ∼

𝐵𝟛, which we show is a trivial fibration. The is a sequence of adjunctions between
the categories 𝟛 ↪ ↪ 𝟚× 𝟛 that become simplicial homotopy equivalences
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between the quotient simplicial sets:

{ 0 1 2 } ⊥
⎧
⎨
⎩

0 1

0 1 2

⎫
⎬
⎭

⊥
⎧
⎨
⎩

0 1 1

0 1 2

⎫
⎬
⎭

Thus, restriction along the composite inclusion defines an equivalence 𝐵𝟚×𝟛 ∼

𝐵𝟛. The map 𝑧 is a pullback of 𝐵𝟚×𝟛 ∼ 𝐵𝟚× , which is a trivial fibration because
the inclusion 𝟚 × ↪ 𝟚 × 𝟛 can be filled by “special outer horns” (see Theorem
D.5.1 and Corollary D.3.12).

In this way we see that (5.1.9) is equivalent to the map of Definition 5.1.1,
and thus we see that 𝜓 is 𝑝-cartesian, proving that (iii)⇒(i).

Observe that the data of the cospan underlying the weakly cartesian square
(5.1.3) is determined by a functor ⌜𝛽⌝∶ 𝑋 → Hom𝐵(𝐵, 𝑝) representing a natural
transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 whose codomain factors through 𝑝 along a specified
functor 𝑒∶ 𝑋 → 𝐸. Thus it is relevant to ask whether a particular arrow of this
form has a 𝑝-cartesian lift with codomain 𝑒.

Definition 5.1.10 (𝑝-cartesian lifts). Consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵. An
arrow ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 is said to lift an arrow ⌜𝛽⌝∶ 𝑋 → Hom𝐵(𝐵, 𝑝) if the
triangle below-left commutes:

𝐸𝟚 𝑋 𝐸 𝑋 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝐵 𝐵

=

𝑖1⋔̂𝑝

𝑒

𝑏

⇑𝛽
𝑝 =

𝑒

𝑒′
⇑𝜓

𝑝⌜𝜓⌝

⌜𝛽⌝

⇝

which gives rise to the pasting equality 𝛽 = 𝑝𝜓 in the homotopy 2-category.7

When ⌜𝜓⌝ is 𝑝-cartesian, we say it defines a 𝑝-cartesian lift of ⌜𝛽⌝.

The universal property of 𝑝-cartesian transformations implies that the natural
transformations represented by any two 𝑝-cartesian lifts of a common natural
transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 are fibered isomorphic:

Lemma 5.1.11 (uniqueness of cartesian lifts). If the natural transformations

𝑋 𝐸
𝑒′

𝑒
⇓𝜓 and 𝑋 𝐸

𝑒″

𝑒
⇓𝜓′ are 𝑝-cartesian lifts of a common natural

transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒, then there exists an invertible natural transformation

𝑋 𝐸
𝑒″

𝑒′
≅⇓𝜁 so that 𝜓′ = 𝜓 ⋅ 𝜁 and 𝑝𝜁 = id𝑏.

7 It makes no essential difference whether the lifting property is phrased in terms of 2-cells in the
homotopy 2-category or 1-arrows in the functor spaces of the ∞-cosmos: see Exercise 5.1.i.
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Proof If both 𝜓 and 𝜓′ define 𝑝-cartesian lifts of a common arrow 𝛽, then by
Theorem 5.1.7(iii) we have a pair of absolute right liftings (𝑒′, 𝜖) and (𝑒″, 𝜖′) of
⌜𝛽⌝ through Δ𝑝 with 𝑝1𝜖 = 𝜓, 𝑝1𝜖′ = 𝜓′, and 𝑝0𝜖 = id𝑏 = 𝑝0𝜖′. By uniqueness
of absolute right lifting diagrams, this induces a natural isomorphism

𝐸 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝑋 Hom𝐵(𝐵, 𝑝)
⇓𝜖′

Δ𝑝 = ⇓𝜖
Δ𝑝𝑒″

⌜𝛽⌝

𝑒″
≅⇓𝜁

𝑒′

⌜𝛽⌝

so that 𝜖′ = 𝜖 ⋅ Δ𝑝𝜁. Whiskering this equation with 𝑝1 we see that 𝜓′ = 𝜓 ⋅ 𝜁,
and whiskering with 𝑝0 we see that id𝑏 = 𝑝𝜁.

Combining these results, we obtain a useful conservativity property:

Lemma 5.1.12 (cartesian conservativity). Suppose we have 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 ,

𝑋 𝐸
𝑒″

𝑒
⇓𝜓′ , and 𝑋 𝐸

𝑒″

𝑒′
⇓𝜁 which are natural transformations such

that 𝜓 and 𝜓′ are 𝑝-cartesian, 𝜓′ = 𝜓 ⋅ 𝜁, and 𝑝𝜁 is invertible. Then 𝜁 is
invertible.

Proof By Lemmas 5.1.5 and 5.1.6, 𝜁 is a 𝑝-cartesian lift of a natural isomorph-
ism and hence must be invertible.

The universal property that characterizes the 𝑝-cartesian transformations
in Theorem 5.1.7 gives rise to induction and conservativity operations at the
level of the homotopy 2-category, analogously to those operations considered in
Chapter 3.

Proposition 5.1.13 (the weak universal property of a 𝑝-cartesian arrow). Let

𝑝∶ 𝐸 ↠ 𝐵 be an isofibration. A 𝑝-cartesian arrow 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 has a weak

universal property in the homotopy 2-category given by two operations:

(i) induction: Given any 2-cells 𝑋 𝐸
𝑒″

𝑒
⇓𝜏 and 𝑋 𝐵

𝑝𝑒″

𝑝𝑒′
⇓𝛾 such



188 Fibrations and Yoneda’s Lemma

that 𝑝𝜏 = 𝑝𝜓⋅𝛾, there exists a lift 𝑋 𝐸
𝑒″

𝑒′
⇓𝛾̄ of 𝛾 so that 𝜏 = 𝜓⋅ ̄𝛾.

𝑒″ 𝑒

𝑒′

↧

𝑝𝑒″ 𝑝𝑒

𝑝𝑒′

𝜏

𝛾̄ 𝜓

𝑝𝜏

𝛾 𝑝𝜓

∈ hFun(𝑋, 𝐸)

∈ hFun(𝑋, 𝐵)

𝑝∗

(ii) conservativity: Any fibered endomorphism of 𝜓 is invertible: if 𝜁∶ 𝑒′ ⇒
𝑒′ is any natural transformation so that 𝜓 ⋅ 𝜁 = 𝜓 and 𝑝𝜁 = id𝑝𝑒′ then 𝜁
is invertible.

Proof The conservativity property (ii) is a special case of the conservativity
result observed in Lemma 5.1.12 so it remains to prove (i).

The pair 𝜏∶ 𝑒″ ⇒ 𝑒 and 𝛾∶ 𝑝𝑒″ ⇒ 𝑝𝑒′ satisfy the compatibility condition
required by Proposition 3.4.6 to induce a natural transformation 𝜎 as below-left
satisfying 𝑝1𝜎 = 𝜏 and 𝑝0𝜎 = 𝛾. Since 𝜓 is 𝑝-cartesian, this 2-cell factors
through the absolute right lifting diagram of Theorem 5.1.7(iii)

𝐸 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝑋 Hom𝐵(𝐵, 𝑝)
⇓𝜍

Δ𝑝 = ⇓𝜖
Δ𝑝𝑒″

⌜𝑝𝜓⌝

𝑒″

⇓𝛾̄

𝑒′

⌜𝑝𝜓⌝

Since (𝑒′, 𝜖) is absolute right lifting, (𝑒″, 𝜎) induces a natural transformation
̄𝛾∶ 𝑒″ ⇒ 𝑒′ so that 𝜎 = 𝜖 ⋅ Δ𝑝 ̄𝛾. Whiskering these equations with 𝑝1 we see that
𝜏 = 𝜓 ⋅ ̄𝛾 and whiskering with 𝑝0 we see that 𝛾 = 𝑝 ̄𝛾.

The universal properties enumerated by Proposition 5.1.13 are considerably
weaker than that expressed by Definition 5.1.1. Indeed they do not express the
full conservativity observed in Lemma 5.1.12 nor do they take advantage of
the restriction stability of cartesian transformations and absolute right lifting
diagrams. Nevertheless, conditions (i) and (ii) suffice to characterize the class of
𝑝-cartesian transformations under the condition that 𝑝 is a cartesian fibration,
a concept that is introduced in the next section. Even more surprisingly, if (i)
and (ii) are enhanced by a restriction stability property, then Proposition 5.2.11
demonstrates that it is possible to define cartesian fibrations entirely from the
perspective of the homotopy 2-category, without referencing Definition 5.1.1.
Since, however, 𝑝-cartesian arrows are of interest in their own right even in cases
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where 𝑝 is not itself a cartesian fibration (see Exercise 5.1.ii for instance), we
de-emphasize the purely 2-categorical development of the theory of cartesian
fibrations and instead refer the reader to [110].

Exercises
Exercise 5.1.i. Recall that arrows ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 in an ∞-cosmos correspond
to 1-simplices (aka 1-arrows) 𝜓∶ 𝑒′ → 𝑒 in the functor space Fun(𝑋, 𝐸), and a

parallel pair of 1-arrows represents the same 2-cell 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 if and only

if they are homotopic, bounding a 2-arrow in Fun(𝑋, 𝐸) whose 0th or 2nd edge
is degenerate (see Exercise 3.2.i).

Show that if 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration so that every natural transformation
𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits a lift 𝜓∶ 𝑒′ ⇒ 𝑒 in the homotopy 2-category, then every
1-arrow 𝛽∶ 𝑏 → 𝑝𝑒 in Fun(𝑋, 𝐵) admits a 1-arrow lift 𝜓∶ 𝑒′ → 𝑒 in the sense
of Definition 5.1.10.

Exercise 5.1.ii (5.2.10).

(i) Characterize the cartesian arrows for the codomain projection functor
𝑝1∶ 𝐴𝟚 ↠ 𝐴.

(ii) Use your answer to (i) to give an alternate proof of Proposition 4.3.11.

5.2 Cartesian Fibrations

Cartesian fibrations between ∞-categories generalize the Grothendieck fibra-
tions between ordinary 1-categories. This notion was first extended to quasi-cat-
egories by Joyal [62] and Lurie [78] and to complete Segal spaces by Boavida de
Brito [34] and Rasekh [98, 97]. Cartesian fibrations between (∞, 1)-categories
have been studied model independently by Mazel–Gee [86] and Ayala–Francis
[5].

Definition 5.2.1 (cartesian fibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian
fibration if any natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 as below-center admits a
𝑝-cartesian lift 𝜒𝛽∶ 𝛽∗𝑒 ⇒ 𝑒 as below-right:

𝐸𝟚 𝑋 𝐸 𝑋 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝐵 𝐵

=

𝑖1⋔̂𝑝

𝑒

𝑏

⇑𝛽 𝑝 =

𝑒

𝛽∗𝑒

⇑𝜒𝛽

𝑝
⌜𝜒𝛽⌝

⌜𝛽⌝

⇝
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By Exercise 5.1.i, it makes no difference whether we express the lifting
property in the homotopy 2-category as displayed above-right, or in terms of
the representing arrows as above-left.

Remark 5.2.2. A guiding moral principle of ∞-category theory is that all ∞-
categorical notions should be equivalence invariant, but if 𝐸 and 𝐵 are replaced
by equivalent ∞-categories 𝐸′ and 𝐵′ the equivalent functor 𝑝′∶ 𝐸 → 𝐵 is
not necessarily an isofibration. However, by Lemma 1.2.19, 𝑝′ is equivalent to
an isofibration 𝑝″ over 𝐵′, so we could declare 𝑝′ to be a cartesian fibration
just when 𝑝″ is an isofibration in the sense of Definition 5.2.1. By Corollary
5.3.1, this definition is now equivalence invariant. For technical reasons, such
as Proposition 6.3.14, we prefer to leave Definition 5.2.1 as it is.

Certain stability properties of cartesian fibrations can be proven directly from
this definition.

Lemma 5.2.3. If 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞∶ 𝐵 ↠ 𝐴 are cartesian fibrations, then so

is 𝑞𝑝∶ 𝐸 ↠ 𝐴. Moreover, a natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 is 𝑞𝑝-

cartesian if and only if 𝜓 is 𝑝-cartesian and 𝑝𝜓 is 𝑞-cartesian.

Proof The first claim follows immediately from the second, for the required
lifts can be constructed by first taking a 𝑞-cartesian lift 𝜒𝛼 and then taking a
𝑝-cartesian lift 𝜒𝜒𝛼 of this lifted cell.

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝑋 Hom𝐴(𝐴, 𝑞𝑝) Hom𝐴(𝐴, 𝑞) 𝐴𝟚

𝐸 𝐵 𝐴

𝑝𝟚
𝑖1⋔̂𝑝

⌟ 𝑞𝟚
𝑖1⋔̂𝑞

⌜𝛼⌝

⌜𝜒𝛼⌝⌜𝜒𝛼⌝

⌜𝜒𝜒𝛼⌝

𝑒

⌟ ⌟
𝑝1

𝑝 𝑞

To prove the second claim, first consider a natural transformation 𝜓∶ 𝑒′ ⇒
𝑒 that is 𝑝-cartesian and so that 𝑝𝜓 is 𝑞-cartesian. By Lemma 5.1.2, these
properties are expressed by the dashed trivial fibrations, the latter of which pulls
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back to define the dotted trivial fibration:

𝐸/𝜓 Hom𝐸(𝐸, 𝑒)

• •

𝐵/𝑝𝜓 Hom𝐵(𝐵, 𝑝𝑒)

•

𝐴/𝑞𝑝𝜓 Hom𝐴(𝐴, 𝑞𝑝𝑒)

∼

∼⌟
⌟

∼

⌟

Since trivial fibrations compose, this tells us that 𝐸/𝜓 ∼ 𝐴/𝑞𝑝𝜓 ×Hom𝐴(𝐴,𝑞𝑝𝑒)
Hom𝐸(𝐸, 𝑒) is a trivial fibration, and thus 𝜓 is 𝑞𝑝-cartesian.

Conversely, if 𝜓 is 𝑞𝑝-cartesian, then Lemma 5.1.11 implies it is isomorphic
to all other 𝑞𝑝-cartesian lifts of 𝑞𝑝𝜓. The construction given above produces a
𝑞𝑝-cartesian lift of any 2-cell that is 𝑝-cartesian and whose image under 𝑝 is
𝑞-cartesian. By the isomorphism stability of 𝑝- and 𝑞-cartesian transformations
of Lemma 5.1.6, 𝜓 must also have these properties.

Proposition 5.2.4 (pullback stability). In any pullback square

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ
⌟

𝑝

𝑘

if 𝑝 is a cartesian fibration then 𝑞 is a cartesian fibration. Moreover, a natural
transformation 𝜓 with codomain 𝐹 is 𝑞-cartesian if and only if ℎ𝜓 is 𝑝-cartesian.

Proof The pullback square in the statement induces a pullback square between
the Leibniz cotensors of 𝑖1∶ 𝟙 ↪ 𝟚 with 𝑞 and 𝑝. Consider an arrow ⌜𝛼⌝∶ 𝑋 →
Hom𝐴(𝐴, 𝑞) representing a natural transformation 𝛼∶ 𝑎 ⇒ 𝑞𝑓. Since 𝑝 is a
cartesian fibration, the natural transformation 𝑘𝛼∶ 𝑘𝑎 ⇒ 𝑘𝑞𝑓 = 𝑝ℎ𝑓 has a
𝑝-cartesian lift ⌜𝜏⌝, which induces a lift ⌜𝜎⌝∶ 𝑋 → 𝐹𝟚 of ⌜𝛼⌝ by the universal
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property of the pullback with the property that ⌜ℎ𝜎⌝ is a 𝑝-cartesian arrow:

𝑋 𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

⌜𝜍⌝

⌜𝜏⌝

⌜𝛼⌝
𝑖1⋔̂𝑞

⌟
ℎ𝟚

𝑖1⋔̂𝑝

Hom𝑘(𝑘,ℎ)

So if we prove the second part of the statement – that a natural transformation
𝜓∶ 𝑓′ ⇒ 𝑓 with codomain 𝐹 is 𝑞-cartesian if and only if ℎ𝜓 is 𝑝-cartesian –
then we will have shown that 𝑞 is itself a cartesian fibration with cartesian cells
created by the pullback.

To that end consider the cube:

𝐹/𝜓 Hom𝐹(𝐹, 𝑓)

𝐸/ℎ𝜓 Hom𝐸(𝐸, ℎ𝑓)

𝐴/𝑞𝜓 Hom𝐴(𝐴, 𝑞𝑓)

𝐵/𝑝ℎ𝜓 Hom𝐵(𝐵, 𝑝ℎ𝑓)

⌟ ⌟

By the hypercube pullback lemma, the left and right faces are strict pullback
squares. Hence the map from 𝐸/ℎ𝜓 to the pullback in the front face pulls back to
the map from 𝐹/𝜓 to the pullback in the back face. Thus, by Proposition 3.3.4
if ℎ𝜓 is 𝑝-cartesian then 𝜓 is 𝑞-cartesian. This completes the proof that 𝑞 is a
cartesian fibration.

Now if 𝜓 is 𝑞-cartesian then by Lemma 5.1.11, 𝜓 is isomorphic to the 𝑞-carte-
sian lift 𝜎 of 𝑞𝜓 constructed in first part of this proof. Thus ℎ𝜓 is isomorphic to
ℎ𝜎 = 𝜏, which is 𝑝-cartesian, so by Lemma 5.1.6, ℎ𝜓 must be 𝑝-cartesian as
well.

In fact, it suffices in Definition 5.2.1 to assume only that the generic transfor-
mation whose codomain factors through 𝑝 admits a 𝑝-cartesian lift:

Lemma 5.2.5. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration if and only if
the right comma cone over 𝑝 displayed below-left admits a 𝑝-cartesian lift 𝜒 as
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displayed below-right:

𝐸𝟚 Hom𝐵(𝐵, 𝑝) 𝐸 Hom𝐵(𝐵, 𝑝) 𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝) 𝐵 𝐵
=

𝑖1⋔̂𝑝

𝑝1

𝑝0

⇑𝜙 𝑝 =

𝑝1

𝑟

⇑𝜒

𝑝
⌜𝜒⌝

⇝

(5.2.6)

Proof By Theorem 5.1.7(ii), to say that the right comma cone over 𝑝 admits a
𝑝-cartesian lift 𝜒 means that ⌜𝜒⌝ defines an absolute right lifting of the identity
through 𝑖1 ⋔̂ 𝑝. By Lemma 2.3.6 it follows that the restriction

𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)
=

𝑖1⋔̂𝑝
⌜𝛽⌝

⌜𝜒⌝

defines an absolute right lifting for any ⌜𝛽⌝∶ 𝑋 → Hom𝐵(𝐵, 𝑝), and thus by
Theorem 5.1.7(ii) any 𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits a 𝑝-cartesian lift.

When 𝑝 is a cartesian fibration, we refer to the universal cartesian arrow
⌜𝜒⌝∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐸𝟚 of (5.2.6) as the generic 𝑝-cartesian lift.

Remark 5.2.7 (action of arrows on the fibers of a cartesian fibration). The
action of an arrow in the base of a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 on the fibers
can be described as follows. Consider a natural transformation 𝛽 with codomain
𝐵 and form the fibers of 𝑝 over its domain and codomain functors

𝑋 𝐵
𝑎

𝑏

⇓𝛽

𝐸𝑎 𝐸 𝐸𝑏

𝑋 𝐵 𝑋

𝑝𝑎
⌟

𝑝
⌞

𝑝𝑏

𝑎 𝑏

The pullback square defining the fiber 𝐸𝑏 factors as below-left

𝐸𝑏 Hom𝐵(𝐵, 𝑝) 𝐸 𝐸𝑏 Hom𝐵(𝐵, 𝑝) 𝐸

𝑋 𝐵𝟚 𝐵 𝑋 𝐵𝟚 𝐵

𝑝𝑏

⌟
𝑞

𝑝1

⌟
𝑝 𝑝𝑏

⌟
𝑞

𝑟

𝑝

⌜𝛽⌝ 𝑝1 ⌜𝛽⌝ 𝑝0

and thus the rectangle displayed above-right defines a cone over the pullback
defining 𝐸𝑎, inducing a map 𝛽∗∶ 𝐸𝑏 → 𝐸𝑎. The top-horizontal functor in this
rectangle recovers the domain component 𝛽∗(ℓ𝑏) of the 𝑝-cartesian lift of 𝛽
with codomain ℓ𝑏. This coincides with the description of 𝛽∗∶ 𝐸𝑏 → 𝐸𝑎 given
in (5.0.1).
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Lemma 5.2.5 extends to give an internal characterization of cartesian fibra-
tions inspired by a similar result of Street [118, 119, 121], which in turn was
inspired by previous work of Gray [48] on what he calls a “Chevalley crite-
rion”8 (see also [131]). As we shall see, the universal property of a cartesian
fibration 𝑝∶ 𝐸 ↠ 𝐵 can be encoded by the data of a suitable right adjoint to
the functor Δ𝑝∶ 𝐸 → Hom𝐵(𝐵, 𝑝) induced from the identity 2-cell or to the
functor 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 → Hom𝐵(𝐵, 𝑝) defined by applying 𝑝 to the generic arrow
with codomain 𝐸. In fact, this result follows quite easily by specializing the
characterizations of 𝑝-cartesian cells of Theorem 5.1.7 to the universal case
described in Lemma 5.2.5.

Theorem 5.2.8 (an internal characterization of cartesian fibrations). For an
isofibration 𝑝∶ 𝐸 ↠ 𝐵 the following are equivalent:

(i) 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration.
(ii) The functor 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right adjoint right

inverse:9

𝐸𝟚 Hom𝐵(𝐵, 𝑝)
𝑖1⋔̂𝑝

⊥
⌜𝜒⌝

(iii) The functor Δ𝑝∶ 𝐸 → Hom𝐵(𝐵, 𝑝) admits a right adjoint over 𝐵:10

𝐸 ⊥ Hom𝐵(𝐵, 𝑝)

𝐵

Δ𝑝

𝑝 𝑝0
𝑟

As the proof reveals, the right adjoint of (iii) is the domain component of
the generic 𝑝-cartesian lift 𝜒 of (5.2.6), and 𝜒 is recovered as 𝑝1𝜖, where 𝜖 is
the counit of the fibered adjunction Δ𝑝 ⊣ 𝑟. By 1-cell induction, the generic
cartesian lift 𝜒 can be represented by a functor ⌜𝜒⌝∶ Hom𝐵(𝐵, 𝑝) → 𝐸𝟚 and
this defines the right adjoint of (ii).
8 Gray attributes [48, 3.11] – the special case of the equivalence of (i)⇔(ii) of Theorem 5.2.8 in

the ∞-cosmos 𝒞𝑎𝑡 – to unpublished notes from a seminar given by Claude Chevalley at
Berkeley in 1962.

9 By Lemma 3.6.9, such an adjunction may be rectified to an adjunction that is fibered over
Hom𝐵(𝐵, 𝑝), which allows us to interpret ⌜𝜒⌝∶ Hom𝐵(𝐵, 𝑝) → 𝐸𝟚 as a terminal element in
𝐸𝟚 over Hom𝐵(𝐵, 𝑝) (see Definition 3.6.8).

10 By Lemma 3.5.9, Δ𝑝 ≅ ⌜id𝑝⌝ is itself right adjoint over 𝐸 and thus over 𝐵 to the codomain
projection functor 𝑝1∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐸. Since the counit of the adjunction 𝑝1 ⊣ Δ𝑝 is an
isomorphism, it follows formally that the unit of the adjunction Δ𝑝 ⊣ 𝑟 must also be an
isomorphism, whenever the adjunction postulated in (iii) exists (see Lemma B.3.9). Thus 𝑟
defines a right adjoint left inverse to Δ𝑝 over 𝐵.
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Proof We prove (i)⇔(ii) and (i)⇔(iii).
(i)⇔(ii): By Theorem 5.1.7(ii) and Lemma 5.2.5, 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian

fibration if and only if 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a section that defines
an absolute right lifting diagram:

𝐸𝟚

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

= 𝑖1⋔̂𝑝
⌜𝜒⌝

By Lemma 2.3.7, such an absolute right lifting defines an adjunction 𝑖1⋔̂𝑝 ⊣ ⌜𝜒⌝
with identity counit. Conversely, if 𝑖1 ⋔̂𝑝 ⊣ ⌜𝜒⌝with invertible counit, then since
the left adjoint is an isofibration, this can be rectified into a fibered adjunction
in which ⌜𝜒⌝ defines a strict section and the counit is the identity. By Lemma
2.3.7, ⌜𝜒⌝ then defines an absolute right lifting of the identity functor through
𝑖1 ⋔̂ 𝑝, which proves that 𝑝 is a cartesian fibration.

(i)⇔(iii): If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration in an ∞-cosmos 𝒦, then by
Theorem 5.1.7(iii) there is an absolute right lifting diagram

𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)
⇓𝜖

Δ𝑝
𝑟

for which 𝑝0𝜖 = id𝑝0. By Proposition 3.6.2, we may lift 𝜖 to a natural transfor-
mation in the sliced ∞-cosmos 𝒦/𝐵. Applying Lemma 2.3.7 in 𝒦/𝐵, we see
that 𝑟 defines a fibered right adjoint to Δ𝑝. Conversely, if we are given a fibered
adjunction over 𝐵, we may apply the forgetful 2-functor 𝔥(𝒦/𝐵) → 𝔥𝒦 to obtain
an adjunction11

𝐸 ⊥ Hom𝐵(𝐵, 𝑝)

Δ𝑝

𝑟

and then apply Lemma 2.3.7 to conclude that the counit 𝜖 defines an absolute
right lifting of the identity through Δ𝑝. Since the counit is unchanged by the
process of forgetting that the adjunction is fibered over 𝐵, we still have that
𝑝0𝜖 = id𝑝0, as required.

Examples of cartesian fibrations are overdue.
11 Recall from Non-Example 1.3.6 that the forgetful functor 𝒦/𝐵 →𝒦 is not cosmological.

Nevertheless any simplicial functor between ∞-cosmoi descends to a 2-functor between their
homotopy 2-categories, which is all that is needed here.
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Proposition 5.2.9 (domain projection fibration). For any ∞-category 𝐴, the
domain projection functor 𝑝0∶ 𝐴𝟚 ↠ 𝐴 defines a cartesian fibration. Moreover,
a natural transformation 𝜓 with codomain 𝐴𝟚 is 𝑝0-cartesian if and only if 𝑝1𝜓
is invertible.

Before giving the proof, we explain the idea. A natural transformation

𝑋 𝐴𝟚

𝐴

⌜𝛽⌝

𝑎

𝑝0⇑𝛼

defines a composable pair of 2-cells 𝛼∶ 𝑎 ⇒ 𝑥 and 𝛽∶ 𝑥 ⇒ 𝑦 in hFun(𝑋, 𝐴).

Composing these we induce a 2-cell 𝑋 𝐴𝟚
⌜𝛽∘𝛼⌝

⌜𝛽⌝

⇓𝜓 representing the commuta-

tive square in hFun(𝑋, 𝐴)

𝑎 𝑥

𝑦 𝑦

𝛼

𝛽∘𝛼 𝛽

so that 𝑝0𝜓 = 𝛼, as required, and 𝑝1𝜓 = id.

Proof We use Theorem 5.2.8(ii) and prove that 𝑝0 is cartesian by constructing
an appropriate adjoint to the functor

(𝐴𝟚)𝟚 𝟚 × 𝟚

Hom𝐴(𝐴, 𝑝0) 𝐴𝟚 𝟛 𝟚

𝐴𝟚 𝐴 𝟚 𝟙

𝑝𝟚0

𝑝1

𝑖1⋔̂𝑝0

𝑝1
⌟

𝑝1

𝑘

𝑖0×𝟚

𝑝0

𝟚×𝑖1

𝑖0

𝑖1

defined by cotensoring with the 1-categories displayed above right.12

To construct a right adjoint right inverse to the map 𝑖1 ⋔̂ 𝑝0, it suffices to
construct a left adjoint left inverse to the inclusion of 1-categories 𝑘∶ 𝟛 ↪ 𝟚×𝟚
with image (0, 0) → (0, 1) → (1, 1). The left adjoint ℓ∶ 𝟚 × 𝟚 → 𝟛 is a left
12 The cotensor 𝐴(−) carries pushouts of simplicial sets to pullbacks of ∞-categories, and the

pushout of 𝟚 ∪𝟙 𝟚 of simplicial sets is = Λ1[2], not 𝟛 = Δ[2]. However, on account of the
equivalence of ∞-categories 𝐴𝟛 ≃ 𝐴 , no harm comes from making the indicated substitution.
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inverse on the image of 𝟛 and sends (1, 0) to the terminal element of 𝟛:

𝟚 × 𝟚 ∋
⎧⎪
⎨
⎪
⎩

(0, 0) (0, 1)

(1, 0) (1, 1)

⎫
⎪
⎬
⎪
⎭

ℓ
↦

⎧⎪
⎨⎪
⎩

0 1

2 2

⎫⎪
⎬⎪
⎭

∈ 𝟛

Now

(𝐴𝟚)𝟚 𝐴𝟛 ≃ Hom𝐴(𝐴, 𝑝0)

𝑖1⋔̂𝑝0≃−∘𝑘

⊥
−∘ℓ

defines the desired right adjoint right inverse.
The characterization of 𝑝0-cartesian transformations follows from Theorem

5.1.7(ii). For any arrow ⌜𝜓⌝∶ 𝑋 → 𝐴𝟚 the commutative triangle below-left
factors through the absolute lifting diagram defined by the adjunction, and ⌜𝜓⌝
is 𝑝0-cartesian if and only if the induced natural transformation 𝜁 is invertible.

𝐴𝟚×𝟚 𝐴𝟚×𝟚

𝑋 𝐴𝟛 𝑋 𝐴𝟛 𝐴𝟛

=

−∘𝑘 = ⇓𝜁
=

−∘𝑘
⌜𝜓⌝

⌜𝑝0𝜓⌝ ⌜𝑝0𝜓⌝

⌜𝜓⌝

−∘ℓ

If 𝜁 is an isomorphism, then ⌜𝜓⌝ is isomorphic to an arrow in the image of restric-
tion along ℓ, and thus its codomain component must be invertible. Conversely, if
𝑝1𝜓 is invertible, to show that 𝜓 is 𝑝0-cartesian it suffices by Theorem 5.1.7(ii)
to prove that 𝜁 is an isomorphism. By two applications of 2-cell conservativity, it
suffices to show that the four components of 𝜁 indexed by each element of 𝟚×𝟚 are
invertible. Since 𝜁 restricts along 𝑘 to an identity, three of these components are

necessarily identities, and the fourth component 𝑋 𝐴𝟚×𝟚 𝐴
⌜𝜓⌝

⌜𝑝0𝜓⌝|ℓ

⇓𝜁
𝑝(1,0)

equals 𝑝1𝜓 in hFun(𝑋, 𝐴).

For ∞-categories admitting pullbacks (see Definition 4.3.8), the codomain
projection functor also defines a cartesian fibration:

Proposition 5.2.10 (codomain projection fibration). Let 𝐴 be an ∞-category
that admits pullbacks. Then the codomain projection functor 𝑝1∶ 𝐴𝟚 ↠ 𝐴 is a
cartesian fibration and the 𝑝1-cartesian arrows are the pullback squares.

Proof Via Theorem5.2.8(ii), we desire a right adjoint right inverse to the
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functor 𝑖1 ⋔̂ 𝑝1 defined below-left applying 𝐴(−) to the diagram of simplicial
sets appearing below-right:

(𝐴𝟚)𝟚 𝟚 × 𝟚

Hom𝐴(𝐴, 𝑝1) 𝐴𝟚 𝟚

𝐴𝟚 𝐴 𝟚 𝟙

𝑝𝟚1

𝑝1

𝑖1⋔̂𝑝1

𝑝1
⌟

𝑝1
⌟

1×𝟚

𝑝0

𝟚×1

1

1

This is provided by Corollary 4.3.5:

𝐴 𝐴(𝐴𝟚)𝟚 ≅
res

⊥
ran

≅ Hom𝐴(𝐴, 𝑝1)

By comparing Definition 4.3.8 with Theorem 5.1.7(ii), we see that 𝑝1-cartesian
arrows coincide with pullback squares.

There is a fourth equivalent definition of cartesian fibrations that we might
have added to Theorem 5.2.8, except that it is an “external characterization” of
cartesian fibrations, phrased entirely in the setting of the homotopy 2-category,
rather than an “internal characterization,” that is amenable for proving that
cartesian fibrations are preserved by cosmological functors.

Proposition 5.2.11. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration if and
only if any natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits a lift 𝜒𝛽∶ 𝑒′ ⇒ 𝑒

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

⇑𝛽 𝑝 =

𝑒

𝑒′
⇑𝜒𝛽

𝑝

so that for any functor𝑓∶ 𝑌 → 𝑋 the 2-cell𝜒𝛽𝑓 satisfies the following properties
in the homotopy 2-category:

(i) induction: Given any 2-cells 𝜏∶ 𝑒″ ⇒ 𝑒𝑓 and 𝛾∶ 𝑝𝑒″ ⇒ 𝑝𝑒′𝑓 so that
𝑝𝜏 = 𝛽𝑓 ⋅ 𝛾, there exists a lift ̄𝛾∶ 𝑒″ ⇒ 𝑒′𝑓 of 𝛾 so that 𝜏 = 𝜒𝛽𝑓 ⋅ ̄𝛾.

(ii) conservativity: Any fibered endomorphism of 𝜒𝛽𝑓 is invertible: for any
2-cell 𝜁∶ 𝑒′𝑓 ⇒ 𝑒′𝑓 so that 𝜒𝛽𝑓 ⋅ 𝜁 = 𝜒𝛽𝑓 and 𝑝𝜁 = id𝑝𝑒′𝑓 then 𝜁 is
invertible.

Moreover, under these hypothesis, a natural transformation 𝜓∶ 𝑒′ ⇒ 𝑒 with co-
domain 𝐸 is 𝑝-cartesian if and only if 𝜓 satisfies the induction and conservativity
conditions in the case 𝑓 = id.
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To help us stay organized during the proof, we refer to a natural transformation
𝜓∶ 𝑒′ ⇒ 𝑒 satisfying conditions (i) and (ii) as a weak 𝑝-cartesian transformation.
We argue that when 𝑝 is a cartesian fibration, the class of weak 𝑝-cartesian
transformations coincides with the class of 𝑝-cartesian transformations.

Proof If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then any 𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits a
𝑝-cartesian lift 𝜒𝛽∶ 𝛽∗𝑒 ⇒ 𝑒. By Lemma 5.1.4, the restriction 𝜒𝛽𝑓 along any
functor is again a 𝑝-cartesian transformation. By Proposition 5.1.13, this 𝜒𝛽𝑓
then satisfies the induction and conservativity properties. In fact Proposition
5.1.13 shows more generally that any 𝑝-cartesian transformation is weakly
𝑝-cartesian.

Conversely, assume that 𝑝∶ 𝐸 ↠ 𝐵 satisfies the hypotheses of the statement.
We will use the induction and conservativity properties associated to the lift

Hom𝐵(𝐵, 𝑝) 𝐸 Hom𝐵(𝐵, 𝑝) 𝐸

𝐵 𝐵

𝑝1

𝑝0

⇑𝜙 𝑝 =

𝑝1

𝑟

⇑𝜒

𝑝

of the right comma cone 𝜙 over 𝑝 and its restrictions to construct the data of
Theorem 5.2.8(iii).

First, we apply the induction property to 𝜒Δ𝑝∶ 𝑟Δ𝑝 ⇒ id𝐸 to induce a 2-
cell 𝜂∶ id𝐸 ⇒ 𝑟Δ𝑝 so that 𝑝𝜂 = id𝑝 and 𝜒Δ𝑝 ⋅ 𝜂 = id. By construction,
𝜂 ⋅ 𝜒Δ𝑝 defines a fibered automorphism of 𝜒Δ𝑝, so must be invertible by the
conservativity property. Thus, the fibered 2-cell 𝜂 is the inverse isomorphism to
𝜒Δ𝑝.

We induce the counit 𝜖∶ Δ𝑝𝑟 ⇒ id by 2-cell induction from the pair of 2-cells
𝑝1𝜖 = 𝜒 and 𝑝0𝜖 = id. Since 𝜖Δ𝑝 is induced from a pair of invertible 2-cells, it
must be an isomorphism by 2-cell conservativity. The 2-cell 𝑟𝜖 can also be seen
to be invertible, on account of the naturality of whiskering square associated to
the horizontal composite:

𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝) 𝐸

Δ𝑝𝑟
⇓𝜖 𝑟

⇓𝜒

𝑝1

⇝
𝑟Δ𝑝𝑟 𝑝1Δ𝑝𝑟

𝑟 𝑝1

𝑟𝜖

𝜒Δ𝑝𝑟

≅

𝑝1𝜖=𝜒

𝜒

Weak 𝑝-cartesian cells are stable under isomorphism, so the top right composite
is weakly 𝑝-cartesian. Since 𝑝𝑟𝜖 = 𝑝0𝜖 = id, we can apply the induction and
conservativity properties once more to induce a transformation 𝛾∶ 𝑟 ⇒ 𝑟Δ𝑝𝑟 so
that 𝛾 ⋅ 𝑟𝜖 and 𝑟𝜖 ⋅ 𝛾 are both isomorphisms. Hence 𝑟𝜖 is invertible.

By Lemma 2.1.11 this data in an∞-cosmos𝒦 suffices to define an adjunction
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in the sliced homotopy 2-category (𝔥𝒦)/𝐵. By Lemma 3.6.7, this adjunction may
then be lifted along the smothering 2-functor 𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 of Proposition
3.6.2 to a genuine fibered adjunction. By Theorem 5.2.8(iii), this proves that 𝑝
is a cartesian fibration.

Finally, observe that when 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, any 𝜓∶ 𝑒′ ⇒ 𝑒
satisfying (i) and (ii) for 𝑓 = id is fibered isomorphic to a 𝑝-cartesian lift of
𝑝𝜓 with codomain 𝑒. By Lemma 5.1.6, it follows that 𝜓 is then a 𝑝-cartesian
transformation, proving that when𝑝 is a cartesian fibration these classes coincide.

Exercises
Exercise 5.2.i. There is a standard notion of cartesian fibration in a 2-category
developed by Street [118] that recovers the Grothendieck fibrations when special-
ized to the 2-category 𝒞𝑎𝑡. This is not the correct notion of cartesian fibration
between ∞-categories as the universal property the usual notion demands of
lifted 2-cells is too strict. Compare this definition with 2-categorical definition
of Proposition 5.2.11 and consider why the stricter universal property does not
hold in the ∞-categorical context, for instance by considering the cartesian
fibrations of Proposition 5.2.9.

Exercise 5.2.ii. Show that a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 defines an “incoher-
ent pseudofunctor” 𝐸∶ h𝐵op ⇝ 𝔥𝒦 given by the data:

• a mapping on objects 𝑏 ∈ h𝐵 ↦ 𝐸𝑏 ∈ 𝔥𝒦;
• a mapping on 1-cells 𝛽∶ 𝑎 → 𝑏 ∈ h𝐵 ↦ 𝛽∗∶ 𝐸𝑏 → 𝐸𝑎 ∈ 𝔥𝒦 defined by

(5.0.1);
• an invertible 2-cell 𝐸𝑏 𝐸𝑏

id∗𝑏

𝜄𝑏⇓≅ ∈ 𝔥𝒦 for each 𝑏 ∈ h𝐵; and

• an invertible 2-cell
𝐸𝑏

𝐸𝑐 𝐸𝑎

𝛽∗𝛾∗

(𝛾∘𝛽)∗

𝛼𝛽,𝛾⇓≅

in 𝔥𝒦 for each composable pair of 𝛽∶ 𝑎 → 𝑏 and 𝛾∶ 𝑏 → 𝑐 of arrows in
h𝐵.

The coherence conditions present in the full definition of a pseudo-functor
(see Definition 10.4.1) are not evident here, but do follow from the extension of
this construction to a homotopy coherent diagram indexed by the underlying
quasi-category of 𝐵 [111, 6.1.16].
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Exercise 5.2.iii (5.5.13). Use either Theorem 5.2.8(iii) or (ii) to prove that
for any cospan of functors 𝐶 𝑔 𝐴 𝑓 𝐵 between ∞-categories, the domain
projection functor 𝑝0∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐵 is a cartesian fibration, and moreover,
a natural transformation 𝜓 with codomain Hom𝐴(𝑓, 𝑔) is 𝑝0-cartesian if and
only if 𝑝1𝜓 is invertible.13

5.3 Cartesian Functors

We now show that cartesianness is an equivalence invariant property of isofibra-
tions by appealing to Theorem 5.2.8 to study the relationship between the data
that witnesses the cartesianness of an isofibration and that data provided by an
equivalence.

Corollary 5.3.1. Consider an essentially commutative square between isofi-
brations whose horizontal functors are equivalences:

𝐹 𝐸

𝐴 𝐵

𝑞 ≅

∼ℎ

𝑝

∼
𝑘

Then 𝑝 is a cartesian fibration if and only if 𝑞 is a cartesian fibration in which
case ℎ preserves and reflects cartesian transformations: 𝜓 is 𝑞-cartesian if and
only if ℎ𝜓 is 𝑝-cartesian.

Proof By Proposition 3.4.6, an essentially commutative square induces an
essentially commutative square

𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

≅

∼ℎ
𝟚

𝑖1⋔̂𝑞 𝑖1⋔̂𝑝

∼
Hom𝑘(𝑘,ℎ)

13 On account of Proposition 5.2.4 and the pullback square

Hom𝐴(𝑓, 𝑔) Hom𝐴(𝐴, 𝑔)

𝐵 𝐴

𝑝0
⌟

𝑝0

𝑓

it suffices to prove that the domain projection functor 𝑝0∶ Hom𝐴(𝐴, 𝑔) ↠ 𝐴 is a cartesian
fibration. There is a sense in which this functor can be understood as a pullback of
𝑝0∶ 𝐴𝟚 ↠ 𝐴, which we explain in the proof of Corollary 5.5.13 where this result appears. The
reader opting to reprise the proof of Proposition 5.2.9 might wish to appeal to Proposition
6.3.10 if this construction proves too painful.
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whose horizontal functors are the equivalences defined in Proposition 3.4.5. By
the equivalence invariance of adjunctions (see Proposition B.3.8) the left-hand
vertical functor admits a right adjoint right inverse if and only if the right-hand
vertical functor does. By Theorem 5.2.8(ii), it follows that 𝑝 is cartesian if and
only if 𝑞 is cartesian. By the equivalence invariance of absolute lifting diagrams
(see Exercises 2.3.vi and 3.5.ii), it follows similarly from Theorem 5.1.7(ii) that
𝜓 is 𝑝-cartesian if and only if ℎ𝜓 is 𝑞-cartesian.

We have now met a few examples of structure-preserving morphisms between
cartesian fibrations.

Definition 5.3.2 (cartesian functor). Let 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞∶ 𝐹 ↠ 𝐴 be carte-
sian fibrations. A commutative square defines a cartesian functor if its domain
component ℎ preserves cartesian transformations: if 𝜓 is 𝑞-cartesian then ℎ𝜓 is
𝑝-cartesian.

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘

For the purposes of Proposition 6.3.14, we prefer to reserve this terminology
for strictly commutative squares, but it can be extended to essentially commuta-
tive squares.

Example 5.3.3 (pullbacks and equivalences are cartesian). Immediately from
Proposition 5.2.4 and Corollary 5.3.1, both pullback squares and commuta-
tive squares of equivalences define cartesian functors, which have the special
property that the top horizontal functor reflects, as well as preserves, carte-
sian transformations. These results extend to weakly cartesian squares, since
cartesian functors compose and any weakly cartesian square factors as:

𝐹 𝑃 𝐸

𝐴 𝐴 𝐵

ℎ

𝑞

∼

⌟
𝑝

𝑘

The internal characterization of cartesian fibrations of Theorem 5.2.8 extends
to an internal characterization of cartesian functors.

Theorem 5.3.4 (an internal characterization of cartesian functors). For a com-
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mutative square

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘

between cartesian fibrations the following are equivalent:

(i) The square (ℎ, 𝑘) defines a cartesian functor from 𝑞 to 𝑝.
(ii) The mate of the identity in the diagram of functors below-left is an

isomorphism:

𝐹𝟚 𝐸𝟚 𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

ℎ𝟚

𝑖1⋔̂𝑞 =⇙ 𝑖1⋔̂𝑝 ⇝

ℎ𝟚

≅⇘

Hom𝑘(𝑘,ℎ) Hom𝑘(𝑘,ℎ)

⌜𝜒⌝ ⌜𝜒⌝

(iii) The mate of the identity in the diagram of functors over 𝑘∶ 𝐴 → 𝐵
below-left is an isomorphism:

𝐹 𝐸 𝐹 𝐸

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

ℎ

Δ𝑞 =⇙ Δ𝑝 ⇝

ℎ

≅⇘

Hom𝑘(𝑘,ℎ) Hom𝑘(𝑘,ℎ)

𝑟 𝑟

The mates referenced here generalize the notion of “adjoint” or “transposed”
2-cells (see Definition B.3.3 and §B.3). As noted in Warning B.3.7, the mate of
an isomorphism is not necessarily invertible.

Proof We prove (i)⇔(iii) and (i)⇔(ii). To save space, we write ̄ℎ as an abbre-
viation for the functor Hom𝑘(𝑘, ℎ).

(i)⇔(ii): The square (ℎ, 𝑘) defines a cartesian functor from 𝑞 to 𝑝 if and only
if it carries the generic 𝑞-cartesian lift ⌜𝜒⌝∶ Hom𝐴(𝐴, 𝑞) → 𝐹𝟚 to a 𝑝-cartesian
arrow, in other words, if and only if the commutative diagram defines an absolute
right lifting:

𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

=

ℎ𝟚

𝑖1⋔̂𝑞 𝑖1⋔̂𝑝
⌜𝜒⌝

̄ℎ

By Definition B.3.3, this square factors through the absolute right lifting diagram
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below-right via a whiskered copy ̄𝜂ℎ𝟚⌜𝜒⌝ of the counit ̄𝜂 of 𝑖1 ⋔̂ 𝑝 ⊣ ⌜𝜒⌝.

𝐹𝟚 𝐸𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

ℎ𝟚

𝑖1⋔̂𝑞 𝑖1⋔̂𝑝
⇓ ̄𝜂

=

𝑖1⋔̂𝑝
⌜𝜒⌝

̄ℎ

⌜𝜒⌝

Thus, by Theorem 5.1.7(ii), ̄𝜂ℎ𝟚⌜𝜒⌝ is invertible if and only if ℎ𝟚⌜𝜒⌝ is 𝑝-carte-
sian.

(i)⇔(iii): Since the unit ofΔ𝑝 ⊣ 𝑟 is an isomorphism for the reasons discussed
in the statement of Theorem 5.2.8(iii), the mate of the isomorphism on the left-
hand side of (iii) is isomorphic to 𝑟 ̄ℎ𝜖, so our task is to show that this natural
transformation is invertible if and only if ℎ defines a cartesian functor. This leads
us to consider the naturality of whiskering square expressing the horizontal
composite of the two counits:

𝐹 𝐸

Hom𝐴(𝐴, 𝑞) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

𝐹 𝐸 𝐸

Δ𝑞 Δ𝑝𝑟
⇓𝜖

𝑝1

̄ℎ

𝑟

𝑝1

⇓𝜖

𝑝1

ℎ

𝑟 ̄ℎΔ𝑞𝑟 𝑟 ̄ℎ

𝑝1 ̄ℎΔ𝑞𝑟 𝑝1 ̄ℎ

𝑟 ̄ℎ𝜖

𝑝1𝜖 ̄ℎΔ𝑞𝑟

≅ 𝑝1𝜖 ̄ℎ

𝑝1 ̄ℎ𝜖

Since 𝜖 is the counit of an adjunction Δ𝑝 ⊣ 𝑟 with invertible unit, 𝜖Δ𝑝 is an
isomorphism, so 𝜖 ̄ℎΔ𝑞 = 𝜖Δ𝑝ℎ, is invertible. From the calculation 𝑝𝑟 ̄ℎ𝜖 =
𝑝0 ̄ℎ𝜖 = 𝑘𝑝0𝜖 = id, we see that the top-horizontal 2-cell lies in a fiber over an
identity.

Recall from Theorem 5.2.8(iii) that 𝑝1𝜖 defines the generic 𝑝-cartesian lift
of Lemma 5.2.5 for the cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵. Hence the right-hand
vertical 2-cell 𝑝1𝜖 ̄ℎ is a 𝑝-cartesian lift of 𝜙 ̄ℎ, where 𝜙 is the right comma cone
over 𝑝. By the definition of ̄ℎ, 𝜙 ̄ℎ = 𝑘𝜙, the latter 𝜙 being the right comma cone
over 𝑞.

Similarly, the bottom horizontal 2-cell 𝑝1 ̄ℎ𝜖 is a lift of 𝑘𝜙 = 𝜙 ̄ℎ. So if ℎ is
a cartesian functor, the right-hand vertical and bottom horizontal 2-cells are
both 𝑝-cartesian lifts of a common 2-cell, and the conservativity property of
Lemma 5.1.12 implies that 𝑟 ̄ℎ𝜖 is invertible. Conversely, if 𝑟 ̄ℎ𝜖 is invertible,
then 𝑝1 ̄ℎ𝜖 = ℎ𝑝1𝜖 is isomorphic to the 𝑝-cartesian transformation 𝑝1𝜖 ̄ℎ and is
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consequently 𝑝-cartesian. Since every 𝑞-cartesian transformation is isomorphic
to a restriction of 𝑝1𝜖, this is the case if and only if ℎ is a cartesian functor.

One of the myriad applications of Theorems 5.2.8 and 5.3.4 is:

Corollary 5.3.5. Cosmological functors preserve cartesian arrows, cartesian
fibrations, and cartesian functors.

Proof By Theorem 5.2.8(ii), an isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an ∞-cosmos 𝒦
is cartesian if and only if the isofibration 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a
right adjoint right inverse. A cosmological functor 𝐹∶ 𝒦 → ℒ preserves the
class of isofibrations and the simplicial limits that define this map 𝑖1 ⋔̂ 𝑝. Since
the 2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ associated to a cosmological functor preserves
adjunctions and the invertibility of 2-cells, 𝐹 preserves cartesian fibrations. The
preservation of cartesian functors follows similarly from Theorem 5.3.4(ii). By
Corollary 3.5.7, cosmological functors preserves absolute lifting diagrams, so
the preservation of cartesian arrows follows from Theorem 5.1.7(ii).

Another family of examples of cartesian functors is given by the following
lemma, which can be proven using Theorem 5.3.4.

Lemma 5.3.6. A fibered right adjoint functor defines a cartesian functor between
cartesian fibrations with a common base:

𝐹 𝐸

𝐵

ℎ
𝑞 𝑝

⊥

Proof If ℓ is a fibered left adjoint to ℎ in an ∞-cosmos 𝒦, then the cosmologi-
cal functor defined by pullback 𝑝∗1 ∶ 𝒦/𝐵 → 𝒦/𝐵𝟚 carries this fibered adjunction
to a fibered adjunction

Hom𝐵(𝐵, 𝑞) Hom𝐵(𝐵, 𝑝)
Homid𝐵(id𝐵,ℎ)

⊥
Homid𝐵(id𝐵,ℓ)

Similarly, the cosmological functor (−)𝟚∶ 𝒦 → 𝒦 carries the adjunction ℓ ⊣ ℎ
to an adjunction ℓ𝟚 ⊣ ℎ𝟚.

Now both horizontal functors in the commutative square

𝐹𝟚 𝐸𝟚

Hom𝐵(𝐵, 𝑞) Hom𝐵(𝐵, 𝑝)

ℎ𝟚

𝑖1⋔̂𝑞 ≅⇙ 𝑖1⋔̂𝑝

Homid𝐵(id𝐵,ℎ)
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admit left adjoints. A standard result from the calculus of mates tells us that the
mate with respect to the vertical adjunctions is an isomorphism if and only if
the mate with respect to the horizontal adjunctions is an isomorphism, the latter
natural transformation between left adjoints being the transpose of the former
natural transformation between their right adjoints (see Exercise B.3.iii). In the
present context, the mate with respect to the horizontal adjunctions can be seen
to be an isomorphism by 2-cell conservativity for Hom𝐵(𝐵, 𝑞).

Exercises
Exercise 5.3.i. Show that the pullback of a cartesian functor ℎ between carte-
sian fibrations with a common base defines a cartesian functor

• 𝐹

• 𝐸

𝐴 𝐵

𝑘∗𝑞

⌟ ℎ
𝑞

⌟
𝑘∗𝑝 𝑝

𝑘

Exercise 5.3.ii. Show that cartesian functors compose both vertically and
horizontally.

Exercise 5.3.iii. Categorify the intuition that cartesian fibrations 𝑝∶ 𝐸 ↠ 𝐵
and 𝑞∶ 𝐹 ↠ 𝐵 define “contravariant 𝐵-indexed functors valued in∞-categories”
by proving that a cartesian functor

𝐸 𝐹

𝐵

ℎ

𝑝 𝑞

defines a “natural transformation”: show that there exists a natural isomorphism
in the square of fibers

𝐸𝑏 𝐹𝑏

𝐸𝑎 𝐹𝑎

𝛽∗

ℎ

∃⇗≅ 𝛽∗

ℎ

where the action of an arrow 𝛽 in the homotopy category of 𝐵 on the fibers is
defined by factoring the domain of a 𝑝- or 𝑞-cartesian lift of 𝛽 as displayed in
(5.0.1).
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5.4 Cocartesian Fibrations and Bifibrations

Cocartesian fibrations are dual to cartesian fibrations in the sense that the arrows
in the base act covariantly, rather than contravariantly, on the fibers. To make
this duality precise, recall from Definition 1.2.25 that for any ∞-cosmos 𝒦,
there is a dual ∞-cosmos 𝒦co with the same objects but with functor spaces
defined by:

Fun𝒦co(𝐴, 𝐵) ≔ Fun𝒦(𝐴, 𝐵)op.

The isofibrations, equivalences, and trivial fibrations in 𝒦co coincide with those
of 𝒦. Conical limits in 𝒦co coincide with those in 𝒦, while the cotensor of
𝐴 ∈ 𝒦 with 𝑈 ∈ 𝑠𝒮𝑒𝑡 is defined to be 𝐴𝑈op. In particular, the cotensor of
an ∞-category with 𝟚 is defined to be 𝐴𝟚op, which exchanges the domain and
codomain projections from arrow and comma ∞-categories.

With this structure in hand, we can succinctly define a cocartesian fibration
in an ∞-cosmos 𝒦 to be an isofibration 𝑝∶ 𝐸 ↠ 𝐵 that defines a cartesian
fibration in the dual ∞-cosmos 𝒦co. Now all of the results proven in §5.1–§5.3
develop the theory of cocartesian arrows, cocartesian fibrations, and the cartesian
functors between them. In this section, we tour a few of the highlights before
turning our attention to bifibrations, isofibrations that define both cartesian and
cocartesian fibrations.

Definition 5.4.1 (𝑝-cocartesian arrow). Consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵.
An 𝑋-shaped arrow ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 in 𝐸 is 𝑝-cocartesian if the dashed map
defined by the pullback of the Leibniz cotensor is a trivial fibration:

𝜓/𝐸 𝐸𝟛

• 𝐵𝟛 ×
𝐵
𝐸

𝑋 𝐸𝟚

⌟ 𝜆⋔̂𝑝

𝑝01

⌟
𝑝01

⌜𝜓⌝

where 𝜆∶ ↪ 𝟛 is the inclusion whose image is the span 2 ← 0 → 1 in 𝟛.

Definition 5.4.2 (cocartesian fibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cocart-
esian fibration if any natural transformation 𝛽∶ 𝑝𝑒 ⇒ 𝑏 as below-left admits a
𝑝-cocartesian lift 𝜒𝛽∶ 𝑒 ⇒ 𝛽∗𝑒 as below-right:

𝐸𝟚 𝑋 𝐸 𝑋 𝐸

𝑋 Hom𝐵(𝑝, 𝐵) 𝐵 𝐵

=

𝑖0⋔̂𝑝

𝑒

𝑏

⇓𝛽 𝑝 =

𝑒

𝛽∗𝑒

⇓𝜒𝛽

𝑝⌜𝜒𝛽⌝

⌜𝛽⌝

⇝
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Again it suffices to assume only that the generic arrow whose domain factors
through 𝑝 admits a 𝑝-cocartesian lift:

Lemma 5.4.3. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cocartesian fibration if and only
if the left comma cone over 𝑝 displayed below-left admits a 𝑝-cocartesian lift 𝜒
as displayed below-right:

𝐸𝟚 Hom𝐵(𝑝, 𝐵) 𝐸 Hom𝐵(𝑝, 𝐵) 𝐸

Hom𝐵(𝑝, 𝐵) Hom𝐵(𝑝, 𝐵) 𝐵 𝐵

=

𝑖0⋔̂𝑝

𝑝0

𝑝1

⇓𝜙 𝑝 =

𝑝0

ℓ

⇓𝜒

𝑝
⌜𝜒⌝

⇝

Lemma 5.4.3 extends to an internal characterization of cocartesian fibrations.
The dual to Theorem 5.2.8 asks for a fibered left adjoint toΔ𝑝∶ 𝐸 → Hom𝐵(𝑝, 𝐵)
and a left adjoint right inverse to 𝑖0 ⋔̂ 𝑝∶ 𝐸𝟚 → Hom𝐵(𝑝, 𝐵) in place of right
adjoints (see Exercise 5.4.i).

Propositions 5.2.9 and 5.2.10 dualize to provide the following examples.

Proposition 5.4.4 (codomain projection fibration). For any ∞-category 𝐴:

(i) The codomain projection functor 𝑝1∶ 𝐴𝟚 ↠ 𝐴 defines a cocartesian
fibration. Moreover, a natural transformation 𝜓 with codomain 𝐴𝟚 is
𝑝1-cocartesian if and only if 𝑝0𝜓 is invertible.

(ii) If 𝐴 has pushouts, then the domain projection functor 𝑝0∶ 𝐴𝟚 ↠ 𝐴
defines a cocartesian fibration, for which the 𝑝0-cocartesian cells are
the pushout squares.

By this result and its dual, when𝐴 has pushouts, the domain projection functor
𝑝0∶ 𝐴𝟚 ↠ 𝐴 is both a cartesian fibration and a cocartesian fibration. Such maps
have a special property we now explore.

Definition 5.4.5 (bifibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a bifibration
if 𝑝 is both a cartesian fibration and a cocartesian fibration.

Projections give trivial examples of bifibrations.

Example 5.4.6. For any ∞-categories 𝐴 and 𝐵 the projection functor 𝜋∶ 𝐴 ×
𝐵 ↠ 𝐵 is a bifibration, in which a 2-cell with codomain 𝐴 × 𝐵 is 𝜋-cocartesian
or 𝜋-cartesian if and only if its composite with the projection 𝜋∶ 𝐴× 𝐵 ↠ 𝐴 is
an isomorphism.
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Proposition 5.4.7. Let 𝑝∶ 𝐸 ↠ 𝐵 be a bifibration. Then any natural transfor-

mation 𝑋 𝐵
𝑎

𝑏

⇓𝛽 induces a fibered adjunction between the fibers of 𝑝 over

𝑎 and 𝑏:

𝐸𝑎 ⊥ 𝐸𝑏 𝐸𝑎 𝐸 𝐸𝑏

𝑋 𝑋 𝐵 𝑋

𝛽∗

𝑝𝑎
𝛽∗

𝑝𝑏

ℓ𝑎

𝑝𝑎
⌟

𝑝

ℓ𝑏

⌞
𝑝𝑏

𝑎 𝑏

Proof Write ⌜𝛽⌝∶ 𝑋 → 𝐵𝟚 for the functor induced by 𝛽. Note that the pull-
backs defining the fibers over its domain edge 𝑎 and codomain edge 𝑏 factor
as:

𝐸𝑎 Hom𝐵(𝑝, 𝐵) 𝐸 Hom𝐵(𝐵, 𝑝) 𝐸𝑏

𝑋 𝐵𝟚 𝐵 𝐵𝟚 𝑋

ℓ𝑎

𝑝𝑎

⌟
𝑞

𝑝0⌟
𝑝 𝑞

𝑝1 ⌞

ℓ𝑏

⌞
𝑝𝑏

𝑎

⌜𝛽⌝ 𝑝0 𝑝1 ⌜𝛽⌝

𝑏

Theorem 5.2.8(ii) and its dual provide a right adjoint right inverse to the
functor 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) and a left adjoint right inverse to the functor
𝑖0 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝑝, 𝐵). Composing the former fibered adjunction with
𝑞∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐵𝟚 and the latter fibered adjunction with 𝑞∶ Hom𝐵(𝑝, 𝐵) ↠
𝐵𝟚 we obtain a composable pair of adjunctions that are fibered over 𝐵𝟚:

Hom𝐵(𝑝, 𝐵) 𝐸𝟚 Hom𝐵(𝐵, 𝑝)

𝐵𝟚

⌜𝜒⌝

⊥

𝑞

𝑖0⋔̂𝑝 𝑝𝟚

𝑖1⋔̂𝑝

⊥

𝑞

⌜𝜒⌝

Pulling back the composite adjunction along ⌜𝛽⌝∶ 𝑋 → 𝐵𝟚 yields the desired
fibered adjunction.

Note that the construction of the adjoint functors 𝛽∗ ⊣ 𝛽∗ given in this proof
coincides with the description of the the action of the 2-cell 𝛽 on the fibers of 𝑝
given in Remark 5.2.7.
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Exercises
Exercise 5.4.i. Formulate the duals to Theorems 5.1.7 and 5.2.8, providing an
internal characterization of cocartesian arrows and cocartesian fibrations.

Exercise 5.4.ii. Suppose 𝐴 is an ∞-category with pullbacks. By Propositions
5.2.10 and 5.4.4, the codomain projection functor 𝑝1∶ 𝐴𝟚 ↠ 𝐴 is a bifibration.
Describe the action of the left and right adjoints in the adjunction induced from
an arrow 𝛼∶ 𝑥 → 𝑦 in h𝐴:

1 𝐴 Hom𝐴(𝐴, 𝑥) Hom𝐴(𝐴, 𝑦)
𝑥

𝑦
⇓𝛼 ⇝

𝛼∗

⊥
𝛼∗

5.5 Discrete Cartesian Fibrations

Cartesian and cocartesian fibrations encode families of ∞-categories acted
upon contravariantly or covariantly by the base ∞-category. In certain special
cases, the ∞-categories arising as fibers of a cartesian or cocartesian fibration
are all discrete (see Definition 1.2.26). As the analogous functors between 1-
categories are called discrete fibrations or discrete opfibrations, we refer to these
maps of ∞-categories as “discrete cartesian fibrations” or “discrete cocartesian
fibrations,” respectively. Our aim in this section is to study this special class of
fibrations.

Before giving the definition, we describe the appropriate sort of “discreteness”
required of an isofibration 𝑝∶ 𝐸 ↠ 𝐵. Recall from Exercise 1.4.iv that an object
𝐸 in an ∞-cosmos 𝒦 is discrete if and only if every natural transformation
with codomain 𝐸 is invertible. Discrete fibrations are isofibrations 𝑝∶ 𝐸 ↠ 𝐵
in an ∞-cosmos 𝒦 that are discrete when considered as an object of the sliced
∞-cosmos 𝒦/𝐵; we call such maps discrete isofibrations for short. Using
Proposition 3.6.2, there are several equivalent ways to unpack the notion of
discrete object in 𝒦/𝐵 at the level of the homotopy 2-category 𝔥𝒦:

Lemma 5.5.1. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a discrete isofibration if and only if
either of the equivalent conditions hold:

(i) Any 𝑋 𝐸
𝑎

𝑏

⇓𝛾 for which 𝑝𝛾 is an identity is invertible.

(ii) Any 𝑋 𝐸
𝑎

𝑏

⇓𝛾 for which 𝑝𝛾 is an isomorphism is invertible.
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Proof Exercise 5.5.i.

Thus, the discrete isofibrations are exactly those isofibrations that define con-
servative functors in the homotopy 2-category. Neither the domain or codomain
of a discrete isofibration need to be discrete ∞-categories (see Exercise 5.5.ii).
Instead, the discreteness in the sliced ∞-cosmos is “fiberwise.”

Lemma 5.5.2. The fibers of a discrete isofibration are discrete ∞-categories.

Proof Recall from Remark 1.3.3 that discrete ∞-categories are preserved
by cosmological functors. In particular, the pullback functor 𝑏∗∶ 𝒦/𝐵 → 𝒦
associated to an element 𝑏∶ 1 → 𝐵 preserves discrete objects. Hence, the fibers
of a discrete isofibration 𝑝∶ 𝐸 ↠ 𝐵 are discrete ∞-categories.

The converse to Lemma 5.5.2 holds in an ∞-cosmos of (∞, 1)-categories:
an isofibration 𝑝∶ 𝐸 ↠ 𝐵 between (∞, 1)-categories is discrete if and only
if its fibers are discrete ∞-categories (see Proposition 12.2.3). Thus, in such
∞-cosmoi, the discrete cartesian fibrations and discrete cocartesian fibrations
we presently introduce can be understood as cartesian fibrations with discrete
fibers.

Definition 5.5.3 (discrete co/cartesian fibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵
in an ∞-cosmos 𝒦 is a discrete cartesian fibration if it is a cartesian fibration
that is discrete as an object of𝒦/𝐵. Dually, 𝑝 is a discrete cocartesian fibration
if it is a cocartesian fibration that is discrete as an object of 𝒦/𝐵.

Digression 5.5.4 (left and right fibrations of quasi-categories). In the ∞-cos-
mos of quasi-categories, the discrete cocartesian fibrations coincide with Joyal’s
class of left fibrations – those maps that lift against the left horn inclusions –
and dually the discrete cartesian fibrations coincide with Joyal’s class of right
fibrations (see Proposition F.4.9). While the terminology of left/right fibrations
is more familiar in the ∞-categorical literature, we use the terms “discrete
co/cartesian fibrations” to clarify the relationship between these classes of maps
and their nondiscrete and 1-categorical analogues.

As in §5.4, the theory of discrete cocartesian fibrations can be obtained by
interpreting results about discrete cartesian fibrations in the co-dual ∞-cosmos,
so we streamline our exposition by focusing on the class of discrete cartesian
fibrations.



212 Fibrations and Yoneda’s Lemma

Lemma 5.5.5 (pullback stability). In any pullback square

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ
⌟

𝑝

𝑘

if 𝑝 is a discrete cartesian fibration then 𝑞 is a discrete cartesian fibration.

Proof In light of Proposition 5.2.4 it remains only to verify that 𝑞 is discrete.

Consider a 2-cell 𝑋 𝐹
𝑎

𝑏

⇓𝛾 so that 𝑞𝛾 is invertible. Then 𝑘𝑞𝛾 = 𝑝ℎ𝛾

is invertible and conservativity of 𝑝 implies that ℎ𝛾 is invertible. By 2-cell
conservativity (see Proposition 3.3.1), 𝛾 is also invertible.

There is a direct 2-categorical characterization of the discrete cartesian fi-
brations, as those isofibrations 𝑝∶ 𝐸 ↠ 𝐵 with the property that every natural
transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 has an essentially unique lift with codomain 𝑒. This
is closely related to the observation that for a discrete cartesian fibration 𝑝,
there is no special class of 𝑝-cartesian arrows, unlike the case for the indiscrete
version.

Proposition 5.5.6.

(i) If 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration, every natural transforma-
tion with codomain 𝐸 is 𝑝-cartesian.

(ii) An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration if and only if
every natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 has an essentially unique lift
with codomain 𝑒: given 𝜒∶ 𝑒′ ⇒ 𝑒 and 𝜓∶ 𝑒″ ⇒ 𝑒 so that 𝑝𝜒 = 𝑝𝜓 = 𝛽,
then there exists an isomorphism 𝛾∶ 𝑒″ ⇒ 𝑒′ with 𝜒⋅𝛾 = 𝜓 and 𝑝𝛾 = id.

Proof By Proposition 5.1.13, if 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then any
natural transformation 𝜓 with codomain 𝐸 factors through a 𝑝-cartesian lift of
𝑝𝜓 via a natural transformation 𝛾 so that 𝑝𝛾 = id. When 𝑝 is discrete, this 𝛾 is
an isomorphism, and thus 𝜓 is isomorphic to a 𝑝-cartesian transformation, and
thus is itself 𝑝-cartesian by Lemma 5.1.6.

From what we have just observed in (i) and the essential uniqueness of 𝑝-
cartesian lifts in Lemma 5.1.11, we see that if 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian
fibration, then any natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 has an essentially unique
lift. For the converse, note that any 𝑝∶ 𝐸 ↠ 𝐵 satisfying the hypothesis of (ii)
is a discrete isofibration: if 𝜓∶ 𝑒′ ⇒ 𝑒 is so that 𝑝𝜓 = id, then id∶ 𝑒 ⇒ 𝑒 is
another lift of 𝑝𝜓 and essential uniqueness provides an inverse isomorphism
𝜓−1∶ 𝑒 ⇒ 𝑒′.
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To complete the proof, it remains to show that any 𝑝∶ 𝐸 ↠ 𝐵 satisfying
the hypothesis of (ii) is a cartesian fibration. We do this by establishing the
2-categorical characterization of Proposition 5.2.11, showing that any 2-cell
𝜓∶ 𝑒′ ⇒ 𝑒 with codomain 𝐸 is weakly 𝑝-cartesian – and hence, by Proposition
5.2.11 again, 𝑝-cartesian in the usual sense.

To that end consider a pair 𝜏∶ 𝑒″ ⇒ 𝑒 and 𝛾∶ 𝑝𝑒″ ⇒ 𝑝𝑒′ so that 𝑝𝜏 = 𝑝𝜓 ⋅ 𝛾.
By the hypothesis that every 2-cell admits an essentially unique lift, we can
construct a lift 𝜇∶ ̄𝑒 ⇒ 𝑒′ so that 𝑝𝜇 = 𝛾. Now 𝜏 and 𝜓 ⋅ 𝜇 are two lifts of
𝑝𝜏 with the same codomain, so there exists an isomorphism 𝜁∶ 𝑒″ ⇒ ̄𝑒 with
𝑝𝜁 = id. The composite 𝜇 ⋅ 𝜁 then defines the desired lift of 𝛾 to a cell so that
𝜏 = 𝜓 ⋅ 𝜇 ⋅ 𝜁.

As an immediate consequence of (i):

Corollary 5.5.7. Any commutative square from a cartesian fibration to a
discrete cartesian fibration defines a cartesian functor.

In analogy with Theorem 5.2.8, there is an internal characterization of discrete
cartesian fibrations, which in the discrete case takes a much simpler form.

Proposition 5.5.8 (internal characterization of discrete cartesian fibrations).
An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration if and only if the
functor 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ∼ Hom𝐵(𝐵, 𝑝) is a trivial fibration.

Recall from Theorem 5.2.8(ii) that an isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a
cartesian fibration if and only if 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right
adjoint right inverse ⌜𝜒⌝. Proposition 5.5.8 asserts that 𝑝 defines a discrete
cartesian fibration if and only if this adjunction defines an adjoint equivalence.

Proof Assume first that 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration. By Theo-
rem 5.2.8(ii), 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 → Hom𝐵(𝐵, 𝑝) then admits a right adjoint ⌜𝜒⌝ with
invertible counit ̄𝜖 ∶ (𝑖1 ⋔̂ 𝑝)⌜𝜒⌝ ≅ id. We argue that in this case the unit
̄𝜂∶ id ⇒ ⌜𝜒⌝(𝑖1 ⋔̂ 𝑝) is also invertible, proving that 𝑖1 ⋔̂ 𝑝 ⊣ ⌜𝜒⌝ defines an

adjoint equivalence.
Since the counit of 𝑖1 ⋔̂ 𝑝 ⊣ ⌜𝜒⌝ is invertible, (𝑖1 ⋔̂ 𝑝) ̄𝜂 is an isomorphism.

Thus 𝑝1(𝑖1 ⋔̂ 𝑝) ̄𝜂 = 𝑝1 ̄𝜂 and 𝑝0(𝑖1 ⋔̂ 𝑝) ̄𝜂 = 𝑝𝑝0 ̄𝜂 are both isomorphisms. By
conservativity of the discrete fibration 𝑝∶ 𝐸 ↠ 𝐵 proven in Lemma 5.5.1, this
implies that 𝑝0 ̄𝜂 is invertible and now 2-cell conservativity for 𝐸𝟚 reveals that ̄𝜂
is an isomorphism.

Conversely, if 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ∼ Hom𝐵(𝐵, 𝑝) is a trivial fibration, by Propo-
sition 2.1.12 and Lemma 3.6.9, we may choose a right adjoint right inverse
equivalence ⌜𝜒⌝∶ Hom𝐵(𝐵, 𝑝) ∼ 𝐸𝟚. By composing with ⌜𝜒⌝, we see that any
arrow ⌜𝛽⌝∶ 𝑋 → Hom𝐵(𝐵, 𝑝) has a lift. The unit of this adjoint equivalence is
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necessarily a fibered isomorphism, so for any arrow ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 we have a
pasting equality

𝐸𝟚 𝐸𝟚 𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝) 𝑋 Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

=

∼ 𝑖1⋔̂𝑝 = =

∼ 𝑖1⋔̂𝑝
≅⇓ ̄𝜂

=

∼ 𝑖1⋔̂𝑝
⌜𝜓⌝

⌜𝑝𝜓⌝

⌜𝜓⌝

⌜𝑝𝜓⌝

⌜𝜒⌝

Since the right-hand side is an absolute right lifting diagram, the left-hand side
must be as well, and by Theorem 5.1.7(ii) we conclude that every arrow with
codomain 𝐸 is 𝑝-cartesian. Now the conservativity property for cartesian arrows
of Lemma 5.1.6 applies to all arrows and tells us that 𝑝∶ 𝐸 ↠ 𝐵 defines a
conservative functor, and in particular is discrete.

As a consequence of Proposition 5.5.8 it is clear that cosmological functors
preserve discrete cartesian fibrations. Using the internal characterization, it is
also straightforward to verify that discrete cartesian fibrations compose and
cancel on the left:

Lemma 5.5.9. Suppose 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞∶ 𝐵 ↠ 𝐴 are isofibrations and 𝑞 is a
discrete cartesian fibration. Then 𝑝 is a discrete cartesian fibration if and only
if 𝑞𝑝 is a discrete cartesian fibration.

Proof The map 𝐸𝟚 ↠ Hom𝐴(𝐴, 𝑞𝑝) that tests whether 𝑞𝑝∶ 𝐸 ↠ 𝐴 is a
discrete cartesian fibration factors as the map 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) that tests
whether 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration followed by a pullback of
the map 𝐵𝟚 ↠ Hom𝐴(𝐴, 𝑞) that tests whether 𝑞∶ 𝐵 ↠ 𝐴 is a discrete cartesian
fibration:

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚 𝐴𝟚

Hom𝐴(𝐴, 𝑞𝑝) Hom𝐴(𝐴, 𝑞)

𝐸 𝐵 𝐴

𝑝1
𝑝1

⌟ ∼

𝑝1

∼

𝑝1

∼

⌟ ⌟

𝑝 𝑞

The result now follows from Lemma 1.2.14 and the 2-of-3 property for equiva-
lences.

We now turn to examples of discrete cartesian fibrations.

Lemma 5.5.10. A trivial fibration 𝑝∶ 𝐸 ∼ 𝐵 is a discrete bifibration.
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Proof By Lemma 1.2.14, both 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ∼ Hom𝐵(𝐵, 𝑝) and 𝑖0 ⋔̂ 𝑝∶ 𝐸𝟚 ∼

Hom𝐵(𝑝, 𝐵) are trivial fibrations. Now Proposition 5.5.8 and its dual prove that
𝑝 is a discrete cartesian fibration and also a discrete cocartesian fibration.

The discussion at the start of this chapter suggests that for any element 𝑏∶ 1 →
𝐵 of an ∞-category 𝐵, the right representable 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 defines a
discrete cartesian fibration. We deduce this in Corollary 5.5.14 as a consequence
of a more sophisticated observation concerning the central object of study
in Part II. Proposition 5.2.9 proves that for any ∞-category 𝐴, the domain
projection functor𝑝0∶ 𝐴𝟚 ↠ 𝐴 defines a cartesian fibration. Unless𝐴 is discrete,
this functor does not define a discrete cartesian fibration (see Exercise 5.5.ii).
However, recall that 𝑝0-cartesian lifts can be constructed to project to identity
arrows along 𝑝1∶ 𝐴𝟚 ↠ 𝐴. This suggests that we might productively consider
the domain projection functor as a map over 𝐴, in which case we have the
following result.

Proposition 5.5.11. For any ∞-category 𝐴 in an ∞-cosmos 𝒦

𝐴𝟚 𝐴 × 𝐴

𝐴

(𝑝1,𝑝0)

𝑝1 𝜋
(5.5.12)

defines a discrete cartesian fibration in the sliced ∞-cosmos 𝒦/𝐴.

Proof By 2-cell conservativity, (5.5.12) is a discrete object in the sliced ∞-
cosmos (𝒦/𝐴)/𝜋∶ 𝐴×𝐴↠𝐴 ≅ 𝒦/𝐴×𝐴. So it remains only to prove that this functor
defines a cartesian fibration. We prove this using Theorem 5.2.8(iii). The first
step is to compute the right representable comma object for the functor (5.5.12)
by interpreting the formula (3.4.2) in the sliced ∞-cosmos 𝒦/𝐴. By Proposition
1.2.22, the 𝟚-cotensor of the object 𝜋∶ 𝐴×𝐴 ↠ 𝐴 is 𝜋∶ 𝐴×𝐴𝟚 ↠ 𝐴, and this
right representable comma is computed by the left-hand pullback in 𝒦/𝐴 below:

Hom𝐴(𝐴, 𝑝0) 𝐴 × 𝐴𝟚 𝐴𝟚

𝐴𝟚 𝐴 × 𝐴 𝐴

𝐴

⌟
𝑝2 id𝐴×𝑝1

𝜋
⌟

𝑝1

𝑝1

(𝑝1,𝑝0)

𝜋

𝜋

Pasting with the right-hand pullback in 𝒦, we recognize that the ∞-category
so-constructed coincides with the right representable comma object for the
functor 𝑝0∶ 𝐴𝟚 ↠ 𝐴 considered as a map in 𝒦. Similarly, the canonical functor
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Δ𝑝0 ∶ 𝐴
𝟚 → Hom𝐴(𝐴, 𝑝0) induced by id𝑝0 in 𝒦 coincides with the canonical

functor Δ(𝑝1,𝑝0)∶ 𝐴
𝟚 → Hom𝐴(𝐴, 𝑝0) over 𝐴 induced by id(𝑝1,𝑝0) in 𝒦/𝐴.

Under the equivalence Hom𝐴(𝐴, 𝑝0) ≃ 𝐴𝟛 established in the proof of Propo-
sition 5.2.9, the isofibration 𝑝2∶ Hom𝐴(𝐴, 𝑝0) ↠ 𝐴 is evaluation at the final
element 2 ∈ 𝟛 in the composable pair of arrows. Since 𝑝0∶ 𝐴𝟚 ↠ 𝐴 is a cart-
esian fibration in 𝒦, Theorem 5.2.8(iii) tells us that the functor Δ𝑝0 ∶ 𝐴

𝟚 →
Hom𝐴(𝐴, 𝑝0) ≃ 𝐴𝟛 admits a right adjoint 𝑟 over 𝐴. The proofs of Proposition
5.2.9 and Theorem 5.2.8(ii)⇒(iii) (which can be extracted from the proof of
Theorem 5.1.7(ii)⇒(iii)) combine to provide a construction: this adjunction can
be defined by cotensoring the composite adjunction of categories below-left
into 𝐴:

𝟚 𝟚 × 𝟚 𝟛 𝐴𝟚 ⊥ 𝐴𝟛

𝟙 + 𝟙 𝐴 × 𝐴

𝟚×0
⊤

𝛿1

𝟚×!
⊤
ℓ

𝑘

𝜍0

⇝

Δ𝑝0=Δ(𝑝1,𝑝0)

(𝑝1,𝑝0) (𝑝2,𝑝0)

𝑟

(2,0)(1,0)

where ℓ ⊣ 𝑘 is described in the proof of Proposition 5.2.9. The composite right
adjoint is the functor 𝜎0∶ 𝟛 ↠ 𝟚 that sends 0 and 1 to 0 and 2 to 1, while the
composite left adjoint is the functor 𝛿1∶ 𝟚 ↣ 𝟛 that sends 0 to 0 and 1 to 2. In
particular, this adjunction lies in the strict slice 2-category under the inclusion
of the “endpoints” of 𝟚 and 𝟛.

It follows that upon cotensoring into 𝐴, we obtain a fibered adjunction over
𝐴× 𝐴, which by Theorem 5.2.8(iii) implies that (5.5.12) is a cartesian fibration
in 𝒦/𝐴, completing the proof.

Combining Propositions 5.2.9 and Proposition 5.5.11, we can now generalize
both results to arbitrary comma ∞-categories.

Corollary 5.5.13. For any functors 𝐶 𝑔 𝐴 𝑓 𝐵 between ∞-categories in
an ∞-cosmos 𝒦:

(i) The domain projection functor 𝑝0∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐵 is a cartesian
fibration.14

14 Moreover, a natural transformation 𝜓 with codomain Hom𝐴(𝑓, 𝑔) is 𝑝0-cartesian if and only if
𝑝1𝜓 is invertible. We defer the proof only because the same argument proves a more general
statement (see Lemma 7.4.3).
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(ii) The functor

Hom𝐴(𝑓, 𝑔) 𝐶 × 𝐵

𝐶

(𝑝1,𝑝0)

𝑝1 𝜋

defines a discrete cartesian fibration in 𝒦/𝐶.

Proof We start with (ii). Since 𝑝1∶ Hom𝐴(𝐴, 𝑔) ↠ 𝐶 is the pullback of
𝑝1∶ 𝐴𝟚 ↠ 𝐴 along 𝑔, we may use the cosmological functor 𝑔∗∶ 𝒦/𝐴 → 𝒦/𝐶
to pull back the discrete cartesian fibration of Proposition 5.5.11 to a discrete
cartesian fibration in 𝒦/𝐶:

Hom𝐴(𝐴, 𝑔) 𝐶 × 𝐴

𝐶

(𝑝1,𝑝0)

𝑝1 𝜋

There is a pullback square in 𝒦/𝐶:

Hom𝐴(𝑓, 𝑔) Hom𝐴(𝐴, 𝑔)

𝐶 × 𝐵 𝐶 × 𝐴

𝐶

(𝑝1,𝑝0)
⌟
𝑝1 𝑝1 (𝑝1,𝑝0)

𝜋

𝐶×𝑓

𝜋

so Lemma 5.5.5 implies that the pullback is also a discrete cartesian fibration.
Using (ii) we can now prove (i). In fact, we show more generally that if

𝐸 𝐶 × 𝐵

𝐶
𝑞

(𝑞,𝑝)

𝜋

defines a cartesian fibration in 𝒦/𝐶 then 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration
in 𝒦 (see Lemma 7.1.1). By Theorem 5.2.8(iii) applied in 𝒦/𝐶, the functor
Δ(𝑞,𝑝) = Δ𝑝 admits a right adjoint 𝑟 over 𝐶 × 𝐵:

𝐸 Hom𝐵(𝐵, 𝑝)

𝐶 × 𝐵

Δ(𝑞,𝑝)=Δ𝑝

(𝑞,𝑝)

⊥

(𝑞𝑝1,𝑝0)
𝑟

Composing with 𝜋∶ 𝐶 × 𝐵 ↠ 𝐵, this fibered adjunction defines an adjunction
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over 𝐵. Applying Theorem 5.2.8(iii) in 𝒦 this time allows us to conclude that
𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration.

Note that the domain projection 𝑝0∶ Hom𝐴(𝑓, 𝐴) ↠ 𝐵 is the pullback of
𝑝0∶ 𝐴𝟚 ↠ 𝐴 along 𝑓∶ 𝐵 → 𝐴, so Propositions 5.2.4 and 5.2.9 imply that this
functor is a cartesian fibration, but 𝑝0∶ Hom𝐴(𝐴, 𝑔) ↠ 𝐴 is not similarly a
pullback of 𝑝0∶ 𝐴𝟚 ↠ 𝐴. This is why a more circuitous argument to the result
of (i) is needed.

As a corollary, we can finally introduce one of the key examples of discrete
cartesian fibrations:

Corollary 5.5.14 (domain projection from an element). For 𝑏∶ 1 → 𝐵, the
domain projection functor 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is a discrete cartesian fibra-
tion.

Proof By Corollary 5.5.13, 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is a cartesian fibration.

Discreteness follows from 2-cell conservativity: if 𝑋 Hom𝐵(𝐵, 𝑏)
𝑓

𝑔

⇓𝛾

is a natural transformation for which 𝑝0𝛾 is an identity, then since 𝑝1𝛾 is also
an identity – this being a 2-cell whose codomain is the terminal ∞-category – 𝛾
must be invertible.

Exercises
Exercise 5.5.i. Prove Lemma 5.5.1.

Exercise 5.5.ii. To explore the discreteness of discrete cartesian fibrations:

(i) Prove that 𝑝0∶ 𝐴𝟚 ↠ 𝐴 is a discrete isofibration if and only if 𝐴 is a
discrete ∞-category.

(ii) By Corollary 5.5.14, for any element 𝑎∶ 1 → 𝐴, 𝑝0∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴
is a discrete cartesian fibration. Is Hom𝐴(𝐴, 𝑎) necessarily a discrete
∞-category?

Exercise 5.5.iii. Use Theorem 5.3.4 to give an alternate proof of Corollary
5.5.7.

5.6 The Representability of Cartesian Fibrations

In this section we consider the family 𝑝∗∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) of isofibra-
tions of quasi-categories associated to an isofibration of∞-categories𝑝∶ 𝐸 ↠ 𝐵
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in an ∞-cosmos. Our aim is to show that the notions of cartesian fibration, cart-
esian functor, and discrete cartesian fibration are each representably defined in
various senses:

Proposition 5.6.1. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an ∞-cosmos 𝒦 defines a
discrete cartesian fibration if and only if for all 𝑋 ∈ 𝒦, 𝑝∗∶ Fun(𝑋, 𝐸) ↠
Fun(𝑋, 𝐵) defines a discrete cartesian fibration of quasi-categories.

Proof Since equivalences and simplicial limits in an ∞-cosmos are repre-
sentably defined notions, this follows immediately from the characterization of
discrete cartesian fibrations given in Proposition 5.5.8.

The representable nature of cartesian fibrations is more subtle:

Proposition 5.6.2. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration between ∞-categories in
an ∞-cosmos 𝒦. Then 𝑝 is a cartesian fibration if and only if:

(i) For all 𝑋 ∈ 𝒦, the isofibration 𝑝∗∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) is a carte-
sian fibration between quasi-categories.

(ii) For all 𝑓∶ 𝑌 → 𝑋 ∈ 𝒦, the square defined by the restriction maps is a
cartesian functor:

Fun(𝑋, 𝐸) Fun(𝑌 , 𝐸)

Fun(𝑋, 𝐵) Fun(𝑌 , 𝐵)

𝑝∗

𝑓∗

𝑝∗

𝑓∗

Proof If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then Theorem 5.2.8(ii) constructs
a right adjoint right inverse to 𝑖1 ⋔̂𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝). The simplicial bifunc-
tor Fun∶ 𝒦op ×𝒦 → 𝒬𝒞𝑎𝑡 defines a 2-functor Fun∶ 𝔥𝒦op × 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡,
which transposes to a Yoneda-type embedding Fun∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡𝔥𝒦

op
from

the homotopy 2-category of 𝒦 to the 2-category of 2-functors, 2-natural trans-
formations, and modifications (see §B.2). This 2-functor carries the adjunction
𝑖1 ⋔̂ 𝑝 ⊣ ⌜𝜒⌝ to an adjunction in the 2-category 𝔥𝒬𝒞𝑎𝑡𝔥𝒦

op
. This latter adjunc-

tion defines, for each 𝑋 ∈ 𝒦, a right adjoint right inverse adjunction

Fun(𝑋, 𝐸𝟚) Fun(𝑋,Hom𝐵(𝐵, 𝑝))

Fun(𝑋, 𝐸)𝟚 HomFun(𝑋,𝐵)(Fun(𝑋, 𝐵), 𝑝∗)

(𝑖1⋔̂𝑝)∗

⊥
⌜𝜒∗⌝≅ ≅

and for each 𝑓∶ 𝑌 → 𝑋 in 𝒦, a strict adjunction morphism, commuting strictly
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with the left and right adjoints and with the units and counits:15

Fun(𝑋, 𝐸𝟚) Fun(𝑌 , 𝐸𝟚)

Fun(𝑋,Hom𝐵(𝐵, 𝑝)) Fun(𝑌 ,Hom𝐵(𝐵, 𝑝))

𝑓∗

(𝑖1⋔̂𝑝)∗⊢ (𝑖1⋔̂𝑝)∗ ⊣

𝑓∗

⌜𝜒∗⌝ ⌜𝜒∗⌝ (5.6.3)

By Theorems 5.2.8(ii) and 5.3.4(ii), this demonstrates the two conditions of the
statement.

Conversely, if 𝑝∶ 𝐸 ↠ 𝐵 satisfies conditions (i) and (ii) then by Theorems
5.2.8(ii) and 5.3.4(ii) there is a commutative square (𝑖1 ⋔̂ 𝑝)∗𝑓∗ = 𝑓∗(𝑖1 ⋔̂ 𝑝)∗
where both verticals (𝑖1 ⋔̂ 𝑝)∗ admit right adjoint right inverses (𝑖1 ⋔̂ 𝑝)∗ ⊣ ̄𝑟
and the mate of the identity (𝑖1 ⋔̂ 𝑝)∗𝑓∗ = 𝑓∗(𝑖1 ⋔̂ 𝑝)∗ defines an isomorphism
𝑓∗ ̄𝑟 ≅ ̄𝑟𝑓∗. Using the right adjoints ̄𝑟, we extract the internal right adjoint
functor ⌜𝜒⌝∶ Hom𝐵(𝐵, 𝑝) → 𝐸𝟚 as the image of the identity element

Fun(Hom𝐵(𝐵, 𝑝),Hom𝐵(𝐵, 𝑝)) Fun(Hom𝐵(𝐵, 𝑝), 𝐸𝟚)

id ⌜𝜒⌝

̄𝑟

The counit is internalized similarly. The condition on the mates is used to
define the unit and verify the triangle equalities equalities that demonstrate
that 𝑖1 ⋔̂ 𝑝 ⊣ ⌜𝜒⌝ (see Proposition B.6.2). Now Theorem 5.2.8(ii) proves that
𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration.

An easier argument along the same lines demonstrates:

Corollary 5.6.4. A commutative square between cartesian fibrations as dis-
played below-left

𝐹 𝐸 Fun(𝑋, 𝐹) Fun(𝑋, 𝐸)

𝐴 𝐵 Fun(𝑋, 𝐴) Fun(𝑋, 𝐵)

𝑞

ℎ

𝑝 ⇝ 𝑞∗

ℎ∗

𝑝∗

𝑘 𝑘∗

defines a cartesian functor in an ∞-cosmos 𝒦 if and only if for all 𝑋 ∈ 𝒦,
the square displayed above right defines a cartesian functor between cartesian
fibrations of quasi-categories.

Proof Exercise 5.6.i.
15 In particular, the mate of the identity (𝑖1 ⋔̂ 𝑝)∗𝑓∗ = 𝑓∗(𝑖1 ⋔̂ 𝑝)∗ is the identity

𝑓∗⌜𝜒∗⌝ = ⌜𝜒∗⌝𝑓∗.
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In particular, if 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, so is 𝑝∗∶ Fun(𝑋, 𝐸) ↠
Fun(𝑋, 𝐵). We now consider the relationship between 𝑝-cartesian arrows and
𝑝∗-cartesian arrows.

Lemma 5.6.5. Consider a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 between ∞-categories.
A 2-cell as below-left is cartesian for 𝑝∶ 𝐸 ↠ 𝐵 if and only if the corresponding
2-cell below-right is cartesian for 𝑝∗∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵).

𝑋 𝐸 ↭ 𝟙 Fun(𝑋, 𝐸)
𝑒′

𝑒
⇓𝜓

𝑒′

𝑒
⇓𝜓

The natural transformation on the left defines an arrow in the hom-category
hFun(𝑋, 𝐸), while the natural transformation on the right defines an arrow in
the hom-category hFun(𝟙,Fun(𝑋, 𝐸)). These hom-categories are isomorphic,
justifying our conflating notation for their objects and arrows. There is a similar
bijective correspondence between 𝑋-shaped arrows ⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 in 𝐸 and
1-arrows ⌜𝜓⌝∶ 1 → Fun(𝑋, 𝐸)𝟚 in Fun(𝑋, 𝐸).

Proof Since 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, a natural transformation as
above-left is 𝑝-cartesian if and only if it satisfies the weak universal properties
of Proposition 5.1.13, which are started entirely in reference to the functor
𝑝∗∶ hFun(𝑋, 𝐸) ↠ hFun(𝑋, 𝐵). Similarly, since 𝑝∗∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵)
is a cartesian fibration, a natural transformation as above right is 𝑝∗-cartesian
if and only if it satisfies the weak universal properties of Proposition 5.1.13,
started entirely in reference to 𝑝∗∶ hFun(𝟙,Fun(𝑋, 𝐸)) ↠ hFun(𝟙,Fun(𝑋, 𝐵)).
As these functors are isomorphic, the 𝑝-cartesian transformations and 𝑝∗-carte-
sian transformations 𝜓∶ 𝑒′ ⇒ 𝑒 coincide.

Lemma 5.6.5 characterizes the 𝑝∗-cartesian transformations with domain 𝟙.
More generally:

Lemma 5.6.6. A natural transformation as below left

𝑄 Fun(𝑋, 𝐸) 𝟙 𝑄 Fun(𝑋, 𝐸) 𝑋 𝐸
𝑒′

𝑒
⇓𝜓

𝑞
𝑒′

𝑒
⇓𝜓 ↭

𝑒′𝑞

𝑒𝑞
⇓𝜓𝑞

is 𝑝∗-cartesian if and only if each of its components 𝜓𝑞 is 𝑝-cartesian.

Proof If 𝜓 is 𝑝∗-cartesian, then by Lemma 5.1.4 so is its restriction along any
element 𝑞∶ 𝟙 → 𝑄. By Lemma 5.6.5 this tells us that 𝜓𝑞 defines a 𝑝-cartesian
transformation.

Conversely, if 𝜓𝑞 is a 𝑝-cartesian transformation, then Lemma 5.6.5 tells
us that 𝜓𝑞 is a 𝑝∗-cartesian transformation. Now consider the factorization



222 Fibrations and Yoneda’s Lemma

𝜓 = 𝜒 ⋅ 𝜁 through 𝑝∗-cartesian lift 𝜒 of 𝑝∗𝜓. Because the components 𝜓𝑞 of 𝜓
are 𝑝∗-cartesian, the components 𝜁𝑞 of 𝜁 are isomorphisms. By Corollary 1.1.22,
an arrow in an exponential quasi-category Fun(𝑋, 𝐸)𝑄 is an isomorphism if and
only if it is a pointwise isomorphism, so this implies that 𝜁 is an isomorphism.
By isomorphism stability of cartesian transformations (see Lemma 5.1.6), we
thus conclude that 𝜓 is 𝑝∗-cartesian.

Exercises
Exercise 5.6.i. Prove Corollary 5.6.4.

5.7 The Yoneda Lemma

Let 𝑏∶ 1 → 𝐵 be an element of an∞-category 𝐵 and consider its right represen-
tation Hom𝐵(𝐵, 𝑏) as a comma ∞-category. The codomain projection functor
provides no additional information in this case, but the domain projection funct-
or 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 has a special property expressed by Corollary 5.5.14:
it defines a discrete cartesian fibration. As the fibers of this map over an element
𝑥∶ 1 → 𝐵 are the mapping spaces Hom𝐵(𝑥, 𝑏) of Definition 3.4.9, we regard
𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 as encoding the contravariant functor represented by 𝑏.

Our aim in this section is to state and prove the Yoneda lemma in this setting,
where contravariant representable functors are encoded as discrete cartesian
fibrations. Informally, the Yoneda lemma asserts that “evaluation at the identity
defines an equivalence,” where the identity element in question is the functor

1 Hom𝐵(𝐵, 𝑏)

𝐵
𝑏

⌜id𝑏⌝

𝑝0

Technically, ⌜id𝑏⌝ does not live in the sliced ∞-cosmos over 𝐵 because the
domain object 𝑏∶ 1 → 𝐵 is not an isofibration but nevertheless for any isofi-
bration 𝑝∶ 𝐸 ↠ 𝐵, restriction along ⌜id𝑏⌝ induces a functor between sliced
quasi-categorical functor spaces

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸 𝑝 𝐵) ev⌜id𝑏⌝ Fun𝐵(1

𝑏 𝐵, 𝐸 𝑝 𝐵)

Here the codomain is the quasi-category defined by the pullback

Fun𝐵(𝑏, 𝑝) ≅ Fun(1, 𝐸𝑏) Fun(1, 𝐸)

𝟙 Fun(1, 𝐵)

⌟
𝑝∗

𝑏
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which is isomorphic to the underlying quasi-category of the fiber 𝐸𝑏 of 𝑝∶ 𝐸 ↠
𝐵 over 𝑏. When 𝑝∶ 𝐸 ↠ 𝐵 is a discrete isofibration, Fun(1, 𝐸𝑏) is a Kan complex
and might be referred to more evocatively as the “underlying space” of the fiber
𝐸𝑏.

If a discrete cartesian fibration over 𝐵 is thought of as a contravariant 𝐵-
indexed discrete ∞-category-valued functor, then maps of discrete cartesian
fibrations over 𝐵 are “natural transformations,” the “naturality in 𝐵” arising
because the functors are fibered over 𝐵. This leads to our first statement of the
fibrational Yoneda lemma:

Theorem 5.7.1 (discrete Yoneda lemma). If 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian
fibration, then

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸

𝑝
𝐵) Fun(1, 𝐸𝑏)∼

ev⌜id𝑏⌝

is an equivalence of Kan complexes.

We deduce this result from a “dependent” generalization where the target
discrete cartesian fibration has codomain Hom𝐵(𝐵, 𝑏). In this case, the re-
sult provides an equivalence between sections of a discrete cartesian fibration
𝑞∶ 𝐹 ↠ Hom𝐵(𝐵, 𝑏) and elements of the fiber over ⌜id𝑏⌝. This result is anal-
ogous to the “path induction” principle for identity types in homotopy type
theory: the inverse equivalence of Theorem 5.7.2 provides a “directed” version
of the “transport” operation [106, §9].

Theorem 5.7.2 (dependent Yoneda lemma). If 𝑏∶ 1 → 𝐵 is an element of an
∞-category 𝐵 and 𝑞∶ 𝐹 ↠ Hom𝐵(𝐵, 𝑏) is a discrete cartesian fibration, then

FunHom𝐵(𝐵,𝑏)(Hom𝐵(𝐵, 𝑏), 𝐹) Fun(1, 𝐹 ⌜id𝑏⌝)∼

ev⌜id𝑏⌝

is an equivalence of Kan complexes.

Theorem 5.7.1 is subsumed by a generalization that allows 𝑝∶ 𝐸 ↠ 𝐵 to be
any cartesian fibration, not necessarily discrete. In this case, 𝑝 encodes a con-
travariant 𝐵-indexed ∞-category-valued functor, as does 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵.
The correct notion of “natural transformation” between two such functors is
now given by a cartesian functor over 𝐵 (see Exercise 5.3.iii). Given a pair of
cartesian fibration 𝑞∶ 𝐹 ↠ 𝐵 and 𝑝∶ 𝐸 ↠ 𝐵, we write

Funcart
𝐵 (𝐹 𝑞 𝐵, 𝐸 𝑝 𝐵) ⊂ Fun𝐵(𝐹

𝑞 𝐵, 𝐸 𝑝 𝐵)

for the sub-quasi-category containing all those simplices whose vertices define
cartesian functors from 𝑞 to 𝑝.16

16 For any quasi-category 𝑄 and any subset of its vertices, there is a “full” sub-quasi-category
containing exactly those vertices and all the simplices of 𝑄 that they span.
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Theorem 5.7.3 (Yoneda lemma). If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then

Funcart
𝐵 (Hom𝐵(𝐵, 𝑏)

𝑝0 𝐵, 𝐸
𝑝
𝐵) Fun(1, 𝐸𝑏)∼

ev⌜id𝑏⌝

is an equivalence of quasi-categories.

The proofs of these theorems overlap significantly and we develop them in
parallel. The basic idea is to use the universal property of ⌜id𝑏⌝ as a terminal
element of Hom𝐵(𝐵, 𝑏) in the ∞-cosmos 𝒦 (see Corollary 3.5.10) to define a
right adjoint to ev⌜id𝑏⌝ and prove that when 𝑝∶ 𝐸 ↠ 𝐵 is discrete or when the
domain is restricted to the sub-quasi-category of cartesian functors, this adjunc-
tion defines an adjoint equivalence. Note that the functor ev⌜id𝑏⌝ is the image
of the functor ⌜id𝑏⌝ under the 2-functor Fun𝐵(−, 𝑝)∶ 𝔥(𝒦/𝐵)op → 𝔥𝒬𝒞𝑎𝑡. If
the adjunction ! ⊣ ⌜id𝑏⌝ lived in the sliced ∞-cosmos 𝒦/𝐵, this would directly
construct a right adjoint to ev⌜id𝑏⌝. The main technical difficulty in following
this outline is that the adjunction that witnesses the terminality of ⌜id𝑏⌝ does
not live in the slice of the homotopy 2-category 𝔥𝒦/𝐵 but rather in a lax slice
𝔥𝒦⫽𝐵 of the homotopy 2-category that we now introduce.

Definition 5.7.4. Consider a 2-category 𝔥𝒦 and an object 𝐴 ∈ 𝔥𝒦. The lax
slice 2-category 𝔥𝒦⫽𝐴 is the strict 2-category whose

• objects are maps 𝑓∶ 𝑋 → 𝐴 in 𝔥𝒦 with codomain 𝐴;
• 1-cells are diagrams

𝑋 𝑌

𝐴
𝑓

𝑠

𝜍
⇒ 𝑔

(5.7.5)

in 𝔥𝒦; and
• 2-cells from (𝑠, 𝜎) to (𝑠′, 𝜎′) are 2-cells 𝜃∶ 𝑠 ⇒ 𝑠′ so that

𝑋 𝑌 𝑋 𝑌

𝐴 𝐴
𝑓

𝑠
⇑𝜃
𝑠′

𝜍
⇒ 𝑔 = 𝑓

𝑠′

𝜍′
⇒ 𝑔

(5.7.6)

For instance, the adjunctions that define terminal elements lift to the lax slice
2-category:

Lemma 5.7.7. Suppose 𝑡∶ 1 → 𝐴 defines a terminal element in an ∞-category



5.7 The Yoneda Lemma 225

𝐴 in an ∞-cosmos 𝒦. Then

1 𝐴

𝐴
𝑡

𝑡

is right adjoint to the unit map
𝐴 1

𝐴

!

𝜂⇒
𝑡

in the lax slice 2-category 𝔥𝒦⫽𝐴.

Proof We check that the unit and counit of the adjunction ! ⊣ 𝑡 that witnesses
the terminality of 𝑡 lift along the forgetful 2-functor 𝔥𝒦⫽𝐴 → 𝔥𝒦, which
amounts to verifying the condition (5.7.6). The forgetful 2-functor 𝔥𝒦⫽𝐴 → 𝔥𝒦
is faithful on 1- and 2-cells, so the triangle equalities automatically hold for the
lifted cells. These lax compatibility conditions reduce to the pasting equalities

1

𝐴 𝐴 𝐴 1 𝐴 1 𝐴 1 1 1

𝐴 𝐴 𝐴 𝐴

𝑡

⇑𝜂

!

=

! 𝑡

𝑡
𝜂⇒

𝑡

𝑡

𝜂⇒

!

𝑡
= 𝑡 𝑡

The first of these is trivial, while the second holds by the triangle equality
𝜂𝑡 = id𝑡.

Using somewhat nonstandard 2-categorical techniques, we transfer the ad-
junction of Lemma 5.7.7 to an adjoint equivalence

Fun𝐴(𝐴, 𝐹) Fun(1, 𝐹𝑡)

∼ev𝑡

⊥
∼
𝑦

between the Kan complex of sections of a discrete cartesian fibration 𝑞∶ 𝐹 ↠
𝐴 and the underlying space of the fiber 𝐹𝑡 over a terminal element 𝑡∶ 1 →
𝐴. Because our initial adjunction lives in the lax rather than the strict slice,
the construction is somewhat delicate, passing through a pair of auxiliary 2-
categories that we now introduce.

Definition 5.7.8. Let 𝔥𝒦 be the homotopy 2-category of an ∞-cosmos and
write 𝔥𝒦 for the strict 2-category whose

• objects are cospans

𝐴 𝐵 𝐸𝑘 𝑝

in which 𝑝 is a cartesian fibration;
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• 1-cells are diagrams of the form

𝐴′ 𝐵′ 𝐸′

𝐴 𝐵 𝐸

𝑎

𝑘′

⇑𝜙 𝑏

𝑝′

𝑒

𝑘 𝑝

(5.7.9)

• and whose 2-cells consist of triples 𝛼∶ 𝑎 ⇒ ̄𝑎, 𝛽∶ 𝑏 ⇒ ̄𝑏, and 𝜖∶ 𝑒 ⇒ ̄𝑒
between the verticals of parallel 1-cell diagrams so that 𝑝𝜖 = 𝛽𝑝′ and
̄𝜙 ⋅ 𝑘𝛼 = 𝛽𝑘′ ⋅ 𝜙.

Definition 5.7.10. Let 𝔥𝒦 be the homotopy 2-category of an ∞-cosmos and
write 𝔥𝒦 for the strict 2-category whose

• objects are pullback squares

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ
⌟

𝑝

𝑘

whose verticals are cartesian fibrations;
• 1-cells are cubes

𝐹′ 𝐸′

𝐹 𝐸

𝐴′ 𝐵′

𝐴 𝐵

ℎ′

𝑞′
ℓ

⌟
⇑𝜒 𝑒

𝑝′

⌟ ℎ

𝑝

𝑎

𝑘′

⇑𝜙 𝑏

𝑘

𝑞
(5.7.11)

whose vertical faces commute and in which 𝜒∶ ℎℓ ⇒ 𝑒ℎ′ is a 𝑝-cartesian
lift of 𝜙𝑞′; and

• whose 2-cells are given by quadruples 𝛼∶ 𝑎 ⇒ ̄𝑎, 𝛽∶ 𝑏 ⇒ ̄𝑏, 𝜖∶ 𝑒 ⇒ ̄𝑒, and
𝜆∶ ℓ ⇒ ̄ℓ in which 𝜖 and 𝜆 are, respectively, lifts of 𝛽𝑝′ and 𝛼𝑞′ and so that
𝜙 ⋅ 𝑘𝛼 = 𝛽𝑘′ ⋅ 𝜙 and ̄𝜒 ⋅ ℎ𝜆 = 𝜖ℎ′ ⋅ 𝜒.

These definitions are arranged so that there is an evident forgetful 2-functor
𝑈∶ 𝔥𝒦 → 𝔥𝒦 that has the strong surjectivity property introduced in Defini-
tion 3.6.1.

Lemma 5.7.12. The forgetful 2-functor 𝑈∶ 𝔥𝒦 → 𝔥𝒦 is a smothering 2-
functor.
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Proof Proposition 5.2.4 tells us that 𝔥𝒦 → 𝔥𝒦 is surjective on objects. To
see that it is full on 1-cells, first form the pullbacks of the cospans in (5.7.9), then
define 𝜒 to be any 𝑝-cartesian lift of 𝜙𝑞′ with codomain 𝑒ℎ′. By construction, the
domain of 𝜒 lies strictly over 𝑘𝑎𝑞′ and so this functor factors uniquely through
the pullback leg ℎ defining the map ℓ of (5.7.11).

To prove that 𝔥𝒦 → 𝔥𝒦 is full on 2-cells, consider a parallel pair of 1-cells
in 𝔥𝒦 . For one of these we use the notation of (5.7.11) and for the other we
denote the diagonal functors by ̄𝑎, ̄𝑏, ̄𝑒, and ̄ℓ and denote the 2-cells by ̄𝜙 and
̄𝜒; the requirement that these 1-cells be parallel implies that the pullback faces

are necessarily the same. Now consider a triple 𝛼∶ 𝑎 ⇒ ̄𝑎, 𝛽∶ 𝑏 ⇒ ̄𝑏, and
𝜖∶ 𝑒 ⇒ ̄𝑒 satisfying the conditions of Definition 5.7.8. Our task is to define a
fourth 2-cell 𝜆∶ ℓ ⇒ ̄ℓ so that 𝑞𝜆 = 𝛼𝑞′ and ̄𝜒 ⋅ ℎ𝜆 = 𝜖ℎ′ ⋅ 𝜒.

To achieve this, we first define a 2-cell 𝛾∶ ℎℓ ⇒ ℎ ̄ℓ using the induction
property of the 𝑝-cartesian cell ̄𝜒∶ ℎ ̄ℓ ⇒ ̄𝑒ℎ′ applied to the composite 2-cell
𝜖ℎ′ ⋅𝜒∶ ℎℓ ⇒ ̄𝑒ℎ′ and the factorization 𝑝𝜖ℎ′ ⋅𝑝𝜒 = ̄𝜙𝑞′ ⋅ 𝑘𝛼𝑞′. By construction
𝑝𝛾 = 𝑘𝛼𝑞′ so the pair 𝛼𝑞′ and 𝛾 induces a 2-cell 𝜆∶ ℓ ⇒ ̄ℓ so that 𝑞𝜆 = 𝛼𝑞′

and ℎ𝜆 = 𝛾. The quadruple (𝛼, 𝛽, 𝜖, 𝜆) now defines the required 2-cell in 𝔥𝒦 .
Finally, for 2-cell conservativity, suppose 𝛼, 𝛽, and 𝜖 as above are isomor-

phisms. By the conservativity property for pullbacks described in Proposition
3.3.1, to show that 𝜆 is an isomorphism, it suffices to prove that 𝑞𝜆 = 𝛼𝑞′ is,
which we know already, and that ℎ𝜆 = 𝛾 is invertible. But 𝛾 was constructed
as a factorization 𝜖ℎ′ ⋅ 𝜒 = ̄𝜒 ⋅ 𝛾 with 𝑝𝛾 = 𝑘𝛼𝑞′. Since 𝜖 is an isomorphism,
𝜖ℎ′ ⋅ 𝜒 is 𝑝-cartesian, so Lemma 5.1.12 proves that 𝛾 is an isomorphism.

We cannot directly define a pullback 2-functor 𝔥𝒦 → 𝔥𝒦 in the homotopy
2-category because the 2-categorical universal property of pullbacks in 𝔥𝒦 is
weak and not strict (see Proposition 3.3.1). Instead, the zigzag of 2-functors

𝔥𝒦 𝑈 𝔥𝒦 ev⊤ 𝔥𝒦,

in which the backwards map is a smothering 2-functor and the forwards map
evaluates at the pullback vertex, defines a reasonable replacement.

Proposition 5.7.13. Let 𝑡∶ 1 → 𝐴 define a terminal element of 𝐴 and let
𝑞∶ 𝐹 ↠ 𝐴 be a cartesian fibration. Then evaluation at 𝑡 admits a right adjoint

Fun𝐴(𝐴, 𝐹) Fun(1, 𝐹𝑡)
ev𝑡

⊥
𝑦

that defines an adjoint equivalence of Kan complexes in the case where 𝑞 is a
discrete cartesian fibration.
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Proof The desired adjunction is obtained by transferring the adjunction of
Lemma 5.7.7 through the sequence of 2-functors

𝔥𝒬𝒞𝑎𝑡 𝔥𝒬𝒞𝑎𝑡

𝔥𝒦op
⫽𝐴 𝔥𝒬𝒞𝑎𝑡

ev⊤

𝑈

−∨𝑞∗

using Lemma 3.6.7 to lift along the middle smothering 2-functor.
For a fixed cartesian fibration 𝑞∶ 𝐹 ↠ 𝐴 in an ∞-cosmos 𝒦, there is a

2-functor − ∨ 𝑞∗∶ 𝔥𝒦
op
⫽𝐴 → 𝔥𝒬𝒞𝑎𝑡 that carries a 1-cell (5.7.5) to

𝟙 Fun(𝑌 , 𝐴) Fun(𝑌 , 𝐹)

𝟙 Fun(𝑋, 𝐴) Fun(𝑋, 𝐹)

𝑔

⇑𝜍 𝑠∗

𝑞∗

𝑠∗

𝑓 𝑞∗

and a 2-cell 𝜃∶ 𝑠 ⇒ 𝑠′ to the 2-cell that acts via pre-whiskering with 𝜃 in its
two nonidentity components. By Corollary 5.3.5, the functors 𝑞∗ are cartesian
fibration of quasi-categories.

We now apply the 2-functor − ∨ 𝑞∗∶ 𝔥𝒦
op
⫽𝐴 → 𝔥𝒬𝒞𝑎𝑡 to the adjunction of

Lemma 5.7.7 to obtain an adjunction in 𝔥𝒬𝒞𝑎𝑡 and then use the smothering
2-functor of Lemma 5.7.12 and Lemma 3.6.7 to lift this to an adjunction in
𝔥𝒬𝒞𝑎𝑡 . As elaborated in Exercise 3.6.iii, the lifted adjunction in 𝔥𝒬𝒞𝑎𝑡 can
be constructed using any lifts of the objects, 1-cells, and either the unit or counit
of the adjunction in 𝔥𝒬𝒞𝑎𝑡 .

In particular, we may take the left and right adjoints of the lifted adjunction
in 𝔥𝒬𝒞𝑎𝑡 to be any lifts of the images in 𝔥𝒬𝒞𝑎𝑡 of the right and left adjoints
of the adjunction ! ⊣ 𝑡 in 𝔥𝒦⫽𝐴:

Fun𝐴(𝐴, 𝐹) Fun(𝐴, 𝐹)

Fun(1, 𝐹𝑡) Fun(1, 𝐹)

𝟙 Fun(𝐴, 𝐴)

𝟙 Fun(1, 𝐴)

=ev𝑡
⌟

𝑞∗
𝑡∗

⌟
𝑞∗

=

id𝐴
𝑡∗

𝑡
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Fun(1, 𝐹𝑡) Fun(1, 𝐹)

Fun𝐴(𝐴, 𝐹) Fun(𝐴, 𝐹)

𝟙 Fun(1, 𝐴)

𝟙 Fun(𝐴, 𝐴)

⇑𝜒
𝑦

⌟
𝑞∗

!∗

⌟
𝑞∗

⇑𝜂

𝑡
!∗

id𝐴

(5.7.14)

which shows that the left adjoint is the desired functor. Since the counit of ! ⊣ 𝑡
is an identity, the counit of the lifted adjunction may also be taken to be an
identity. Finally, we compose with the forgetful 2-functor 𝔥𝒬𝒞𝑎𝑡 → 𝔥𝒬𝒞𝑎𝑡
that evaluates at the pullback vertex to project our adjunction in 𝔥𝒬𝒞𝑎𝑡 to the
desired adjunction in 𝔥𝒬𝒞𝑎𝑡.

When 𝑞∶ 𝐹 ↠ 𝐴 is a discrete isofibration, both Fun(1, 𝐹𝑡) and Fun𝐴(𝐴, 𝐹)
are Kan complexes. Any adjunction between Kan complexes is automatically
an adjoint equivalence, since it follows from Corollary 1.1.22 that any natural
transformation whose codomain is a Kan complex is a natural isomorphism.

A special case of Proposition 5.7.13 proves the dependent Yoneda lemma.

Proof of Theorem 5.7.2 Recall from Corollary 3.5.10 that for any element
𝑏∶ 1 → 𝐵, its identity arrow ⌜id𝑏⌝∶ 1 → Hom𝐵(𝐵, 𝑏) defines a terminal
element. So the dependent Yoneda lemma follows immediately as a special case
of Proposition 5.7.13.

Using Theorem 5.7.2, we now prove the discrete Yoneda lemma.

Proof of Theorem 5.7.1 Let 𝑝∶ 𝐸 ↠ 𝐵 be a discrete cartesian fibration and
consider an element 𝑏∶ 1 → 𝐵. By Lemma 5.5.5, the pullback

𝐹 𝐸

Hom𝐵(𝐵, 𝑏) 𝐵

𝑞
⌟

𝑝

𝑝0

(5.7.15)

defines a discrete cartesian fibration over Hom𝐵(𝐵, 𝑏). By pullback composition,
the fibers 𝐹⌜id𝑏⌝ ≅ 𝐸𝑏 are isomorphic and similarly the space of sections of 𝑞 is
isomorphic to the functor space Fun𝐵(𝑝0, 𝑝). So in this context, the equivalence
of Theorem 5.7.2 specializes to the desired equivalence of Kan complexes:

FunHom𝐵(𝐵,𝑏)(Hom𝐵(𝐵, 𝑏), 𝐹) Fun(1, 𝐹 ⌜id𝑏⌝)

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸

𝑝
𝐵) Fun(1, 𝐸𝑏)

≅

∼

ev⌜id𝑏⌝

≅

∼
ev⌜id𝑏⌝
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Specializing to the case of two right representable discrete cartesian fibrations,
we conclude that the Kan complex of natural transformations is equivalent to
the underlying space of the corresponding mapping space.

Corollary 5.7.16. For any elements 𝑥, 𝑦∶ 1 → 𝐴 in an ∞-category 𝐴, evalu-
ation at the identity of 𝑥 induces an equivalence of Kan complexes

Fun𝐴(Hom𝐴(𝐴, 𝑥),Hom𝐴(𝐴, 𝑦)) Fun(1,Hom𝐴(𝑥, 𝑦))∼

ev⌜id𝑥⌝

It remains to prove the general case of Theorem 5.7.3. When 𝑝∶ 𝐸 ↠ 𝐵 is a
cartesian fibration the pullback (5.7.15) defines a cartesian fibration 𝑞∶ 𝐹 ↠
Hom𝐵(𝐵, 𝑏) and Proposition 5.7.13 provides an adjunction

FunHom𝐵(𝐵,𝑏)(Hom𝐵(𝐵, 𝑏), 𝐹) Fun(1, 𝐹 ⌜id𝑏⌝)

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸

𝑝
𝐵) Fun(1, 𝐸𝑏)

≅

ev⌜id𝑏⌝

⊥

≅𝑦

ev⌜id𝑏⌝

⊥
𝑦

(5.7.17)

The next step is to observe that the right adjoint lands in the sub-quasi-category
of cartesian functors from 𝑝0 to 𝑝.

Lemma 5.7.18. For any cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 and element 𝑏∶ 1 → 𝐵,
for each vertex 𝑒 in Fun(1, 𝐸𝑏) ≅ Fun𝐵(𝑏, 𝑝) below-left

Fun𝐵(𝑏, 𝑝) Fun𝐵(𝑝0, 𝑝)
𝑦

1 𝐸 Hom𝐵(𝐵, 𝑏) 𝐸

𝐵 𝐵
𝑏

𝑒

𝑝 ↦ 𝑝0

𝑦𝑒

𝑝

the functor 𝑦𝑒 in Fun𝐵(𝑝0, 𝑝) above-right defines a cartesian functor from 𝑝0
to 𝑝.

Proof In the proof of Proposition 5.7.13, the right adjoint is defined by the
diagram (5.7.14) as a factorization of the domain component of the 𝑞∗-cartesian
lift of the unit 𝜂 of the adjunction witnessing the terminal element. Here 𝑞 is
a pullback (5.7.15) of the cartesian fibration 𝑝, and so by Proposition 5.2.4, 𝑦
can equally be described as a factorization of the domain component of the
𝑝∗-cartesian lift of 𝑝0𝜂, which equals the right comma cone 𝜙∶ 𝑝0 ⇒ 𝑏!. In
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summary, the functor 𝑦 is defined by:

Fun𝐵(𝑏, 𝑝) Fun(1, 𝐸)

Fun𝐵(𝑝0, 𝑝) Fun(Hom𝐵(𝐵, 𝑏), 𝐸)

𝟙 Fun(1, 𝐵)

𝟙 Fun(Hom𝐵(𝐵, 𝑏), 𝐵)

⇑𝜒
𝑦

⌟
𝑝∗

!∗

⌟
𝑝∗

⇑𝜙

𝑏
!∗

𝑝0

Thus, by Lemma 5.6.5, we see that 𝑦𝑒 is the domain component of a 𝑝-cartesian
lift 𝜒𝑒 of the natural transformation 𝜙∶ 𝑝0 ⇒ 𝑝𝑒!

Hom𝐵(𝐵, 𝑏) 1 𝐸 Hom𝐵(𝐵, 𝑏) 𝐸

𝐵 𝐵

!

⇑𝜙

𝑝0

𝑏

𝑒

𝑝
=

𝑒!

𝑦𝑒

⇑𝜒𝑒

𝑝0 𝑝

Since 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is discrete, every natural transformation 𝜓 with
codomain Hom𝐵(𝐵, 𝑏) is 𝑝0-cartesian, so to prove that 𝑦𝑒 defines a cartesian
functor, we must show that 𝑦𝑒𝜓 is 𝑝-cartesian. To that end, consider the hori-
zontal composite:

𝑋 Hom𝐵(𝐵, 𝑏) 𝐸
𝑔

𝑓

⇑𝜓

𝑒!

𝑦𝑒

⇑𝜒

By naturality of whiskering, 𝜒𝑔 ⋅ 𝑦𝑒𝜓 = 𝑒!𝜓 ⋅ 𝜒𝑓, and since 1 is the terminal
∞-category, 𝑒!𝜓 is an identity. Thus, by left cancelation of 𝑝-cartesian transfor-
mations (see Lemma 5.1.5), 𝑦𝑒𝜓 is 𝑝-cartesian.

To complete the proof of Theorem 5.7.3, it remains to argue that this restricted
adjunction defines an adjoint equivalence.

Proof of Theorem 5.7.3 By Lemma 5.7.18, the adjunction (5.7.17) restricts to
define an adjunction

Funcart
𝐵 (𝑝0, 𝑝) Fun(1, 𝐸𝑏)

ev⌜id𝑏⌝

⊥
𝑦

Since the counit of the original adjunction ! ⊣ ⌜id𝑏⌝ is an isomorphism and
smothering 2-functors are conservative on 2-cells, the counit of the adjunction
of Proposition 5.7.13 and hence also of the restricted adjunction is an isomorph-
ism. As in the proof of Theorem 5.7.1, we prove that ev⌜id𝑏⌝ is an equivalence
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by demonstrating that the unit of the restricted adjunction is also invertible.
By Corollary 1.1.22, it suffices to verify this elementwise, proving that the
component of the unit indexed by a cartesian functor

Hom𝐵(𝐵, 𝑏) 𝐸

𝐵
𝑝0

ℎ

𝑝

is an isomorphism.
Unpacking the proof of Proposition 5.7.13, the unit ̂𝜂 of ev⌜id𝑏⌝ ⊣ 𝑦 is defined

to be a factorization

Fun𝐵(𝑝0, 𝑝) Fun(Hom𝐵(𝐵, 𝑏), 𝐸) Fun(1, 𝐸)

Fun(Hom𝐵(𝐵, 𝑏), 𝐸)

Fun𝐵(𝑝0, 𝑝) Fun𝐵(𝑏, 𝑝) Fun(1, 𝐸)

Fun𝐵(𝑝0, 𝑝) Fun(Hom𝐵(𝐵, 𝑏), 𝐸)

⌜id𝑏⌝
∗

=
!∗

⇑Fun(𝜂,𝐸)

ev⌜id𝑏⌝

𝑦 ⇑𝜒 !∗⇑ ̂𝜂

of the restriction of Fun(𝜂, 𝐸) through the 𝑝∗-cartesian lift 𝜒, where 𝜂 is the unit
of the adjunction ! ⊣ ⌜id𝑏⌝. The component of the restricted 2-cell Fun(𝜂, 𝐸) at
the cartesian functor ℎ is ℎ𝜂. Since 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is a discrete cartesian
fibration, any 2-cell, such as 𝜂, which has codomain Hom𝐵(𝐵, 𝑏) is 𝑝0-cartesian,
and since ℎ is a cartesian functor, we then see that ℎ𝜂 is 𝑝-cartesian.

By Lemma 5.6.6, the components of the 𝑝∗-cartesian cell 𝜒 define 𝑝-cartesian
natural transformations in the ambient ∞-cosmos. As ̂𝜂 is a natural transforma-
tion with codomain Fun𝐵(𝑝0, 𝑝) its components project along 𝑝 to the identity.
In this way, we see that ̂𝜂ℎ is a factorization of the 𝑝-cartesian transformation
ℎ𝜂 through a 𝑝-cartesian lift of 𝜙 over an identity, and Lemma 5.1.12 proves
that ̂𝜂ℎ is an isomorphism, as desired.

In ∞-cosmology we have access to the following trick: any result, such as
Theorem 5.7.3, that is proven in a generic ∞-cosmos can then be applied to a
sliced ∞-cosmos. This can often be used to extend a result about elements of an
∞-category to generalized elements of that ∞-category (see Remark 4.3.12 for
instance). By this technique, Theorem 5.7.3 implies the following generalization,
replacing the element 𝑏∶ 1 → 𝐵 by a generalized element 𝑏∶ 𝑋 → 𝐵.

Corollary 5.7.19 (generalized Yoneda lemma). For any cartesian fibration
𝑝∶ 𝐸 ↠ 𝐵 and functor 𝑏∶ 𝑋 → 𝐵, restricting along the canonical induced
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functor ⌜id𝑏⌝ defines an equivalence of quasi-categories:

𝑋 Hom𝐵(𝐵, 𝑏) Funcart
𝐵 (Hom𝐵(𝐵, 𝑏)

𝑝0 𝐵, 𝐸
𝑝
𝐵)

𝐵 Fun𝐵(𝑋
𝑏
𝐵, 𝐸

𝑝
𝐵)

𝑏

⌜id𝑏⌝

𝑝0

∼ ev⌜id𝑏⌝⇝

Corollary 5.7.19 can be interpreted as defining a “left biadjoint” to the inclu-
sion of the subcategory of cartesian fibrations and cartesian functors, reflecting
an arbitrary functor 𝑏∶ 𝑋 → 𝐵 into a cartesian fibration 𝑝0∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵.

Proof Given the stated data in an ∞-cosmos 𝒦, Theorem 5.7.3 applies in 𝒦/𝑋
to the cartesian fibration 𝑝×𝑋∶ 𝐸 ×𝑋 ↠ 𝐵×𝑋 and the element (𝑏, 𝑋)∶ 𝑋 →
𝐵 × 𝑋 to define an equivalence

Funcart
𝐵×𝑋((𝑝1, 𝑝0), 𝑝 × 𝑋) Fun𝐵×𝑋((𝑏, 𝑋), 𝑝 × 𝑋)

Funcart
𝐵 (Hom𝐵(𝐵, 𝑏)

𝑝0 𝐵, 𝐸
𝑝
𝐵) Fun𝐵(𝑋

𝑏
𝐵, 𝐸

𝑝
𝐵)

∼

ev⌜id(𝑏,𝑋)⌝

≅ ≅

∼

ev⌜id𝑏⌝

which transposes under the simplicial adjunction

𝒦/𝑋 𝒦
𝑈

⊥
−×𝑋

to the equivalence of the statement.

Despite its name, the generalized Yoneda lemma is not the most general form
of the Yoneda lemma we require. A “two-sided” version of this result appears in
Theorem 7.3.2 and is proven with the same trick, by applying Corollary 5.7.19
in a more exotic ∞-cosmos: namely, of cocartesian fibrations with a fixed base.
For this reason, we invite the reader to accompany us at an interlude where we
derive further examples of ∞-cosmoi.

Exercises
Exercise 5.7.i. Given an element 𝑓∶ 1 → Hom𝐴(𝑥, 𝑦) in the mapping space
between a pair of elements in an ∞-category 𝐴, use the explicit description of
the inverse equivalence to the map of Corollary 5.7.16 to construct a map

Hom𝐴(𝐴, 𝑥) Hom𝐴(𝐴, 𝑦)

𝐴
𝑝0

𝑓∗

𝑝0
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which represents the “natural transformation” defined by postcomposing with
𝑓.17

17 Hint: this construction is a special case of the construction given in the first half of the proof of
Lemma 5.7.18.
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6

Exotic ∞-Cosmoi

Morally an ∞-cosmos can be described as “an (∞, 2)-category with (∞, 2)-
categorical limits,” but the precise axiomatization given in Definition 1.2.1
employs a particularly strict interpretation of this phrase, taking advantage of
the strictness that is available in so many examples to simplify proofs. We define
∞-cosmoi to be quasi-categorically enriched categories – selecting the strictest
model of (∞, 2)-categories in common use (see [79, 0.0.3-4]) – and we construct
(∞, 2)-categorical limits by certain homotopically well-behaved simplicially
enriched limits.

Our aim in this chapter is to develop further examples of ∞-cosmoi, which
immediately allows us to apply all of the theorems proven in Part I in more
exotic contexts, where the ∞-categories of an ∞-cosmos should not be thought
of as “(∞, 1)-categories in some model.” Some of these examples, such as
the ∞-cosmos of isofibrations introduced in §6.1, can be established easily by
directly verifying the axioms of Definition 1.2.1.

A larger family of examples, appearing in §6.3, arise as subcategories of
previously defined ∞-cosmoi. For instance, in Proposition 6.3.14 we prove that
the ∞-cosmos of isofibrations 𝒦 in any ∞-cosmos 𝒦 has a sub ∞-cosmos
𝒞𝑎𝑟𝑡(𝒦) of cartesian fibrations and cartesian functors between them. This result,
and many others of a similar flavor, follows from a common paradigm appearing
as Proposition 6.3.3, which states that a replete subcategory (see Definition
6.3.1) of an∞-cosmos inherits an∞-cosmos structure, provided that it is closed
under flexible weighted limits.

This leads us to the second main theme of this chapter: an elaboration of
the (∞, 2)-categorical limits present in any ∞-cosmos. In §6.2, we discover
that the cosmological limit notions enumerated in axiom 1.2.1(i) generate a
much larger class of simplicially enriched limits that exist in any ∞-cosmos,
which are precisely those simplicially enriched limits that deserve to be called

237
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“(∞, 2)-categorical limits.” We dub these simplicially enriched limits as flexible
weighted limits, borrowing a term from 2-category theory (see Digression 6.2.7).

To explain the intuition, we make use of the formalism of weighted limits from
enriched category theory (see §A.6). An ordinary limit defines a universal cone
over a given diagram, each cone leg being an arrow whose source is the limit
object. A weighted limit similarly defines a universal cone over a given diagram,
but now that cone might take a more exotic shape. In the simplicially enriched
context, each cone leg may take the shape of an arbitrary simplicial set, with the
cone-commutativity conditions specified by a simplicial-set-valued simplicial
functor, referred to as the weight. For example, an ordinary cone over a cospan
defines a commutative square, but the cones for a different choice of weight
are squares inhabited by a 1-simplex. In this way, the comma ∞-categories of
Definition 3.4.1 arise as weighted limits of cospans (see Example A.6.14).

Intuitively, the flexible weighted limits are those whose weights define cone
shapes that do not impose any strict commutativity conditions: Pullbacks are
not flexible weighted limits, while comma objects are. Flexible weighted limits
are invariant under pointwise equivalence between diagrams, while general
weighted limits need not be. These are the senses in which flexible weighted
limits correspond to (∞, 2)-categorical limit notions.

After establishing the homotopical properties of flexible weighted limits, we
also see that the cosmological limits notions, such as pullbacks of isofibrations,
are really flexible weighted limits in disguise. The requirement that certain
arrows in the diagram are isofibrations means that strictly commuting cones
correspond to pseudo-commutative cones, providing the required flexibility.

This chapter closes by illustrating a few sample applications of the general
∞-cosmology developed here. More applications follow in Part II, where we
use the ∞-cosmoi constructed here to develop the theory of two-sided fibrations
and modules.

6.1 The ∞-Cosmos of Isofibrations

Our first example of an “exotic ∞-cosmos” is a special case of a more general
result that is left as Exercise 6.1.iii. The walking arrow category 𝟚 is an inverse
Reedy category, where the domain of the nonidentity arrow is assigned degree
one and the codomain is assigned degree zero. This Reedy structure motivates
the definitions in the ∞-cosmos of isofibrations that we now introduce:

Proposition 6.1.1 (∞-cosmoi of isofibrations). For any ∞-cosmos 𝒦 there is
an ∞-cosmos 𝒦 whose
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(i) objects are isofibrations 𝑝∶ 𝐸 ↠ 𝐵 in 𝒦,
(ii) functor spaces, say from 𝑞∶ 𝐹 ↠ 𝐴 to 𝑝∶ 𝐸 ↠ 𝐵, are defined by

pullback

Fun(𝐹
𝑞
𝐴, 𝐸

𝑝
𝐵) Fun(𝐹, 𝐸)

Fun(𝐴, 𝐵) Fun(𝐹, 𝐵) ,

⌟
𝑝∗

𝑞∗

(iii) isofibrations from 𝑞 to 𝑝 are commutative squares

𝐹 𝐸
•

𝐴 𝐵

𝑞

𝑔

𝑝⌟

𝑓

in which the horizontals and the induced map from the initial vertex to
the pullback of the cospan are isofibrations in 𝒦,

(iv) limits are defined pointwise in 𝒦,
(v) and in which a map

𝐹 𝐸

𝐴 𝐵

𝑞
∼𝑔

𝑝

∼
𝑓

is an equivalence in the ∞-cosmos 𝒦 if and only if 𝑔 and 𝑓 are equiva-
lences in 𝒦.

Relative to these definitions, the domain, codomain, and identity functors

𝒦 𝒦
dom

cod

id

are all cosmological.

Proof The diagram category 𝒦 inherits its simplicially enriched limits, de-
fined pointwise, from 𝒦. The functor spaces described in (ii) are the usual
ones for an enriched category of diagrams. This verifies 1.2.1(i). Note that the
definitions of functor spaces, limits, and isofibrations make each of the domain,
codomain, and identity functors cosmological.

For axiom 1.2.1(ii) note that the product and simplicial cotensor functors
carry pointwise isofibrations to isofibrations. The pullback of an isofibration as
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in (iii) along a commutative square from an isofibration 𝑟 to 𝑝 may be formed
in 𝒦. Our task is to show that the induced map 𝑡 is an isofibration and also that
the square from 𝑡 to 𝑟 is an isofibration in the sense of (iii):

𝐺 ×
𝐸
𝐹 𝐹

𝐺 𝐸
• •

𝐶 ×
𝐵
𝐴 𝐴

𝐶 𝐵

𝑡 𝑞

𝑧

𝑝
⌟ ⌟𝑟

(6.1.2)

The map 𝑡 factors as a pullback of 𝑧 followed by a pullback of 𝑟 as displayed
above, and is thus an isofibration, as claimed. This observation also verifies that
the square from 𝑡 to 𝑟 defines an isofibration. A similar argument verifies the
Leibniz stability of the isofibrations and that the limit of a tower of isofibrations
is an isofibration. This proves that 𝒦 defines an ∞-cosmos in such a way so
that the domain, codomain, and identity functors are cosmological.

Finally, by Proposition 3.3.4, a pair of equivalences as in (v) induces an
equivalence between the functor spaces defined in (ii). The converse, that an
equivalence in𝒦 defines a pair of equivalences in𝒦, follows from Lemma 1.3.2
and the fact that domain and codomain projection functors are cosmological.

In close analogy with Proposition 3.6.2, we have a smothering 2-functor
that relates the homotopy 2-category of 𝒦 to the 2-category of isofibrations,
commutative squares, and parallel natural transformations in the homotopy
2-category of 𝒦.

Lemma 6.1.3. There is an identity on objects and 1-cells smothering 2-functor
𝔥(𝒦 ) → (𝔥𝒦) whose codomain is the 2-category whose

• objects are isofibrations in 𝒦,
• 1-cells are commutative squares between such, and
• 2-cells are pairs of 2-cells in 𝔥𝒦

𝐹 𝐸

𝐴 𝐵

𝑔

𝑔′
𝑞

⇓𝛼

𝑝
𝑓

𝑓′
⇓𝛽

so that 𝑝𝛼 = 𝛽𝑞.
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Proof Exercise 6.1.i.

Similarly, any ∞-cosmos admits an ∞-cosmos of trivial fibrations, which
can be defined as a full subcategory of the ∞-cosmos of isofibrations. The
following general result from abstract ∞-cosmology explains how it inherits its
∞-cosmos structure.

Lemma 6.1.4. Let 𝒦 be an ∞-cosmos and let ℒ ⊂ 𝒦 be a full subcategory.
Then ℒ inherits an ∞-cosmos structure from 𝒦 created from the inclusion
ℒ ↪ 𝒦 if and only if ℒ is closed in 𝒦 under the cosmological limit notions.

In practice, the full subcategories we consider have the property that any
object of 𝒦 that is equivalent to an object in ℒ in fact lies in ℒ – in other words,
these subcategories are replete in the sense of Definition 6.3.1. In the proof
below, we tacitly assume that ℒ is at least closed under isomorphism so that if
a limit of a diagram lies in ℒ then all of the limits of that diagram do, but this
assumption is only used for linguistic convenience and is inessential.

Proof As a full subcategory, ℒ inherits its quasi-categorical enrichment from
𝒦, and we define a map to be an isofibration inℒ if and only if it is an isofibration
in𝒦. Note this definition makes axiom 1.2.1(ii) follow immediately once that we
have shown that the limits required by 1.2.1(i) coincide with the corresponding
limits in𝒦. But this is exactly what is asserted by the hypothesis that ℒ is closed
in 𝒦 under the cosmological limit notions.

We have shown that a closed full subcategory inherits an ∞-cosmos structure
defined in such a way that the inclusion ℒ ↪ 𝒦 is a cosmological functor that
reflects isofibrations and cosmological limits. Clearly, this inclusion reflects
representably defined equivalences, since ℒ is a full subcategory of 𝒦. But by
Lemma 1.3.2 the cosmological functor ℒ ↪ 𝒦 preserves them as well, which
tells us that equivalences in ℒ are created from 𝒦 along with the isofibrations
and cosmological limits.

With this result in hand, further ∞-cosmoi are easy to establish.

Proposition 6.1.5 (∞-cosmoi of trivial fibrations). Let 𝒦 be an ∞-cosmos.

(i) For any ∞-category 𝐵 in 𝒦, the full subcategory 𝒦≃
/𝐵 ↪ 𝒦/𝐵 spanned

by the trivial fibrations with codomain 𝐵 defines an ∞-cosmos, with
limits, isofibrations, equivalences, and trivial fibrations created by the
inclusion.

(ii) The full subcategory 𝒦

∼

↪ 𝒦 spanned by the trivial fibrations de-
fines an ∞-cosmos, with limits, isofibrations, equivalences, and trivial
fibrations created by the inclusion.
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Proof The details, which are similar to Propositions 1.2.22 and 6.1.1, are left
to Exercise 6.1.ii.

Note that the sliced∞-cosmoi𝒦≃
/𝐵 of trivial fibrations are weakly contractible

in the sense that the unique functor 𝒦≃
/𝐵

∼ 𝟙 to the terminal ∞-cosmos is a
cosmological biequivalence. In particular, each functor in𝒦≃

/𝐵 is an equivalence,
so this ∞-cosmos is more a curiosity than a structure of substantial interest.

As promised in §1.2, Lemma 6.1.4 allows us to generalize Proposition 1.2.12
to show that the discrete ∞-categories in any ∞-cosmos form an ∞-cosmos:

Proposition 6.1.6 (∞-cosmoi of discrete ∞-categories). The full subcategory
𝒦≃ ↪ 𝒦 spanned by the discrete ∞-categories in any ∞-cosmos inherits an
∞-cosmos structure created from the inclusion.

Proof Recall from Lemma 1.2.27 that an ∞-category 𝐸 in an ∞-cosmos 𝒦 is
discrete if and only if the map 𝐸𝕀 ↠ 𝐸𝟚 is a trivial fibration. This says that the
full subcategory 𝒦𝕀 ↪ 𝒦 of discrete ∞-categories is defined by the pullback

𝒦≃ 𝒦

∼

𝒦 𝒦

⌟

𝐼

along the cosmological functor 𝐼 that sends an ∞-category 𝐸 to the isofibration
𝐸𝕀 ↠ 𝐸𝟚. By Lemma 6.1.4, to show that 𝒦≃ admits an ∞-cosmos structure
inherited from 𝒦, we need only show that the discrete ∞-categories are closed
in 𝒦 under the limit constructions of 1.2.1(i). For the simplicial cotensors, for
instance, this follows easily from the defining universal property and the fact that
the Kan complexes form an exponential ideal in the category of simplicial sets.
A common argument can be given for each of the conical limits; for the sake of
concreteness, consider a tower of isofibrations between discrete ∞-categories
𝐸𝑛 and form the limit in 𝒦

𝐸 ≔ lim ( ⋯ 𝐸𝑛 𝐸𝑛−1 ⋯ 𝐸1 𝐸0 ) .

The cosmological functor 𝐼 carries this to a limit diagram in the ∞-cosmos 𝒦

𝐸𝕀

𝐸𝟚

≔ lim

⎛
⎜
⎜
⎜
⎝

⋯ 𝐸𝕀𝑛 𝐸𝕀𝑛−1 ⋯ 𝐸𝕀1 𝐸𝕀0

⋯ 𝐸𝟚𝑛 𝐸𝟚𝑛−1 ⋯ 𝐸𝟚1 𝐸𝟚0

∼ ∼ ∼ ∼

⎞
⎟
⎟
⎟
⎠

.

Since each 𝐸𝑛 is a discrete ∞-category, each of the objects in this diagram is
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a trivial fibration. Hence, by Proposition 6.1.5, the limit 𝐸𝕀 ↠ 𝐸𝟚 is a trivial
fibration as well. This proves that 𝐸 is discrete.

The proof of Proposition 6.1.1 reveals that it is tedious to manually verify the
limit axiom in the construction of new ∞-cosmoi; indeed, even in that relatively
basic example, we omitted some details. In the following sections, we develop
machinery that allows us to attack this problem more systematically.

Exercises
Exercise 6.1.i. Prove Lemma 6.1.3.

Exercise 6.1.ii. Prove Proposition 6.1.5 using Lemma 6.1.4.

Exercise 6.1.iii. Let 𝒦 be an ∞-cosmos and let ℐ be an inverse category
(see Definition C.1.16). Guided by Proposition C.1.23, prove that there is an
∞-cosmos 𝒦ℐ whose:

• objects are the fibrant diagrams of Definition C.1.19,
• isofibrations are the fibrant natural transformations of Definition C.1.19,
• functor spaces are the simplicial hom-spaces of Definition A.3.8,
• and in which the simplicial limits and equivalences are defined pointwise in
𝒦.

Use Proposition C.1.21 to demonstrate that limits of fibrant ℐ-indexed diagrams
exist in 𝒦 and moreover that the functor lim∶ 𝒦ℐ → 𝒦 is cosmological.

6.2 Flexible Weighted Limits

Our aim in this section is to introduce a special class of simplicial-set-valued
weights whose associated weighted limit notions are homotopically well-be-
haved. Borrowing a term from 2-category theory, we refer to these weights as
flexible. All of the cosmological limit notions can be understood as flexible
weighted limits. In fact, we prove that ∞-cosmoi admit all flexible weighted
limits because these can be built out of the axiomatized cosmological limits. In
§6.3, we make use of this observation to more efficiently verify the limit axiom
for newly constructed ∞-cosmoi.

Roughly speaking, the flexible weighted limits are the simplicially enriched
limits for which the simplices appearing in a cone are freely attached, relative
to the diagram shape. Ordinary “conical” cones involve commutative triangles
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formed by two of the cone legs and one arrow in the diagrams. This commu-
tativity is not permitted in the cone shapes proscribed by a flexible weight;
instead a diagram of 0-arrows might commute up to a higher cell. If the notion
of weighted limits in enriched category theory is unfamiliar, we suggest reading
§A.4–§A.6 before proceeding.

Definition 6.2.1 (flexible weights as projective cell complexes). For a simplicial
category 𝒜, consider the category 𝑠𝒮𝑒𝑡𝒜 of simplicial functors, called weights,
and simplicial natural transformations.

• For any 𝑛 ≥ 0 and object 𝑎 of 𝒜, a simplicial natural transformation of the
form

𝜕Δ[𝑛] × 𝒜(𝑎, −) ↪ Δ[𝑛] × 𝒜(𝑎, −)

is called a projective 𝑛-cell at 𝑎.
• A simplicial natural transformation 𝛼∶ 𝑉 ↪ 𝑊 that can be expressed as a

countable composite of pushouts of coproducts of projective cells is called
a projective cell complex.

• A weight 𝑊 is flexible just when ∅ ↪ 𝑊 is a projective cell complex.

A flexible weighted limit of a diagram 𝐹∶ 𝒜 → 𝒦 valued in an∞-cosmos is
a weighted limit, in the sense of §A.6, whose weight 𝑊∶ 𝒜 → 𝑠𝒮𝑒𝑡 is flexible.

Remark 6.2.2. Since any monomorphism of simplicial sets 𝑈 ↪ 𝑉 can be
decomposed as a countable composite of pushouts of coproducts of boundary
inclusions 𝜕Δ[𝑛] ↪ Δ[𝑛], the class of projective cell complexes may also be
described as the class of maps in 𝑠𝒮𝑒𝑡𝒜 that can be expressed as a countable
composite of pushouts of coproducts of monomorphisms of the form 𝑈 ×
𝒜(𝑎,−) ↪ 𝑉 × 𝒜(𝑎,−) for some 𝑈 ↪ 𝑉 ∈ 𝑠𝒮𝑒𝑡 and 𝑎 ∈ 𝒜.

Example 6.2.3 (cotensors are flexible). Recall from §A.4 that the cotensor
of an ∞-category 𝐴 in an ∞-cosmos 𝒦 with a simplicial set 𝑈 is the object
𝐴𝑈 ∈ 𝒦 characterized by the simplicial natural isomorphism

Fun(𝑋, 𝐴𝑈) ≅ Fun(𝑋, 𝐴)𝑈.

This object can be regarded as the limit of the diagram 𝐴∶ 𝟙 → 𝒦 weighted by
𝑈∶ 𝟙 → 𝑠𝒮𝑒𝑡. This weight is defined by a single generalized projective cell of
shape ∅ ↪ 𝑈 at the unique object of 𝟙.

Recall from §A.5 that the conical limit of a diagram 𝐹∶ 𝒜 → 𝒦 is the limit
weighted by the terminal weight ∗∶ 𝒜 → 𝑠𝒮𝑒𝑡.
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Example 6.2.4 (products are flexible). Conical products also define flexible
weighted limits, built by attaching one projective 0-cell at each object in the
indexing set.

Non-Example 6.2.5. Conical limits indexed by any 1-category that contains
nonidentity arrows are not flexible because the legs of a conical cone are required
to define a strictly commutative triangle over each 0-arrow in the diagram. The
specifications for a flexible weight allow us to freely attach 𝑛-arrows of any
dimension but do not provide a mechanism for demanding strict commutativity
of any diagram of 𝑛-arrows – only commutativity up to the presence of a higher
cell.

Example 6.2.6 (commas are flexible). In an ∞-cosmos 𝒦, the limit of the
diagram → 𝒦 given by the cospan

𝐶 𝐴 𝐵
𝑔 𝑓

weighted by the diagram → 𝑠𝒮𝑒𝑡 given by the cospan

𝟙 𝟚 𝟙1 0

is the comma ∞-category Hom𝐴(𝑓, 𝑔) (see Example A.6.14). Since this weight
can be built by attaching two projective 0-cells at the corners of the cospan
followed by a projective 1-cell at the terminal object of the cospan, comma
objects are flexible weighted limits.

Digression 6.2.7 (on flexible limits in 2-category theory). Simplicial limits
weighted by flexible weights should be thought of as analogous to flexible 2-
limits, i.e., category enriched limits built out of products, inserters, equifiers,
and retracts (splittings of idempotents) [18]. Because we define flexible weights
as countable composites of pushouts of coproducts – and not retracts thereof –
the flexible weighted limits of Definition 6.2.1 are more exactly analogous to the
PIE limits, built from just products, inserters, and equifiers. The PIE limits also
include iso-inserters, descent objects, comma objects, and Eilenberg–Moore
objects, as well as all pseudo, lax, and oplax limits. Many important 2-categories,
such as the 2-category of accessible categories and accessible functors, fail to
admit all 2-categorical limits, but do admit all PIE limits [83].

The weights for flexible 2-limits indexed by a 2-category 𝒜 are the cofibrant
objects in a model structure on the diagram 2-category𝒞𝑎𝑡𝒜 that is enriched over
the folk model structure on𝒞𝑎𝑡; the PIE weights are exactly the cellular cofibrant
objects (see Definition C.2.4). Correspondingly, the projective cell complexes
of Definition 6.2.1 are exactly the cellular cofibrations in the projective model
structure on 𝑠𝒮𝑒𝑡𝒜.
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This suggests that “PIE limits” would be a more precise name for the flexible
weighted limits of Definition 6.2.1, and we do not disagree. With apologies to
the Australian 2-category theory diaspora, we cannot resist adopting the more
evocative term.

Our interest in flexible weights stems from their homotopical properties, which
we now explore. In a 𝒱-model category ℳ, the fibrant objects are closed under
weighted limits whose weights are projective cofibrant (see Corollary C.3.15).
For instance, the fibrant objects in a 𝒞𝑎𝑡-enriched model structure are closed
under flexible weighted limits [72, 5.4] in the sense of [18]. As explained in §E.1,
∞-cosmoi are very closely related to categories of fibrant objects associated to
a model category that is enriched over the Joyal model structure on simplicial
sets. Thus, we may adapt the proofs of results from enriched model category
theory to obtain the following:

Proposition 6.2.8 (flexible weights are homotopical). Let 𝑊∶ 𝒜 → 𝑠𝒮𝑒𝑡 be a
flexible weight and let 𝒦 be an ∞-cosmos.

(i) The weighted limit lim𝑊 𝐹 of any diagram 𝐹∶ 𝒜 → 𝒦may be expressed
as a countable inverse limit of pullbacks of products of isofibrations

𝐹𝑎Δ[𝑛] 𝐹𝑎𝜕Δ[𝑛] (6.2.9)

one for each projective 𝑛-cell at 𝑎 in the given projective cell complex
presentation of 𝑊. Hence, ∞-cosmoi admit all flexible weighted limits
and cosmological functors preserve them.

(ii) If 𝑉 ↪ 𝑊 ∈ 𝑠𝒮𝑒𝑡𝒜 is a projective cell complex between flexible weights,
then for any diagram 𝐹∶ 𝒜 → 𝒦, the induced map between weighted
limits is an isofibration:

lim𝑊 𝐹 lim𝑉 𝐹

(iii) If 𝛼∶ 𝐹 ⇒ 𝐺 is a simplicial natural transformation between a pair
of diagrams 𝐹,𝐺∶ 𝒜 → 𝒦 whose components 𝛼𝑎∶ 𝐹𝑎 ∼ 𝐺𝑎 are
isofibration, trivial fibrations, equivalences, then the induced map

lim𝑊 𝐹 lim𝑊𝐺𝛼

is an isofibration, trivial fibration, or equivalence, respectively.

Proof To begin, observe that the axioms of Definition A.6.1 imply that the
limit of a diagram 𝐹 weighted by the weight 𝑈 × 𝒜(𝑎,−), for 𝑈 ∈ 𝑠𝒮𝑒𝑡 and
𝑎 ∈ 𝒜, is the cotensor 𝐹𝑎𝑈. Thus, the map of weighted limits induced by the
projective 𝑛-cell at 𝑎 is the isofibration (6.2.9). By definition, any flexible weight
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is built as a countable composite of pushouts of coproducts of these projective
cells and the weighted limit functor lim− 𝐹 carries each of these conical colimits
to the corresponding limit notion. So it follows that lim𝑊 𝐹 may be expressed
as a countable inverse limit of pullbacks of products of the maps (6.2.9). This
proves (i).

The same argument proves (ii). By definition, a relative cell complex 𝑉 ↪ 𝑊
is built as a countable composite of pushouts of coproducts of these projective
cells and the weighted limit functor lim− 𝐹 carries each of these conical colimits
to the corresponding limit notion. So it follows that lim𝑊 𝐹 is the limit of a
countable tower of isofibrations whose base is lim𝑉 𝐹, where each of these
isofibrations is the pullback of products of the maps (6.2.9) appearing in the
projective cell complex decomposition of 𝑉 ↪ 𝑊. As products, pullbacks, and
limits of towers of isofibrations are isofibrations, (ii) follows.

For (iii), suppose first that 𝛼 is a componentwise isofibration. Then the simpli-
cial natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 defines a simplicial functor 𝐴∶ 𝒜 → 𝒦
valued in the∞-cosmos of isofibrations of Proposition 6.1.1. By (i), this diagram
admits a 𝑊-weighted limit lim𝑊 𝐴, which is then necessarily an isofibration.
Since the domain and codomain functors dom, cod∶ 𝒦 → 𝒦 are cosmologi-
cal, it is clear that the isofibration lim𝑊 𝐴 coincides with the induced map on
weighted limits 𝛼∶ lim𝑊 𝐹 ↠ lim𝑊𝐺.

If 𝛼 is a componentwise trivial fibration, then the above diagram and thus
its 𝑊-weighted limit lies in the sub ∞-cosmos 𝒦

∼

↪ 𝒦 of trivial fibrations
established in Proposition 6.1.5. By the analogous argument, the induced map
𝛼∶ lim𝑊 𝐹 ∼ lim𝑊𝐺 is a trivial fibration in this case. The final statement for
equivalences now follows from the first two statements by Ken Brown’s Lemma
C.1.10.

Proposition 6.2.8(i) proves that the flexible weighted limit of any diagram in
an ∞-cosmos can be constructed out of the cosmological limits, i.e., the limits
of diagrams of isofibrations axiomatized in 1.2.1(i). Over a series of lemmas,
we describe a converse of sorts, constructing each of the cosmological limits as
a flexible weighted limit. It follows that any quasi-categorically enriched cate-
gory equipped with a class of representably defined isofibrations that possesses
flexible weighted limits admits all of the simplicial limits of 1.2.1(i).

To start, simplicial cotensors are flexible weighted limits, as discussed in
Example 6.2.3. This leaves only the conical limits: products, pullbacks of isofi-
brations, and inverse limits of towers of isofibrations. Example 6.2.4 notes that
the weights for products are flexible. However, for the reasons discussed in 6.2.5,
the weights for conical pullbacks or limits of towers of isofibrations are not
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flexible because the definition of a cone over either diagram shape imposes
composition relations on 0-arrows.

Our strategy is to modify the weights for pullbacks and for limits of countable
towers so that each composition equation involved in defining cones over such
diagrams is replaced by the insertion of an invertible arrow one dimension up,
where we must also take care to define this invertibility without specifying any
equations between arrows in the next dimension. We have a device for specifying
just this sort of isomorphism: recall the homotopy coherent isomorphism 𝕀 from
Exercise 1.1.v(i). A diagram 𝕀 → Fun(𝐴, 𝐵) specifies a homotopy coherent
isomorphism between a pair of 0-arrows 𝑓 and 𝑔 from 𝐴 to 𝐵, given by:

• a pair of 1-arrows 𝛼∶ 𝑓 → 𝑔 and 𝛽∶ 𝑔 → 𝑓,
• a pair of 2-arrows

𝑔 𝑓

𝑓 𝑓 𝑔 𝑔 ,

𝛽
Φ

𝛼
Ψ

𝛼 𝛽

• a pair of 3-arrows whose outer faces are Φ and Ψ and whose inner faces are
degenerate,

• a pair of 4-simplices whose outer faces are these 3-simplices and whose
inner faces are degenerate, and so on.

We now introduce the weight for pullback diagrams whose cone shapes are
given by squares inhabited by a homotopy coherent isomorphism.

Definition 6.2.10 (iso-commas). The iso-comma object 𝐶 ⨰
𝐴
𝐵 of a cospan

𝐶 𝐴 𝐵
𝑔 𝑓

in a simplicially enriched and cotensored category is the limit weighted by a
weight 𝑊⨰∶ → 𝑠𝒮𝑒𝑡 defined by the cospan

𝟙 𝕀 𝟙1 0

Under the simplification of Remark A.6.11, the formula for the weighted limit
reduces to the equalizer of the pair of maps

𝐴𝕀

𝐶 × 𝐴𝕀 × 𝐵 𝐴 × 𝐴
𝐶 × 𝐵

(𝑞1,𝑞0)𝜋

𝜋 𝑔×𝑓

where the maps (𝑞1, 𝑞0)∶ 𝐴𝕀 → 𝐴 × 𝐴 are defined by restricting along the
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endpoint inclusion 𝟙 + 𝟙 = 𝜕𝕀 ↪ 𝕀. In an ∞-cosmos, this map is an isofibration
and the equalizer defining the iso-comma object is computed by the pullback

𝐶 ⨰
𝐴
𝐵 𝐴𝕀

𝐶 × 𝐵 𝐴 × 𝐴

(𝑞1,𝑞0)
⌟

(𝑞1,𝑞0)

𝑔×𝑓

(6.2.11)

Lemma 6.2.12. Iso-comma objects are flexible weighted limits and in particular
exist in any ∞-cosmos.

Proof Writing 𝑏 → 𝑎 ← 𝑐 for the objects in the cospan category , the weight
𝑊⨰ is constructed by the pushout

𝜕𝕀 × (𝑎, −) (𝑏, −) ⊔ (𝑐, −)

𝕀 × (𝑎, −) 𝑊⨰
⌜

where the attaching map picks out the two arrows in the cospan. As a projective
cell complex,𝑊⨰ is built from a projective 0-cell at 𝑏, a projective 0-cell at 𝑐, and
two projective 𝑘-cells at 𝑎 for each 𝑘 > 0, corresponding to the nondegenerate
simplices of 𝕀. As described by Remark 6.2.2, these may be attached all at once.
In this way, we see that 𝑊⨰ is a flexible weight, so Proposition 6.2.8(i) tells us
that iso-comma objects exist in any ∞-cosmos, a fact that is also evident from
the pullback (6.2.11).

Remark 6.2.13. In the homotopy 2-category of an ∞-cosmos, there is a canon-
ical invertible 2-cell defining the iso-comma cone:

𝐶 ⨰
𝐴
𝐵

𝐶 𝐵

𝐴

𝑞1 𝑞0

𝜙
≅

𝑔 𝑓

that has a weak universal property analogous to that of the comma cone presented
in Proposition 3.4.6 (see [110, §3]). The proof makes use of the fact that 𝐴𝕀 is
the weak 𝕀-cotensor in the homotopy 2-category [108, 3.3.13].

Our notation for iso-commas is deliberately similar to the usual notation for
pullbacks. In an ∞-cosmos, iso-commas can be used to compute “homotopy
pullbacks” of diagrams in which neither map is an isofibration. When at least
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one map of the cospan is an isofibration, the iso-comma is equivalent to the
conical pullback.

Lemma 6.2.14 (iso-commas and pullbacks). For any cospan in an ∞-cosmos
involving at least one isofibration, the pullback and the iso-comma are equivalent.
More precisely, given a pullback square as below-left and an iso-comma square
as below-right

𝑃 𝐵 𝐶 ⨰
𝐴
𝐵 𝐵

𝐶 𝐴 𝐶 𝐴

𝑐

𝑏

⌟
𝑓 𝑞1 𝜙≅

𝑞0

𝑓

𝑔 𝑔

𝑃 ≃ 𝐶 ⨰
𝐴
𝐵 over 𝐶 and up to isomorphism over 𝐵.

Proof Applying Lemma 1.2.19 to the functor 𝑏∶ 𝑃 → 𝐵, we can replace the
span (𝑐, 𝑏)∶ 𝑃 → 𝐶 × 𝐵 by a span (𝑐𝑞, 𝑝)∶ 𝑃𝑏 ↠ 𝐶 × 𝐵 whose legs are both
isofibrations that is related via an equivalence 𝑠∶ 𝑃 ∼ 𝑃𝑏 that lies over 𝐶 on
the nose and over 𝐵 up to isomorphism. We claim that under the hypothesis that
𝑓 is an isofibration, this new span is equivalent to the iso-comma span.

To see this, note that the factorization constructed in (1.2.20) is in fact defined
using an iso-comma, constructed via the pullback in the top square of the diagram
below-left. Since the map 𝑏 is itself defined by a pullback, the bottom square
of the diagram below-left is also a pullback, defining the left-hand pullback
rectangle:

𝑃𝑏 𝐵𝕀

𝑃 × 𝐵 𝐵 × 𝐵

𝐶 × 𝐵 𝐴 × 𝐵

⌟
(𝑞,𝑝) (𝑞1,𝑞0)

⌟
𝑏×𝐵

𝑐×𝐵 𝑓×𝐵

𝑔×𝐵

𝐶 ⨰
𝐴
𝐵 𝐴 ⨰

𝐴
𝐵 𝐴𝕀

𝐶 × 𝐵 𝐴 × 𝐵 𝐴 × 𝐴

(𝑞1,𝑞0)
⌟

(𝑞1,𝑞0)
⌟

(𝑞1,𝑞0)

𝑔×𝐵 𝐴×𝑓

Now the iso-comma is constructed by a similar pullback rectangle, displayed
above-right. And because 𝑓 is an isofibration, Lemma 1.2.14 tells us that the
Leibniz tensor 𝑖0 ⋔̂ 𝑓∶ 𝐵𝕀 ∼ 𝐴 ⨰

𝐴
𝐵 of 𝑖0∶ 𝟙 ↪ 𝕀 with 𝑓∶ 𝐵 ↠ 𝐴 is a trivial

fibration. This equivalence commutes with the projections to 𝐴 × 𝐵 and hence
the maps (𝑐𝑞, 𝑝)∶ 𝑃𝑏 ↠ 𝐶 × 𝐵 and (𝑞1, 𝑞0)∶ 𝐶 ⨰

𝐴
𝐵 ↠ 𝐶 × 𝐵, defined as

pullbacks of an equivalent pair of isofibrations along 𝑔 × 𝐵, are equivalent as
claimed.

We now introduce a flexible weight for diagrams given by a countable tower
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of 0-arrows whose cone shapes have a homotopy coherent isomorphism in the
triangle over each generating arrow.

Definition 6.2.15 (iso-towers). Recall the category 𝝎whose objects are natural
numbers and whose morphisms are freely generated by maps 𝜄𝑛,𝑛+1∶ 𝑛 → 𝑛+1
for each 𝑛. The iso-tower of a 𝝎op-shaped diagram

𝐹 ≔ ⋯ 𝐹𝑛+1 𝐹𝑛 ⋯ 𝐹1 𝐹0
𝑓𝑛+2,𝑛+1 𝑓𝑛+1,𝑛 𝑓𝑛,𝑛−1 𝑓2,1 𝑓1,0

in a simplicially enriched and cotensored category is the limit weighted by the
diagram 𝑊←∶ 𝝎op → 𝑠𝒮𝑒𝑡 defined by the pushout in 𝑠𝒮𝑒𝑡𝝎

op
.

∐
𝑛∈𝝎

𝜕𝕀 × 𝝎(−, 𝑛) ∐
𝑚∈𝝎

𝝎(−,𝑚)

∐
𝑛∈𝝎

𝕀 × 𝝎(−, 𝑛) 𝑊←

(id𝑛,𝜄𝑛,𝑛+1)

⌜
(6.2.16)

By Definition A.6.1(ii), in an ∞-cosmos the iso-tower of 𝐹 is constructed by
the pullback

lim𝑊← 𝐹 ∏
𝑛∈𝝎

𝐹𝕀𝑛

∏
𝑚∈𝝎

𝐹𝑚 ∏
𝑛∈𝝎

𝐹𝑛 × 𝐹𝑛

𝜌

𝜙

⌟
∏(𝑞1,𝑞0)

(𝑓𝑛+1,𝑛,id𝐹𝑛)

(6.2.17)

The limit cone is generated by a 0-arrow 𝜌𝑛∶ lim𝑊← 𝐹 → 𝐹𝑛 for each 𝑛 ∈ 𝝎
together with a homotopy coherent isomorphism 𝜙𝑛 in each triangle over a
generating arrow 𝐹𝑛+1 → 𝐹𝑛 in the 𝝎op-indexed diagram.

Lemma 6.2.18. Iso-towers are flexible weighted limits and in particular exist in
any ∞-cosmos.

Proof The weight 𝑊← is a projective cell complex built by attaching one
projective 0-cell at each 𝑛 ∈ 𝝎 – forming the coproduct appearing in the upper
right-hand corner of (6.2.16) – and then by attaching a projective 𝑘-cell at each
𝑛 ∈ 𝝎 for each nondegenerate 𝑘-simplex of 𝕀 with 𝑘 > 0. Rather than attach
each projective 𝑘-cell for fixed 𝑛 ∈ 𝝎 in sequence, by Remark 6.2.2 these can
all be attached at once by taking a single pushout of the “generalized projective
cell at 𝑛” defined by the map 𝜕𝕀 × 𝝎(−, 𝑛) ↪ 𝕀 × 𝝎(−, 𝑛). These are the maps
appearing as the left-hand vertical of (6.2.16). Now Proposition 6.2.8(i) or the
formula (6.2.17) make it clear that such objects exist in any ∞-cosmos.
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As is the case for iso-commas and pullbacks, iso-towers give a way to compute
inverse limits of diagrams of arbitrary maps. When those maps are isofibrations,
the iso-tower is equivalent to the conical limit.

Lemma 6.2.19 (iso-towers and inverse limits). The inverse limit of a countable
tower of isofibrations in an ∞-cosmos is equivalent to the iso-pullback of that
tower.

Proof We will rearrange the limit (6.2.17) to construct the iso-tower lim𝑊← 𝐹
in an ∞-cosmos 𝒦 as an inverse limit of a countable tower of isofibrations
𝑃∶ 𝝎op → 𝒦 that is pointwise equivalent to the tower of isofibrations 𝐹∶ 𝝎op →
𝒦.

lim𝑃 ≅ ⋯ 𝑃𝑛+1 𝑃𝑛 ⋯ 𝑃1 𝑃0

lim𝐹 ≅ ⋯ 𝐹𝑛+1 𝐹𝑛 ⋯ 𝐹1 𝐹0

∼

𝑝𝑛+2,𝑛+1 𝑝𝑛+1,𝑛

∼ 𝑒𝑛

𝑝𝑛,𝑛−1

∼ 𝑒𝑛

𝑝2,1 𝑝1,0

∼ 𝑒1 ∼ 𝑒0

𝑓𝑛+2,𝑛+1 𝑓𝑛+1,𝑛 𝑓𝑛,𝑛−1 𝑓2,1 𝑓1,0
(6.2.20)

The equivalence invariance of the inverse limit of a diagram of isofibrations
implies that the limits lim𝑊← 𝐹 ≅ lim𝑃 and lim𝐹 are equivalent as claimed.

The ∞-categories 𝑃𝑛 are defined as conical limits of truncated versions of the
diagram (6.2.17). To start define 𝑃0 ≔ 𝐹0 and 𝑒0 to be the identity, then define
𝑃1, 𝑝1,0, and 𝑒1 via the pullback

𝑃1 𝐹𝕀0 𝐹0

𝐹1 𝐹0

𝑝1,0

∼𝑒1
⌟

∼ 𝑞1

∼
𝑞0

𝑓1,0

Note that 𝑃1 ≅ 𝐹1 ⨰
𝐹0
𝐹0 computes the iso-comma objects of the cospan given by

id𝐹0 and 𝑓1,0.
Now define 𝑃2, 𝑝2,1, and 𝑒2 using the composite pullback

𝑃2 • 𝑃1 𝐹𝕀0 𝐹0

• 𝐹𝕀1 𝐹1 𝐹0

𝐹2 𝐹1

𝑝2,1

∼

𝑒2

∼

⌟ ∼

∼
⌟

∼𝑒1
⌟

∼ 𝑞1

∼
𝑞0

∼

⌟

∼ 𝑞1

∼
𝑞0 𝑓1,0

𝑓2,1
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Continuing inductively, 𝑃𝑛, 𝑝𝑛,𝑛−1, and 𝑒𝑛 are defined by appending the diagram

𝐹𝕀𝑛−1 𝐹𝑛−1

𝐹𝑛 𝐹𝑛−1

∼
𝑞0

∼ 𝑞1

𝑓𝑛,𝑛−1

to the limit cone defining 𝑃𝑛−1 and taking the limit of this composite diagram. In
the limit, the composite diagram is an unraveling of (6.2.17). Hence lim𝑊← 𝐹 ≅
lim𝑃.

It remains to use the maps 𝑒𝑛∶ 𝑃𝑛 ∼ 𝐹𝑛 to compare lim𝑃 with lim𝐹. There
is one small problem with the construction just given: it defines a diagram
(6.2.20) in which each square commutes up to isomorphism – the isomorphism
encoded by the map 𝑃𝑛 → 𝐹𝕀𝑛−1 – not on the nose. But because the maps
𝑓𝑛+1,𝑛 are isofibrations this is not a problem. The isomorphism inhabiting the
square 𝑒0𝑝1,0 ≅ 𝑓1,0𝑒1 can be lifted along 𝑓1,0 to define a new map 𝑒′1∶ 𝑃1 ∼ 𝐹1
isomorphic to 𝑒1. By Exercise 1.4.iii this 𝑒′1 is then also an equivalence (though
no longer necessarily a trivial fibration), so we replace 𝑒1 with 𝑒′1, and then
continue inductively to lift away the isomorphisms in the square 𝑒′1𝑝2,1 ≅ 𝑓2,1𝑒2.

Since inverse limits of towers of isofibrations are equivalence invariant by
Proposition C.1.15, it follows that lim𝑃 ≃ lim𝐹. By construction lim𝑃 ≅
lim𝑊← 𝐹, so it follows that lim𝑊← 𝐹 ≃ lim𝐹, which is what we wanted to
show.

Exercises
Exercise 6.2.i ([112, 2.2.2]). Show that ∞-cosmoi admit wide pullbacks:
limits of finite or countable diagrams of the following form

⋯ 𝐴𝑛 𝐴𝑛−1 ⋯ 𝐴1 𝐴0

⋯ 𝐵𝑛−1 𝐵𝑛−2 ⋯ 𝐵1 𝐵0
𝑝𝑛−1 𝑓𝑛−1 𝑝𝑛−2 𝑓𝑛−2 𝑝1 𝑓1 𝑝0 𝑓0

and that their construction is invariant under pointwise equivalence between
diagrams.

6.3 Cosmologically Embedded ∞-Cosmoi

In this section, we generalize Lemma 6.1.4 – which was used to show that
the subcategory of discrete ∞-categories inherits an ∞-cosmos structure – to
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subcategories of ∞-cosmoi that are not full. As we shall discover, there are
many interesting examples.

For any ∞-cosmos 𝒦 and any subcategory of its underlying 1-category –
that is for any subset of its objects and subcategory of its 0-arrows – one can
form a quasi-categorically enriched subcategory ℒ ⊂ 𝒦 that contains exactly
those objects and 0-arrows and all higher dimensional arrows that they span. We
call such subcategories full on positive-dimensional arrows; note the functor
spaces of ℒ are quasi-categories because all inner horn inclusions are bijective
on vertices. We take particular interest in subcategories that satisfy a further
“repleteness” condition.

Definition 6.3.1. Let 𝒦 be an ∞-cosmos. A subcategory ℒ ⊂ 𝒦 is replete in
𝒦 if it is full on positive-dimensional arrows and moreover:

(i) Every ∞-category in 𝒦 that is equivalent to an object in ℒ lies in ℒ.
(ii) Any equivalence in 𝒦 between objects in ℒ lies in ℒ.
(iii) Any 0-arrow in 𝒦 that is isomorphic in 𝒦 to an 0-arrow in ℒ lies in ℒ.

The inclusion of a replete subcategory of an∞-cosmos is both a monomorph-
ism and also an isofibration of (∞, 2)-categories, in a sense explored in Exercise
6.3.i.

Lemma 6.3.2. Suppose ℒ ⊂ 𝒦 is a replete subcategory of an ∞-cosmos. Then
any map 𝑝∶ 𝐸 → 𝐵 in ℒ that defines an isofibration in 𝒦 is a representably
defined isofibration in ℒ: that is for all 𝑋 ∈ ℒ, 𝑝∗∶ Funℒ(𝑋, 𝐸) ↠ Funℒ(𝑋, 𝐵)
is an isofibration of quasi-categories.

Proof Since 𝒦 is an ∞-cosmos, the isofibration axiom 1.2.1(ii) requires that
𝑝∗∶ Fun𝒦(𝑋, 𝐸) ↠ Fun𝒦(𝑋, 𝐵) is an isofibration of quasi-categories. Be-
cause the inner horn inclusions are bijective on vertices and Funℒ(𝑋, 𝐸) ↪
Fun𝒦(𝑋, 𝐸) is full on positive-dimensional arrows, it follows immediately that
the restricted map 𝑝∗∶ Funℒ(𝑋, 𝐸) ↠ Funℒ(𝑋, 𝐵) lifts against the inner horn
inclusions. Thus it remains only to solve lifting problems of the form displayed
below-left

𝟙 Funℒ(𝑋, 𝐸) Fun𝒦(𝑋, 𝐸)

𝕀 Funℒ(𝑋, 𝐵) Fun𝒦(𝑋, 𝐵)

𝑒

𝑝∗ 𝑝∗

𝛽

The lifting problem defines a 0-arrow 𝑒∶ 𝑋 → 𝐸 in ℒ and a homotopy coherent
isomorphism 𝛽∶ 𝑏 ≅ 𝑝𝑒 in ℒ. Its solution in 𝒦 defines a 0-arrow 𝑒′∶ 𝑋 → 𝐸
in 𝒦 so that 𝑝𝑒′ = 𝑏 together with a homotopy coherent isomorphism 𝑒 ≅ 𝑒′
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in 𝒦. By fullness on positive-dimensional arrows, to show that this lift factors
through the inclusion Funℒ(𝑋, 𝐸) ↪ Fun𝒦(𝑋, 𝐸), we need only argue that the
map 𝑒′ lies in ℒ, but this is the case by condition (iii) of Definition 6.3.1.

The following result describes a condition under which a replete subcategory
ℒ ⊂ 𝒦 inherits an ∞-cosmos structure created from 𝒦.

Proposition 6.3.3. Suppose ℒ ⊂ 𝒦 is a replete subcategory of an ∞-cosmos.
If ℒ is closed under flexible weighted limits in 𝒦, then ℒ defines an ∞-cosmos
with isofibrations, equivalences, trivial fibrations and simplicial limits created
by the inclusion ℒ ↪ 𝒦, which then defines a cosmological functor.

When these conditions hold, we refer to ℒ as a cosmologically embedded ∞-
cosmos of 𝒦 and ℒ 𝒦 as a cosmological embedding. The notation reflects
both the embedding and isofibration-like properties of replete subcategory
inclusions.

Proof To say that a replete subcategory ℒ ↪ 𝒦 is closed under flexible
weighted limits means that for any diagram in ℒ and any limit cone in 𝒦
over that diagram, then the limit cone lies in ℒ and satisfies the appropriate
simplicially enriched universal property of Definition A.6.5 in the subcategoryℒ.
We must verify that each of the limits of axiom 1.2.1(i) exist in ℒ. Immediately,
ℒ has a terminal object, products, and simplicial cotensors, since all of these are
flexible weighted limits, with each of these limits inherited from𝒦. By Lemmas
6.2.12 and 6.2.18, ℒ also admits the construction of iso-comma objects and of
iso-towers, again formed in 𝒦.

Define the class of isofibrations in ℒ to be those maps in ℒ that define isofi-
brations in 𝒦. By Lemmas 6.2.14 and 6.2.19, pullbacks and limits of towers of
isofibrations are equivalent in 𝒦 to the iso-commas and iso-towers formed over
the same diagrams. Since these latter limit cones lie in ℒ by hypothesis, so do
the equivalent former cones by repleteness of ℒ in 𝒦.

There is a little more still to verify: namely that pullbacks and limits of towers
of isofibrations satisfy the simplicially enriched universal property as conical
limits in ℒ. In the case of a pullback diagram

𝑃 𝐵

𝐶 𝐴

𝑘

ℎ
⌟

𝑓

𝑔

in ℒ we must show that for each 𝑋 ∈ ℒ, the functor space Funℒ(𝑋, 𝑃) is
isomorphic to the pullback Funℒ(𝑋, 𝐶)×Funℒ(𝑋,𝐴)Funℒ(𝑋, 𝐵) of functor spaces.
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We have such an isomorphism for functor spaces in 𝒦 and on account of the
commutative diagram

Funℒ(𝑋, 𝑃) Funℒ(𝑋, 𝐶) ×
Funℒ(𝑋,𝐴)

Funℒ(𝑋, 𝐵)

Fun𝒦(𝑋, 𝑃) Fun𝒦(𝑋, 𝐶) ×
Fun𝒦(𝑋,𝐴)

Fun𝒦(𝑋, 𝐵)≃

and fullness on positive-dimensional arrows, we need only verify surjectivity of
the dotted map on 0-arrows. So consider a cone (𝑏∶ 𝑋 → 𝐵, 𝑐∶ 𝑋 → 𝐶) over
the pullback diagram in ℒ. By the universal property of the iso-comma 𝐶 ⨰

𝐴
𝐵,

there exists a factorization 𝑦∶ 𝑋 → 𝐶⨰
𝐴
𝐵 inℒ. Composing with the equivalence

𝐶⨰
𝐴
𝐵 ≃ 𝑃, this map is equivalent to the factorization 𝑧∶ 𝑋 → 𝑃 of the cone (𝑏, 𝑐)

through the limit cone (ℎ, 𝑘) in 𝒦 that exists on account of the strict universal
property of the pullback in there. By repleteness, the isomorphism between 𝑧
and the composite of 𝑦 with the equivalence suffices to show that 𝑧 lies in ℒ.
Hence, the functor spaces in ℒ are isomorphic. A similar argument invoking
Lemma 6.2.19 proves that inverse limits of towers of isofibrations define conical
limits in ℒ. This completes the proof of the limit axiom 1.2.1(i).

Since the isofibrations in ℒ are a subset of the isofibrations in 𝒦 and the
limit constructions in both contexts coincide, most of the closure properties of
1.2.1(ii) are inherited from the closure properties in 𝒦. The one exception is the
requirement that the isofibrations in ℒ define isofibrations of quasi-categories
representably, which was proven for any replete subcategory in Lemma 6.3.2.
This proves that ℒ defines an ∞-cosmos.

Finally, we argue that the equivalences in ℒ are created from the equivalences
of𝒦, which will imply that the trivial fibrations inℒ coincide with those of𝒦 as
well. Condition (ii) of Definition 6.3.1 implies that for any arrow inℒ that defines
an equivalence in 𝒦, its equivalence inverse and witnessing homotopy coherent
isomorphisms of Lemma 1.2.15 lie in ℒ. Because we have already shown that
ℒ admits cotensors with 𝕀 preserved by the inclusion ℒ ↪ 𝒦, Lemma 1.2.15
implies that this data defines an equivalence in ℒ. Conversely, any equivalence
in ℒ extends to the data of (1.2.16) and since ℒ ↪ 𝒦 preserves 𝕀-cotensors, this
data defines an equivalence in𝒦. Thus, by construction, the∞-cosmos structure
of ℒ is preserved and reflected by the inclusion ℒ ↪ 𝒦 as claimed.

In practice, the repleteness condition of Definition 6.3.1 is satisfied by any
subcategory of objects and 0-arrows that is characterized by some∞-categorical
property, so the main task in verifying that a subcategory defines an∞-cosmos is
verifying the closure under flexible weighted limits. In our first example, which
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acts as a sort of base case, we must do this by hand. In subsequent examples,
we deploy various techniques to bootstrap the flexible weighted limit closure
from previously-established facts.

Proposition 6.3.4. For any∞-cosmos𝒦, let𝒦⊤ denote the quasi-categorically
enriched category whose

(i) objects are ∞-categories in 𝒦 that possess a terminal element and
(ii) functor spaces Fun⊤(𝐴, 𝐵) ⊂ Fun(𝐴, 𝐵) are the sub-quasi-categories

whose 0-arrows preserve terminal elements and containing all 𝑛-arrows
these functors span.

Then the inclusion 𝒦⊤ 𝒦 creates an ∞-cosmos structure on 𝒦⊤ from 𝒦, and
moreover for each object of 𝒦⊤ defined as a flexible weighted limit of some
diagram in 𝒦⊤, its terminal element is created by the 0-arrow legs of the limit
cone.

Proof We apply Proposition 6.3.3. Lemma 2.2.7 and Proposition 2.1.10 ver-
ify the repleteness conditions of Definition 6.3.1, so it remains only to prove
closure under flexible weighted limits. We do so by induction over the tower
of isofibrations constructed in Proposition 6.2.8(i), which expresses a flexible
weighted limit lim𝑊 𝐹 as the inverse limit of a tower of isofibrations

lim𝑊 𝐹 ⋯ lim𝑊𝑘+1
𝐹 lim𝑊𝑘

𝐹 ⋯ lim𝑊0 𝐹 1

each of which is a pullback of products of maps of the form (6.2.9) indexed by
the projective cells of the flexible weight 𝑊. We argue inductively that each
∞-category in this tower possesses a terminal element that is preserved and
jointly created by the legs of the limit cone.

For the base case, if (𝐴𝑖)𝑖∈𝐼 is a family of ∞-categories possessing terminal
elements 𝑡𝑖∶ 1 → 𝐴𝑖, then the product of the adjunctions ! ⊣ 𝑡𝑖 defines an
adjunction

1 ≅ ∏𝑖∈𝐼 1 ∏𝑖∈𝐼 𝐴𝑖⊥
(𝑡𝑖)𝑖∈𝐼≅∏𝑖 𝑡𝑖

!

exhibiting (𝑡𝑖)𝑖∈𝐼 as a terminal element of∏𝑖∈𝐼 𝐴𝑖. By construction, this terminal
element is jointly created by the legs of the product cone. In particular, the
product projection functors preserve this terminal element and the map into
the product ∞-category ∏𝑖∈𝐼 𝐴𝑖 induced by any family of terminal element
preserving functors (𝑓∶ 𝑋 → 𝐴𝑖)𝑖∈𝐼 preserves terminal elements. This verifies
that the subcategory 𝒦⊤ is closed under products.

Similarly, if 𝐴 is an ∞-category with a terminal element 𝑡∶ 1 → 𝐴, then
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by Proposition 2.1.7(iii), the constant diagram at 𝑡, which we also denote by 𝑡,
defines a terminal element in the cotensor 𝐴𝑈 by any simplicial set 𝑈:

1 ≅ 1𝑈 ∏𝑖∈𝐼 𝐴
𝑈⊥

𝑡≔𝑡𝑈

!

It remains to argue that terminal elements in𝐴𝑈 are jointly created by the 0-arrow
components of the limit cone, namely by evaluation on each of the vertices of
the cotensoring simplicial set. To that end, suppose 𝑠∶ 1 → 𝐴𝑈 has the property
that

𝑠ᵆ ≔ 1 𝐴𝑈 𝐴𝑠 ev𝑢

is terminal in 𝐴 for each vertex 𝑢 of 𝑈. By terminality of 𝑡∶ 1 → 𝐴𝑈 there
is a natural transformation 𝛼∶ 𝑠 ⇒ 𝑡, and since both 𝑠ᵆ and 𝑡 define terminal
elements of𝐴, the component of 𝛼 at each 𝑢 defines an isomorphism 𝛼ᵆ∶ 𝑠ᵆ ≅ 𝑡
in 𝐴. By Corollary 1.1.22, it follows that 𝛼 is an isomorphism, which tells us
that 𝑠 is also a terminal element of 𝐴𝑈.

For the inductive step consider a pullback diagram

lim𝑊𝑘+1
𝐹 𝐴Δ[𝑛]

lim𝑊𝑘
𝐹 𝐴𝜕Δ[𝑛]

⌟

ℓ

that arises from the attaching map for a projective 𝑛-cell. The inductive hypoth-
esis tells us that lim𝑊𝑘

𝐹 admits a terminal element 𝑡𝑘 and for each vertex of
𝑖 ∈ 𝜕Δ[𝑛], the corresponding component ℓ𝑖∶ lim𝑊𝑘

𝐹 → 𝐴 of the limit cone
preserves it. Since 𝐹 is a diagram valued in 𝒦⊤ and 𝐴 is an ∞-category in
its image, we know that 𝐴 must possess a terminal element 𝑡∶ 1 → 𝐴. Thus
the constant diagram 𝑡∶ 1 → 𝐴𝜕Δ[𝑛] defines a terminal element. By terminal-
ity, there is a natural transformation 𝛼∶ ℓ(𝑡𝑘) ⇒ 𝑡 whose components at each
𝑖 ∈ 𝜕Δ[𝑛] are isomorphisms in 𝐴. By Corollary 1.1.22, it follows that 𝛼 is also
an isomorphism, which tells us that ℓ(𝑡𝑘) is also a terminal element of 𝐴𝜕Δ[𝑛].
Thus, we see that ℓ preserves terminal elements. The proof is now completed
by the following pair of lemmas.

Lemma 6.3.5. Consider a pullback diagram

𝑃 𝐵

𝐶 𝐴

𝑘

ℎ
⌟

𝑓

𝑔
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in which the ∞-categories 𝐴, 𝐵, and 𝐶 possess a terminal element and the
functors 𝑓 and 𝑔 preserve them. Then 𝑃 possesses a terminal element that is
created by the legs of the pullback cone ℎ and 𝑘.

Proof If 𝑏∶ 1 → 𝐵 and 𝑐∶ 1 → 𝐶 are terminal, then uniqueness of terminal
elements implies that 𝑓(𝑏) ≅ 𝑔(𝑐) ∈ 𝐴. Using the fact that 𝑓 is an isofibration,
there is a lift 𝑏′ ≅ 𝑏 of this isomorphism along 𝑓 that then defines another
terminal element of 𝐵. The pair (𝑐, 𝑏′) now induces an element 𝑡 of 𝑃 that we
claim is terminal.

To see this, we apply Proposition 4.3.13, which proves that 𝑡 is a terminal
element of 𝑃 if and only if the domain projection functor 𝑝0∶ Hom𝑃(𝑃, 𝑡) ↠ 𝑃
is a trivial fibration. By construction of 𝑡, we know that the domain projection
functors for the elements ℎ𝑡 = 𝑏′, 𝑘𝑡 = 𝑐, and 𝑓ℎ𝑡 = 𝑔𝑘𝑡 are all trivial fibrations
and moreover, by the hypercube pullback lemma, the top and bottom faces of
the cube

Hom𝑃(𝑃, 𝑡) Hom𝐵(𝐵, ℎ𝑡)

Hom𝐶(𝐶, 𝑘𝑡) Hom𝐴(𝐴, 𝑔𝑘𝑡)

𝑃 𝐵

𝐶 𝐴

𝑝0
⌟

∼ 𝑝0

∼
𝑝0

𝑘
ℎ

⌟
𝑓

𝑔

∼ 𝑝0

are pullbacks. By Proposition 3.3.4, the fact that the three maps between the
cospans are equivalences implies that the map between their pullbacks is also
an equivalence, as required.

Lemma 6.3.6. Consider a tower of isofibrations

𝐴 ≔ lim ( ⋯ 𝐴𝑛 𝐴𝑛−1 ⋯ 𝐴1 𝐴0
𝑞𝑛 𝑞1 )

in which each ∞-category has a terminal element each fibration preserves
terminal elements. Then the limit of the tower has a terminal element created by
the legs of the limit cone.

Proof The hypothesis provides terminal elements 𝑠𝑛∶ 1 → 𝐴𝑛 so that 𝑞𝑛𝑠𝑛 ≅
𝑠𝑛−1. By lifting away these isomorphisms inductively starting from the bottom,
we can choose a different family of terminal elements 𝑡𝑛∶ 1 → 𝐴𝑛 so that
𝑞𝑛𝑡𝑛 = 𝑡𝑛−1. This cone then induces an element 𝑡∶ 1 → 𝐴 in the limit 𝐴 that
we claim is terminal. This follows from Proposition 4.3.13 and the observation
that 𝑝0∶ Hom𝐴(𝐴, 𝑡) ↠ 𝐴 is the limit in the ∞-cosmos of isofibrations of a
tower whose objects are the trivial fibrations 𝑝0∶ Hom𝐴𝑛(𝐴𝑛, 𝑡𝑛) ∼ 𝐴𝑛. By
Proposition 6.1.5, 𝑝0∶ Hom𝐴(𝐴, 𝑡) ∼ 𝐴 is then a trivial fibration as well.
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Applying the result of Proposition 6.3.4 to 𝒦co constructs an ∞-cosmos 𝒦⊥
whose objects are ∞-categories in 𝒦 that possess an initial object and whose
0-arrows are initial-element-preserving functors. It is straightforward to verify
that the inclusion 𝒦⊥ 𝒦 is a cosmological embedding.1 Combining these
results, we get an ∞-cosmos for the pointed ∞-categories of Definition 4.4.1,
those that possess a zero element.

Proposition 6.3.7. For any ∞-cosmos 𝒦, let 𝒦∗ denote the quasi-categori-
cally enriched category of pointed ∞-categories – ∞-categories that possess
a zero element – and functors that preserve them. Then the inclusion 𝒦∗ 𝒦
is a cosmological embedding, creating an ∞-cosmos structure on 𝒦∗ from 𝒦,
and moreover for each object of 𝒦∗ defined as a flexible weighted limit of some
diagram in 𝒦∗, its zero element is created by the 0-arrow legs of the limit cone.

Proof This result follows directly from Proposition 6.3.4 and its dual, since
the ∞-cosmos 𝒦∗ of ∞-categories in 𝒦 possessing a zero object is isomorphic
to (𝒦⊤)⊥ ≅ (𝒦⊥)⊤, the insight being that an initial element 𝑎∶ 1 → 𝐴 in 𝒦⊤
is encoded by a terminal-element preserving functor, which says exactly that 𝑎
is a zero element in 𝐴.

Applying the result of Proposition 6.3.4 or its dual to the ∞-cosmos 𝒦/𝐵 of
isofibrations over 𝐵 ∈ 𝒦, we obtain two new ∞-cosmoi of interest.

Corollary 6.3.8. For any ∞-category 𝐵 in an ∞-cosmos 𝒦, the sliced ∞-
cosmos 𝒦/𝐵 admits cosmologically embedded ∞-cosmoi

ℛ𝑎𝑟𝑖(𝒦)/𝐵 𝒦/𝐵 ℒ𝑎𝑟𝑖(𝒦)/𝐵

whose

• objects are isofibrations over 𝐵 admitting a right adjoint right inverse or left
adjoint right inverse, respectively, and

• 0-arrows are functors over 𝐵 that commute with the respective right or left
adjoints up to fibered isomorphism over 𝐵.

Proof By Lemma 3.6.9, these ∞-cosmoi are defined by

ℛ𝑎𝑟𝑖(𝒦)/𝐵 ≔ (𝒦/𝐵)⊤ and ℒ𝑎𝑟𝑖(𝒦)/𝐵 ≔ (𝒦/𝐵)⊥.

Leveraging Corollary 6.3.8, we can establish similar cosmological embed-
dings

ℛ𝑎𝑟𝑖(𝒦) 𝒦 ℒ𝑎𝑟𝑖(𝒦)

1 Other duals of the ∞-cosmoi constructed here are established similarly (see Exercise 6.3.iii).
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defining ∞-cosmoi of right adjoint right inverse or left adjoint right inverse ad-
junctions with varying bases. To apply Proposition 6.3.3, we must check closure
under flexible weighted limits. We argue separately for cotensors, which are
easy, and for the conical limits, which are harder – as the reader who attempted
to solve Exercise 5.2.iii using Theorem 5.2.8(ii) may have already discovered.
To treat all of the conical limits at once, we make use of a general 1-categorical
result that constructs limits in the total space ℰ of a Grothendieck fibration
𝑃∶ ℰ → ℬ out of limits in the base ℬ and limits in the fibers ℰ𝐵.

Lemma 6.3.9. Let 𝑃∶ ℰ → ℬ be a Grothendieck fibration between 1-categories.
Suppose that 𝒥 is a small category, that 𝐷∶ 𝒥 → ℰ is a diagram, and that

(i) the diagram 𝑃𝐷∶ 𝒥 → ℬ has a limit 𝐿 in ℬ with limit cone 𝜆∶ Δ𝐿 ⇒
𝑃𝐷,

(ii) the diagram 𝜆∗𝐷∶ 𝒥 → ℰ𝐿 constructed by lifting the cone 𝜆 to a carte-
sian natural transformation 𝜒∶ 𝜆∗𝐷 ⇒ 𝐷

𝒥 ℰ 𝒥 ℰ

ℬ ℬ

𝐷

Δ𝐿

⇑𝜆 𝑃 =

𝐷

𝜆∗𝐷

⇑𝜒

𝑃

has a limit 𝑀 in the fibre ℰ𝐿 with limit cone 𝜇∶ Δ𝑀 ⇒ 𝜆∗𝐷, and
(iii) the limit cone 𝜇∶ Δ𝑀 ⇒ 𝜆∗𝐷 is preserved by the reindexing functor

𝑢∗∶ ℰ𝐿 → ℰ𝐵 associated with any arrow 𝑢∶ 𝐵 → 𝐿 in ℬ.

Then the composite cone Δ𝑀 𝜆∗𝐷 𝐷
𝜇 𝜒

displays 𝑀 as a limit of
the diagram 𝐷 in ℰ.

Proof Any arrow 𝑓∶ 𝐸 → 𝐸′ in the domain of a Grothendieck fibration
𝑃∶ ℰ → ℬ factors uniquely up to isomorphism through a “vertical” arrow in
the fiber ℰ𝑃𝐸 followed by a “horizontal” cartesian lift of 𝑃𝑓 with codomain 𝐸′.

Given a cone 𝛼∶ Δ𝐸 ⇒ 𝐷 with summit 𝐸 ∈ ℰ over 𝐷, by (i) its image
𝑃𝛼∶ Δ𝑃𝐸 ⇒ 𝑃𝐷 factors uniquely through the limit cone 𝜆∶ Δ𝐿 ⇒ 𝐷 via a
map 𝑏∶ 𝑃𝐸 → 𝐿 ∈ ℬ. By the universal property of the cartesian lift 𝜒 of 𝜆
constructed in (ii), it follows that 𝛼 factors uniquely through 𝜒 via a natural
transformation 𝛽∶ Δ𝐸 ⇒ 𝜆∗𝐷 so that 𝑃𝛽 = Δ𝑏. This cone factors uniquely up
to isomorphism via “vertical” natural transformation 𝛾∶ Δ𝐸 ⇒ 𝑏∗𝜆∗𝐷 followed
by a “horizontal” cartesian lift of 𝑏. By (iii), the limit cone 𝜇∶ Δ𝑀 ⇒ 𝜆∗𝐷 in
ℰ𝐿 pulls back along 𝑏 to a limit cone in ℰ𝑃𝐸 through which the pullback of 𝛽
factors via a map 𝑘∶ 𝐸 → 𝑏∗𝑀. Thus, 𝛽 itself factors uniquely through 𝜇 via
the composite of this map 𝑘∶ 𝐸 → 𝑏∗𝑀 with the cartesian arrow 𝑏∗𝑀 → 𝑀
lifting 𝑏∶ 𝑃𝐸 → 𝐿.
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For example, the codomain projection functor cod∶ 𝒦 → 𝒦 is a Grothen-
dieck fibration of underlying 1-categories, with cod-cartesian lifts defined by
pullback squares. Since right adjoint right inverses to isofibrations can be con-
structed as fibered adjunctions by Lemma 3.6.9, and fibered adjunctions are
stable under pullback by Lemma 3.6.6, this Grothendieck fibration restricts to
define a Grothendieck fibration cod∶ ℛ𝑎𝑟𝑖(𝒦) → 𝒦, which allows us to appeal
to Lemma 6.3.9 in the proof of the following result.

Proposition 6.3.10. For any ∞-cosmos 𝒦, the ∞-cosmos of isofibrations
admits cosmologically embedded ∞-cosmoi

ℛ𝑎𝑟𝑖(𝒦) 𝒦 ℒ𝑎𝑟𝑖(𝒦)

whose

• objects are isofibrations admitting a right adjoint right inverse or left adjoint
right inverse, respectively, and

• 0-arrows are commutative squares between the right or left adjoints, respec-
tively, whose mates are isomorphisms.

We refer to a commutative square between right adjoints whose mate is an
isomorphism as an exact square.

Proof By Proposition B.3.8 and Exercise B.4.i, the quasi-categorically en-
riched subcategory ℛ𝑎𝑟𝑖(𝒦) is replete in 𝒦 , so by Proposition 6.3.3 we need
only check that ℛ𝑎𝑟𝑖(𝒦) ↪ 𝒦 is closed under flexible weighted limits. We
argue separately for cotensors and for the conical limits.

If 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration admitting a right adjoint right inverse in 𝒦
and 𝑈 is a simplicial set, then the cosmological functor (−)𝑈∶ 𝒦 → 𝒦 carries
this data to a right adjoint right inverse to 𝑝𝑈∶ 𝐸𝑈 ↠ 𝐵𝑈, which proves that the
simplicial cotensor in 𝒦 of an object in ℛ𝑎𝑟𝑖(𝒦) lies in ℛ𝑎𝑟𝑖(𝒦). To conclude
thatℛ𝑎𝑟𝑖(𝒦) is closed in𝒦 under simplicial cotensors, we must also verify that
𝑝𝑈 has the enriched universal property of the simplicial cotensor in ℛ𝑎𝑟𝑖(𝒦):
that is, we must show that the natural isomorphism Fun(𝑞, 𝑝𝑈) ≅ Fun(𝑞, 𝑝)𝑈

of functor spaces in 𝒦 restricts to define a natural isomorphism of functor
spaces in ℛ𝑎𝑟𝑖(𝒦). Since the inclusion ℛ𝑎𝑟𝑖(𝒦) ↪ 𝒦 is full on 0-arrows, this
amounts to verifying that certain 0-arrows in 𝒦 are exact squares.

The weighted limit cone for the cotensor 𝑝𝑈 in 𝒦 is given by the canonical
map of simplicial sets 𝑈 → Fun(𝑝𝑈, 𝑝) defined on each vertex 𝑢∶ 𝟙 → 𝑈 by
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the commutative square

𝐸𝑈 𝐸

𝐵𝑈 𝐵

𝑝𝑈

ᵆ∗

𝑝

ᵆ∗

(6.3.11)

The maps 𝑢∗ define the components of a simplicial natural transformation from
(−)𝑈 to the identity functor and thus the mate of this commutative square is
an identity, so the limit cone for the 𝑈-cotensor lies in ℛ𝑎𝑟𝑖(𝒦). Finally, to
verify the universal property of the cotensor in ℛ𝑎𝑟𝑖(𝒦), we must show that
any commutative square whose domain 𝑞 is an isofibration admitting a right
adjoint right inverse

𝐹 𝐸𝑈

𝐴 𝐵𝑈
𝑞 𝑝𝑈

and which composes with each of the squares (6.3.11) to an exact square is
itself exact. To see this, observe that the mate of the identity defines a natural
transformation that is represented by a 1-arrow in Fun(𝐴, 𝐸𝑈) ≅ Fun(𝐴, 𝐸)𝑈

and the hypothesis says that the components of this 1-arrow are invertible for
each vertex of 𝑈. Corollary 1.1.22 then tells us that this 1-arrow is invertible as
required.

A similar and slightly easier argument proves that ℛ𝑎𝑟𝑖(𝒦) is closed in 𝒦
under products. It remains only to show that this subcategory is closed un-
der the remaining conical limits. As argued above cod∶ ℛ𝑎𝑟𝑖(𝒦) → 𝒦 is
a Grothendieck fibration on underlying 1-categories whose fibers are the ∞-
cosmoi ℛ𝑎𝑟𝑖(𝒦)/𝐵. By Lemma 6.3.9, 1-categorical limit cones in ℛ𝑎𝑟𝑖(𝒦)
⊂ 𝒦 can be calculated as composites of cartesian lifts of limit cones in the
base with limit cones of fiberwise diagrams: in this case, the recipe is to pull
back along the limit cone formed by the codomains and then form the limit
in the sliced ∞-cosmos over the limit object for the base diagram. By Corol-
lary 6.3.8, these fiberwise limits in the sliced ∞-cosmos 𝒦/𝐵 of diagrams in
ℛ𝑎𝑟𝑖(𝒦)/𝐵 lie in ℛ𝑎𝑟𝑖(𝒦)/𝐵 ↪ ℛ𝑎𝑟𝑖(𝒦). Moreover, these 1-categorical limits
are preserved by the simplicial cotensor, which by Proposition A.5.5 implies
that their universal property enriches to define conical limits. In this way we see
that ℛ𝑎𝑟𝑖(𝒦) 𝒦 is closed under flexible weighted limits and thus defines a
cosmological embedding, as claimed.

Now that we have established many examples of ∞-cosmoi and cosmologi-
cally embedded replete subcategories, we can make use of the following result:
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Proposition 6.3.12. Suppose 𝐹∶ 𝒦′ → 𝒦 is a cosmological functor and
ℒ ⊂ 𝒦 is a replete subcategory that defines a cosmologically embedded ∞-
cosmos. Then the simplicially enriched category defined by the pullback

ℒ′ ℒ

𝒦′ 𝒦

⌟

𝐹

is replete and defines a cosmologically embedded sub ∞-cosmos of 𝒦′, and the
restricted functor 𝐹∶ ℒ′ → ℒ is cosmological.

Proof The objects and 𝑛-arrows of the pullbackℒ′ are defined to be the objects
and 𝑛-arrows of 𝒦′ whose image under 𝐹 lies in the simplicial subcategory ℒ.
In particular, since the inclusion ℒ 𝒦 is full on positive-dimensional arrows,
the inclusion ℒ′ ↪ 𝒦′ is as well, and in particular ℒ′ is quasi-categorically
enriched. Since the cosmological functor 𝐹 preserves equivalences and ℒ 𝒦
is replete, the quasi-categorically enriched subcategory ℒ′ is replete in 𝒦′,
satisfying the three conditions of Definition 6.3.1.

To prove that the replete subcategoryℒ′ ↪ 𝒦′ admits an∞-cosmos structure
created by the inclusion, it remains to argue that ℒ′ is closed under flexible
weighted limits in𝒦′. Consider a diagram𝐷∶ 𝒜 → ℒ′ and a flexible weight and
form its flexible weighted limit in ℒ and in 𝒦′. The functors to 𝒦 carry these to
a pair of equivalent cones over the same diagram and since the inclusion ℒ 𝒦
is replete, there exists a limit cone over 𝐷 in ℒ whose image in 𝒦 is equal to the
image of the limit cone in 𝒦′ under the functor 𝐹. Now the universal property of
the pullback allows us to lift this cone to ℒ, and a similar argument demonstrates
that the lifted cone is a flexible weighted limit cone over the original diagram.
Note by construction that the flexible weighted limit in ℒ′ is preserved by the
functors to both 𝒦′ and to ℒ.

Proposition 6.3.3 applies to conclude that ℒ′ 𝒦′ is a cosmological em-
bedding. Since the isofibrations in ℒ′ are created in 𝒦′ and preserved by 𝐹,
and ℒ 𝒦 is a cosmological embedding, it follows that the restricted funct-
or 𝐹∶ ℒ′ → ℒ preserves isofibrations. Since 𝐹∶ ℒ′ → ℒ preserves flexible
weighted limits, we see that this functor is cosmological.

This result allows us to construct further ∞-cosmoi of interest.

Proposition 6.3.13. For any ∞-cosmos 𝒦 and simplicial set 𝐽, there cosmo-
logically embedded ∞-cosmoi

𝒦⊤,𝐽 𝒦 𝒦⊥,𝐽

whose
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• objects are ∞-categories in 𝒦 that admit all limits of shape 𝐽 or all colimits
of shape 𝐽, respectively,

• 0-arrows are the functors that preserve them

Moreover for each object of 𝒦⊤,𝐽 or 𝒦⊥,𝐽 defined as a flexible weighted limit of
some diagram in that ∞-cosmos, its 𝐽-shaped limits or colimits are created by
the 0-arrow legs of the limit or colimit cones, respectively.

Proof We prove this in the case of ∞-categories admitting 𝐽-shaped colimits,
the other case being dual. For any fixed simplicial set 𝐽, there is a cosmological
functor 𝐹𝐽∶ 𝒦 → 𝒦 defined on objects by mapping an ∞-category 𝐴 to the
isofibration 𝐴𝐽▹ ↠ 𝐴𝐽 in the notation of 4.2.6 and a functor 𝑓∶ 𝐴 → 𝐵 to the
commutative square

𝐴𝐽▹ 𝐵𝐽▹

𝐴𝐽 𝐵𝐽

𝑓𝐽▹

𝑓𝐽

By Corollary 4.3.5, 𝐴 admits colimits of shape 𝐽 if and only if this isofibration
admits a left adjoint right inverse, and 𝑓∶ 𝐴 → 𝐵 preserves these colimits if and
only if the square displayed above is exact. In summary, the quasi-categorically
enriched subcategory 𝒦⊥,𝐽 is defined by the pullback

𝒦⊥,𝐽 ℒ𝑎𝑟𝑖(𝒦)

𝒦 𝒦

⌟

𝐹𝐽

By Proposition 6.3.10, ℒ𝑎𝑟𝑖(𝒦) 𝒦 is a cosmological embedding, so Propo-
sition 6.3.12 proves that the inclusion 𝒦⊥,𝐽 𝒦 creates an ∞-cosmos structure,
as claimed.

In particular, the closure of the subcategory 𝒦⊥,𝐽 under flexible weighted
limits in 𝒦 implies that 𝐽-shaped colimits in an ∞-category defined as a flexible
weighted limit are created by the 0-arrow legs of the limit cone, as we explain.
Certainly the colimits in an ∞-category in 𝒦⊥,𝐽, formed as a weighted limit of
a diagram of ∞-categories in 𝒦⊥,𝐽, are preserved by the 0-arrow legs of the
weighted limit cone, since the 0-arrows in 𝒦⊥,𝐽 are 𝐽-shaped-colimit-preserving
functors. And since the 𝐽-colimit completeness of an ∞-category that is defined
as the flexible weighted limit in 𝒦 can be deduced whenever that diagram lies
in the sub ∞-cosmos 𝒦⊥,𝐽, these 𝐽-colimits are also created.
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Proposition 6.3.14. For any ∞-cosmos 𝒦, the ∞-cosmos of isofibrations
admits cosmologically embedded ∞-cosmoi

𝒞𝑎𝑟𝑡(𝒦) 𝒦 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

whose objects are cartesian or cocartesian fibrations, respectively, and whose 0-
arrows are cartesian functors. Similarly, for any ∞-category 𝐵 in an ∞-cosmos
𝒦, the sliced ∞-cosmos 𝒦/𝐵 admits cosmologically embedded ∞-cosmoi

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒦/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵

whose objects are cartesian or cocartesian fibrations over 𝐵, respectively, and
whose 0-arrows are cartesian functors, with the ∞-cosmos structures created
by the inclusions.

Proof By Theorems 5.2.8 and 5.3.4, the quasi-categorically enriched category
𝒞𝑎𝑟𝑡(𝒦) is defined by the pullback

𝒞𝑎𝑟𝑡(𝒦) ℛ𝑎𝑟𝑖(𝒦)

𝒦 𝒦

⌟

𝐾

along the simplicial functor 𝐾 that sends an isofibration 𝑝∶ 𝐸 ↠ 𝐵 to the
isofibration 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝). To see this, recall from Proposition
6.3.10 that the 0-arrows in the functor spaces of ℛ𝑎𝑟𝑖(𝒦) are commutative
squares between isofibrations admitting a right adjoint right inverse so that
the mate of the identity 2-cell induces an isomorphism in the corresponding
square involving the right adjoints. By Theorem 5.3.4, this condition pulls back
along the functor 𝐾 to tell us that 0-arrows in 𝒞𝑎𝑟𝑡(𝒦) are commutative squares
between cocartesian fibrations that define cartesian functors in the sense of
Definition 5.3.2.

The simplicial functor 𝐾 is constructed out of weighted limits and thus pre-
serves all weighted limits. In addition, it preserves the isofibrations of Proposi-
tion 6.1.1: if 𝑟∶ 𝐹 ↠ 𝑃 is the isofibration from the initial vertex to the pullback
of the cospan displayed in 6.1.1(iii), then the corresponding map under the
image of the functor 𝐾 is the Leibniz cotensor 𝑖1 ⋔̂ 𝑟∶ 𝐹𝟚 ↠ Hom𝑃(𝑃, 𝑟). Thus,
𝐾 is a cosmological functor. By Proposition 6.3.12, the inclusion 𝒞𝑎𝑟𝑡(𝒦) 𝒦
creates an ∞-cosmos structure.

We have a similar pullback defining the quasi-categorically enriched category
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of cartesian fibrations with a fixed base

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒞𝑎𝑟𝑡(𝒦)

𝒦/𝐵 𝒦

𝟙 𝒦

⌟

⌟
cod

𝐵

but we cannot appeal to Proposition 6.3.12 because the inclusion 𝒦/𝐵 ↪ 𝒦
is neither cosmological nor replete. Instead we must appeal to Proposition
6.3.3. By Corollary 5.3.1 and Theorem 5.3.4, 𝒞𝑎𝑟𝑡(𝒦)/𝐵 ↪ 𝒦/𝐵 is a replete
subcategory. The connected conical limits in 𝒞𝑎𝑟𝑡(𝒦)/𝐵 and 𝒦/𝐵 are created by
the inclusions into 𝒞𝑎𝑟𝑡(𝒦) and into 𝒦 , so these are created by the inclusion
𝒞𝑎𝑟𝑡(𝒦)/𝐵 ↪ 𝒦/𝐵. It remains only to argue directly that product and simplicial
cotensors are created by this inclusion.

By Proposition 1.2.22, the product of isofibrations 𝑝𝑖∶ 𝐸𝑖 ↠ 𝐵 is formed by
the pullback

×𝐵
𝑖 𝐸𝑖 ∏𝑖 𝐸𝑖

𝐵 ∏𝑖 𝐵

×𝐵
𝑖 𝑝𝑖

⌟
∏𝑖 𝑝𝑖

Δ

If each 𝑝𝑖 is a cartesian fibration, then since 𝒞𝑎𝑟𝑡(𝒦) is an ∞-cosmos, so is
∏𝑖 𝑝𝑖, and the legs of the limit cone are cartesian functors. By Proposition 5.2.4
it follows that their product in𝒦/𝐵 is a cartesian fibration and the legs of the limit
cone, defined by composing the pullback square with the product projections,
are cartesian functors. Since cartesian transformations are created by pullbacks,
it follows easily that a square with codomain ×𝐵

𝑖 𝑝𝑖 is a cartesian functor if and
only if each of the composite squares with codomain 𝑝𝑖 are cartesian functors.
This proves that products are created by the inclusion 𝒞𝑎𝑟𝑡(𝒦)/𝐵 ↪ 𝒦/𝐵

Similarly, by Proposition 1.2.22, the cotensor of an isofibration 𝑝∶ 𝐸 ↠ 𝐵
with a simplicial set 𝑈 is formed by the pullback

𝑈 ⋔𝐵 𝑝 𝐸𝑈

𝐵 𝐵𝑈

⌟
𝑝𝑈

Δ

and hence is a cartesian fibration if 𝑝 is. A similar argument shows that this object
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has the universal property required of the simplicial cotensor in 𝒞𝑎𝑟𝑡(𝒦)/𝐵,
completing the proof.

The ∞-cosmoi of cartesian fibrations provide a fertile setting to explore the
parametrized ∞-category theory developed by Shah [115].

Proposition 6.3.15. For any ∞-cosmos 𝒦, there exist cosmologically embed-
ded ∞-cosmoi

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦) 𝒦 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

𝒞𝑎𝑟𝑡(𝒦) 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

whose objects are discrete cartesian or discrete cocartesian fibrations. Similarly,
for any ∞-category 𝐵 in an ∞-cosmos 𝒦, there exist cosmologically embedded
∞-cosmoi

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒦/𝐵 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵

whose objects are discrete cartesian or discrete cocartesian fibrations over 𝐵,
respectively.

Proof By Exercise 6.3.iv, the ∞-cosmoi of discrete fibrations with a fixed
base arise as ∞-cosmoi of discrete objects:

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≅ (𝒞𝑎𝑟𝑡(𝒦)/𝐵)≃ and 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≃ (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵)≃

and hence their existence is guaranteed by Proposition 6.1.6.
The ∞-cosmoi of discrete fibrations with varying bases arise as pullbacks

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦) 𝒦

∼

𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

𝒞𝑎𝑟𝑡(𝒦) 𝒦 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

⌟ ⌞

𝐾 𝐾

along restrictions of the cosmological functor 𝐾 defined in the proof of Proposi-
tion 6.3.14, and hence exist by Proposition 6.3.12.

Proposition 6.3.16. For any∞-cosmos𝒦, the replete subcategory 𝒮𝑡𝑎𝑏(𝒦) of
stable ∞-categories and exact functors in 𝒦 is an ∞-cosmos and the inclusion
𝒮𝑡𝑎𝑏(𝒦) 𝒦 is a cosmological embedding.

Recall from Exercise 4.4.iv that in this context that a functor between stable∞-
categories is called exact just when it preserves zero elements and the so-called
exact squares, that define both pushouts and pullbacks.



6.3 Cosmologically Embedded ∞-Cosmoi 269

Proof Simplifying the notation of Proposition 6.3.13, write 𝒦 and 𝒦 for
the ∞-cosmoi of ∞-categories in 𝒦 that admit pullbacks and pushouts, respec-
tively. We argue that the ∞-cosmoi (𝒦 ) ≅ (𝒦 ) are isomorphic as replete
subcategories of 𝒦. An object of (𝒦 ) is an ∞-category 𝐴 in 𝒦 that admits
an adjunction

𝐴 𝐴
res
⊥
lan

in the ∞-cosmos 𝒦 , meaning that the functor lan∶ 𝐴 → 𝐴 preserves the
pullbacks that both of these∞-categories admit. Since 𝐴 itself admits pullbacks,
the pullbacks in 𝐴 and 𝐴 may be defined pointwise, via the adjunctions

(𝐴 ) (𝐴 )
res

⊥
ran

and (𝐴 ) (𝐴 )
res

⊥
ran

and so are automatically preserved by the restriction functor. Thus the condition
that this adjunction lies in𝒦 amounts to the condition that the canonical natural
transformation

(𝐴 ) (𝐴 )

(𝐴 ) (𝐴 )

lan

⇘

lan

ran ran

is an isomorphism.
Dually, an object of (𝒦 ) is an ∞-category 𝐴 that admits pushouts and also

admits an adjunction

𝐴 𝐴
res

⊥
ran

in the ∞-cosmos 𝒦 , meaning that the pullback functor ran∶ 𝐴 → 𝐴 pre-
serves the pointwise defined pushouts: i.e., that the canonical natural transfor-
mation

(𝐴 ) (𝐴 )

(𝐴 ) (𝐴 )

ran

⇖

ran

lan lan

is an isomorphism. Thus, we see that the objects of (𝒦 ) and (𝒦 ) coincide.
Similarly, the 0-arrows in each of (𝒦 ) and (𝒦 ) are functors that preserve
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both pullbacks and pushouts. This proves that (𝒦 ) and (𝒦 ) define isomor-
phic subcategories of 𝒦, as claimed. A similar simpler observation justifies the
assertion (𝒦⊤)⊥ ≅ (𝒦⊥)⊤ made in the proof of Proposition 6.3.7.

By Theorem 4.4.12(iii), an∞-category is stable just when it is pointed, admits
pullbacks and pushouts, and the pullback functor preserves pushouts, and the
pushout functor preserves pullbacks. By the proof of Theorem 4.4.12(iii) ⇒ (ii)
these conditions imply that pullback and pushout squares coincide. In this way
we see that 𝒮𝑡𝑎𝑏(𝒦) is the intersection

𝒮𝑡𝑎𝑏(𝒦) (𝒦 ) ≅ (𝒦 )

(𝒦⊤)⊥ ≅ (𝒦⊥)⊤ 𝒦

⌟

of cosmologically embedded ∞-cosmoi and thus is itself a cosmologically
embedded ∞-cosmos by Proposition 6.3.12.

The results in this section can be used to prove technical results in the ∞-
categorical literature (see Exercise 6.3.v). We close with a few illustrations of
results along these lines.

Lemma 6.3.17. Consider a pullback diagram of ∞-categories, whose vertical
functors are isofibrations.

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ
⌟

𝑝

𝑘

Then 𝑞 creates and ℎ preserves any class of limits or colimits that 𝑘 preserves
and 𝑝 creates.

Proof The hypotheses ensure that the underlying cospan of the pullback lies in
the ∞-cosmos of Proposition 6.3.13. Since this is a cosmologically embedded
∞-cosmos, it follows that the pullback of ∞-categories lies in there as well,
which tells us that 𝐹 admits and 𝑞 and ℎ preserve any limits or colimits that are
present in 𝐸, 𝐴, and 𝐵 and preserved by 𝑝 and 𝑘.

It remains only to argue that such (co)limits are created by 𝑞∶ 𝐹 ↠ 𝐴.
Suppose 𝑑∶ 𝐷 → 𝐹𝐽 is a family of diagrams and 𝜂∶ 𝑑 ⇒ Δ𝑐 is a cone under
this diagram so that 𝑞𝜂 is a colimit cone for 𝑞𝑑 in 𝐴. Then 𝑘𝑞𝜂 = 𝑝ℎ𝜂 is a
colimit cone for 𝑘𝑞𝑑 = 𝑝ℎ𝑑 in 𝐵. Since 𝑝∶ 𝐸 ↠ 𝐵 is assumed to create colimits,
this tells us that ℎ𝜂 is a colimit cone for ℎ𝑑 in 𝐸. Now the second statement
of Proposition 6.3.13, which tells us that (co)limits in 𝐹 are jointly created by
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the functors 𝑞 and ℎ, allows us to conclude that 𝜂 is a colimit cone in 𝐹 as
claimed.

Our final application reproves a result [80, 1.4.2.24] relevant to the theory of
stable ∞-categories.

Lemma 6.3.18. Suppose 𝐴 is a pointed ∞-category admitting pullbacks. Then
the homotopy limit of the tower of loops functors defines a stable ∞-category.

Sp𝐴 ≔ lim ( ⋯ 𝐴 𝐴 𝐴 𝐴Ω Ω Ω )

Proof Since the loops functors are not isofibrations, the homotopy limit of
the tower of loops functors is calculated by first replacing each map by an
isofibration in the ambient ∞-cosmos 𝒦 and then forming the inverse limit.
Alternatively, by Lemmas 6.2.18 and 6.2.19, Sp𝐴 is defined by the iso-tower:

Sp𝐴 ∏
𝑛∈𝝎

𝐴𝕀

∏
𝑚∈𝝎

𝐴 ∏
𝑛∈𝝎

𝐴 × 𝐴

𝜌

𝜙

⌟
∏(𝑞1,𝑞0)

(Ω,id)

(6.3.19)

which defines Sp𝐴 to be the universal ∞-category equipped with a cone

Sp𝐴

⋯ 𝐴 𝐴 𝐴 𝐴
≅⋯

𝜌2𝜌3 𝜌1
𝜌0

≅ ≅

Ω Ω Ω

in which each triangle is inhabited by a homotopy coherent isomorphism.
Since 𝐴 is pointed and admits pullbacks, it lies in the ∞-cosmos (𝒦∗) 𝒦.

Pullback functors automatically preserve zero elements, so (𝒦∗) ≅ 𝒦∗ ∩𝒦 .
For the same reason, the loops functor preserves zero elements and pullbacks,
so the loops functor Ω∶ 𝐴 → 𝐴 also lies in (𝒦∗) . Since this ∞-cosmos is
cosmologically embedded in 𝒦, it follows that the iso-tower Sp𝐴 is again a
pointed∞-category that admits pullbacks, and each of the functors 𝜌𝑛∶ Sp𝐴 ↠
𝐴 preserve them.

Indeed, by Propositions 6.3.7 and 6.3.13 the zero element and products are
created by the legs 𝜌𝑛 of the limit cone, which tells us that its loops functor can
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be chosen to commute with these projections:

Sp𝐴 Sp𝐴

∏
𝑛∈𝝎

𝐴 ∏
𝑛∈𝝎

𝐴

Ω

𝜌 𝜌

∏Ω

By the universal property of Sp𝐴 as a flexible weighted limit we can induce
another endofunctor Σ∗∶ Sp𝐴 → Sp𝐴 from the data of the weighted cone

Sp𝐴

⋯ 𝐴 𝐴 𝐴 𝐴
≅⋯

𝜌3𝜌4 𝜌2
𝜌1

≅ ≅

Ω Ω Ω

obtained by restricting along the inclusion Σ∶ 𝑛 ↦ 𝑛 + 1∶ 𝝎op → 𝝎op to
shift the data in the weighted limit cone. To analyze this functor more formally,
consider the factorization of the natural isomorphism 𝜎∶ 𝑊← ≅ 𝑊←Σ through
the left Kan extension:

𝝎op 𝑠𝒮𝑒𝑡 𝝎op 𝑠𝒮𝑒𝑡

𝝎op 𝝎op

𝑊←

Σ
≅⇓𝜍 =

𝑊←

Σ
≅⇓𝜂

𝑊←

lanΣ𝑊←

∃!⇓𝛼
𝑊←

In this way, the map Σ∗ fits into a commutative diagram of induced maps on
weighted limits

lim𝑊← 𝐹 lim𝑊←Σ 𝐹Σ lim𝑊← 𝐹Σ

limlanΣ𝑊← 𝐹 limlanΣ𝑊←Σ 𝐹Σ lim𝑊← 𝐹Σ

Σ∗

𝛼∗

≃𝜍∗

≃ 𝛼Σ∗

≃Σ∗ ≃

𝜂∗

Note the bottom horizontal composite exhibits the isomorphism of Lemma
A.6.19, a general result of enriched category theory that says that the weighted
limit of a restricted diagram agrees with the limit weighted by the left Kan
extension of the weight (see [68, 4.63]). From this result and the isomorphisms
𝜎∶ 𝑊← ≅ 𝑊←Σ and 𝐹 ≅ 𝐹Σ we see that all of the objects in this diagram are
isomorphic to Sp𝐴.

Since Σ is fully faithful, 𝜂 is an isomorphism, and hence so is 𝛼Σ, so the map
Σ∗∶ Sp𝐴 → Sp𝐴 of interest is isomorphic to the map induced on weighted
limits from the inclusion 𝛼∶ lanΣ𝑊← ↪ 𝑊←. This map is a projective cell
complex between flexible weights, defined by attaching a single generalized
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projective cell 𝟙 × 𝝎(−, 0) ↪ 𝕀 × 𝝎(−, 0) at 0. Put another way, it is an iso-
morphism on all but one component; via the isomorphism𝑊← ≅ lanΣ𝑊←Σ, its
zeroth component is 𝛼0∶ 𝑊←

1 ↪𝑊←
0 . Thus, we see that 𝛼 defines a pointwise

Joyal weak equivalence between projective cell complexes. It follows from the
pullback diagram

lim𝑊← 𝐹 lim𝕀×𝝎(−,0) 𝐹 ≅ 𝐴𝕀

limlanΣ𝑊← 𝐹 lim𝟙×𝝎(−,0) 𝐹 ≅ 𝐴

∼

𝛼∗
⌟

∼

that the induced map on weighted limits Σ∗∶ Sp𝐴 → Sp𝐴 is an equivalence.
By construction the composite ΩΣ∗∶ Sp𝐴 → Sp𝐴 is naturally isomorphic

to the identity functor, where this isomorphism can be induced by the weak
universal property of the pullback (6.3.19) from the isomorphisms Ω𝜌𝑛+1 ≅ 𝜌𝑛
of the weighted limit cone. Thus, by 2-of-3 and stability of equivalences under
natural isomorphism, Ω is an equivalence.

We have shown that Sp𝐴 is a pointed ∞-category with pullbacks for which
the loops functor is an equivalence. By Theorem 4.4.12(v), Sp𝐴 is a stable
∞-category as claimed.

Exercises
Exercise 6.3.i. Let ℒ ↪ 𝒦 be a replete subcategory of an ∞-cosmos. Show
that for all 𝐴, 𝐵 ∈ ℒ, the map

Funℒ(𝐴, 𝐵) Fun𝒦(𝐴, 𝐵)

is both a monomorphism and an isofibration between quasi-categories. This
latter property may be summarized by saying that the simplicial functor ℒ ↪ 𝒦
is a local isofibration.2

Exercise 6.3.ii. For any ∞-cosmos 𝒦, compare the cosmologically embedded
∞-cosmoi 𝒦⊥ ∩𝒦⊤ and 𝒦∗ ≔ (𝒦⊤)⊥ ≅ (𝒦⊥)⊤ appearing in the discussion
surrounding Proposition 6.3.7.

Exercise 6.3.iii. Prove that ℒ𝑎𝑟𝑖(𝒦) ≅ ℛ𝑎𝑟𝑖(𝒦co)co.

Exercise 6.3.iv. For a cosmologically embedded ∞-cosmos ℒ 𝒦, show that
𝐴 ∈ ℒ is discrete if and only if 𝐴 is discrete as an object of 𝒦.
2 The inclusions of replete subcategories are also global isofibrations in a sense appropriate for
(∞, 2)-category theory, namely the full data of an equivalence in 𝒦 involving one object in the
subcategory ℒ can be lifted to ℒ.
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Exercise 6.3.v ([46, 4.1.5]). Given a diagram where the vertical maps are
cocartesian fibrations and the squares define cartesian functors

𝐸′ 𝐸 𝐸″ 𝐸′ ×𝐸 𝐸″

𝐵′ 𝐵 𝐵″ 𝐵′ ×𝐵 𝐵″

verify that the induced functor between the pullbacks is a cocartesian fibration
and the projections define cartesian functors. Show also that if the vertical maps
are discrete cocartesian fibrations so is this induced functor.



PART TWO

THE CALCULUS OF MODULES
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By convention we refer to an object 𝐴 in an ∞-cosmos as an “∞-category.”
The ∞-cosmos provides access to its elements 𝑧∶ 1 → 𝐴 and to its mapping
spaces Hom𝐴(𝑥, 𝑦), defined as bifibers

Hom𝐴(𝑥, 𝑦) 𝐴𝟚

1 𝐴 × 𝐴

⌟
(𝑝1,𝑝0)

(𝑦,𝑥)

over a pair of elements. Proposition 3.4.10 proves that mapping spaces are
discrete ∞-categories, which, in an ∞-cosmos of (∞, 1)-categories, are the
∞-groupoids in the ∞-cosmos. These structures justify part of the intuition that
(∞, 1)-categories are categories weakly enriched over ∞-groupoids.

These observations suggest that the arrow ∞-category is of particular impor-
tance. Propositions 3.2.5 and 3.2.6 describe its weak 2-categorical universal
property: natural transformations

𝑋 𝐴
𝑥

𝑦

⇓𝛽

correspond to functors ⌜𝛽⌝∶ 𝑋 → 𝐴𝟚 with 𝑝0⌜𝛽⌝ = 𝑥 and 𝑝1⌜𝛽⌝ = 𝑦 up to
fibered isomorphism over 𝐴 × 𝐴. By Proposition 3.2.10 this weak universal
property characterizes the arrow ∞-category up to fibered equivalence over 𝐴×
𝐴. However, it does not capture the additional fact that natural transformations
from 𝑋 to 𝐴 can be composed vertically defining commuting contravariant and
covariant actions on the domains and codomains of the natural transformation
𝛽∶ 𝑥 ⇒ 𝑦.

𝑋 𝐴

𝑤
⇓𝛼

𝑧
⇓𝛾

𝑥

𝑦
⇓𝛽

In Chapter 5, we discovered one way to express the actions, proving in Proposi-
tions 5.2.9 and Proposition 5.4.4 that the domain projection functor 𝑝0∶ 𝐴𝟚 ↠ 𝐴
and the codomain projection functor 𝑝1∶ 𝐴𝟚 ↠ 𝐴, respectively, define a cart-
esian fibration and a cocartesian fibration. Particular 𝑝0-cartesian lifts and
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𝑝1-cocartesian lifts can be used to define pre- and postcomposition functors:

Hom𝐴(𝑥, 𝑦) Hom𝐴(𝑥, 𝑦)

Hom𝐴(𝐴, 𝑦) Hom𝐴(𝑥, 𝐴)

Hom𝐴(𝑤, 𝑦) Hom𝐴(𝑥, 𝑧)

𝑋 𝑋

𝐴 𝐴

𝑋 𝑋

𝛼∗

⌟
𝛾∗

⌟

𝑝0 𝑝1

𝜒𝛼

⌟

𝜒𝛾

⌟
𝑥 𝑦

𝑤

𝛼

𝑧

𝛾

with universal properties that imply that 𝛼∗𝛽∗ ≅ (𝛽𝛼)∗ and 𝛾∗𝛽∗ ≅ (𝛾𝛽)∗.
To see that the post- and precomposition actions commute with each other,

defining an essentially commutative square

Hom𝐴(𝑥, 𝑦)

Hom𝐴(𝑤, 𝑦) ≅ Hom𝐴(𝑥, 𝑧)

Hom𝐴(𝑤, 𝑧)

𝛼∗ 𝛾∗

𝛾∗ 𝛼∗

of functors over 𝑋, necessitates considering the codomain and domain projection
functors as a span 𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴, rather than individually. This is the aim of
Chapter 7, which introduces two-sided fibrations, given by a span whose left leg
is a cocartesian fibration and right leg is a cartesian fibration, with commuting
“fiberwise” actions.

The span 𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴 is two-sided fibration that is discrete as an object
in the sliced ∞-cosmos over 𝐴 × 𝐴. In particular, this implies that the fibers
over a pair of elements are discrete ∞-categories. In terminology introduced in
§7.4, this discreteness means that 𝐸 defines a module from 𝐴 to 𝐵.

In Chapter 8, we develop the calculus of modules, which closely resembles the
calculus of (bi)modules between unital rings. In Chapter 9, we deploy this calcu-
lus to further develop the formal category theory of ∞-categories, specifically
by defining and developing pointwise right and left Kan extensions, which are
notably missing from Part I. We note also that several results in previous chapters
– Theorem 3.5.3, Corollary 3.5.6, Proposition 4.1.1, Proposition 4.3.1 – encode
∞-categorical notions as equivalences of modules. Accordingly, modules form
the cornerstone of our proof of the model independence of (∞, 1)-category
theory in Part III.
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Two-Sided Fibrations and Modules

In Chapter 5 we studied those isofibrations for which the arrows in the base act
covariantly or contravariantly on the fibers. A prototypical example of a so-called
cocartesian fibration is the codomain projection functor 𝑝1∶ 𝐴𝟚 ↠ 𝐴 associated
to the arrow ∞-category, where the fiberwise action is by postcomposition.
Dually, the domain projection functor 𝑝0∶ 𝐴𝟚 ↠ 𝐴 is a cartesian fibration, with
fiberwise action by precomposition. In this section, we refine and sharpen our
understanding of these fibration structures by considering the codomain and
domain projection functors as a span 𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴 rather than separately.
A few observations come quickly to mind. First, 𝑝1-cocartesian lifts can be
chosen to define natural transformations with codomain 𝐴𝟚 whose domain
components are identities; that is, 𝑝1-cocartesian lifts can be chosen to lie “over
𝑝0∶ 𝐴𝟚 ↠ 𝐴.” Dually, 𝑝0-cartesian lifts can be chosen to lie over 𝑝1 (see
Proposition 5.5.11).

Second, the action on fibers 𝛼∗∶ Hom𝐴(𝑥, 𝐴) → Hom𝐴(𝑤, 𝐴) by precompo-
sition with a natural transformation 𝛼∶ 𝑤 ⇒ 𝑥with codomain𝐴, commutes with
the action 𝛾∗∶ Hom𝐴(𝐴, 𝑦) → Hom𝐴(𝐴, 𝑧) by postcomposition with 𝛾∶ 𝑦 ⇒ 𝑧
in a suitable sense. These first two properties are summarized by saying that the
span associated to the arrow ∞-category defines a two-sided fibration from 𝐴
to 𝐴.

Finally, the bifibers of the isofibration (𝑝1, 𝑝0)∶ 𝐴𝟚 ↠ 𝐴× 𝐴 define discrete
∞-categories, namely the mapping spaces of 𝐴. Indeed, 𝐴𝟚 is itself discrete
when considered as an object in the sliced∞-cosmos over𝐴×𝐴. This additional
property means that 𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴 defines a discrete two-sided fibration from
𝐴 to 𝐴, which we abbreviate by saying that 𝐴𝟚 defines a module from 𝐴 to 𝐴.

Recall from Proposition 6.3.14 that for any ∞-category 𝐵 in an ∞-cosmos
𝒦, the quasi-categorically enriched categories 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 and 𝒞𝑎𝑟𝑡(𝒦)/𝐵
define ∞-cosmoi, inheriting their limits, isofibrations, and equivalences from
their cosmological embedding into 𝒦/𝐵. In this chapter, we introduce another

279
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cosmologically embedded ∞-cosmos 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵 whose objects are
two-sided fibrations from 𝐴 to 𝐵. Several equivalent definitions of this notion
are given in §7.1. Iterating Proposition 6.3.14 reveals that 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 is again
an ∞-cosmos, which we study in §7.2.

A two-sided fibration from 𝐵 to 1 is simply a cocartesian fibration over 𝐵,
while a two-sided fibration from 1 to 𝐵 is a cartesian fibration over 𝐵, so results
about two-sided fibrations simultaneously generalize these one-sided notions.
Certain closure properties of two-sided fibrations developed in §7.2, such as
closure under pullback, are familiar from Chapter 5, while others, such as closure
under span composition, are specific to the two-sided context.

In §7.3, we introduce two-sided representables and prove a two-sided version
of the Yoneda lemma, generalizing Theorem 5.7.3 and Corollary 5.7.19. This is
the formulation of the Yoneda lemma that proves the most useful going forward.

The main reason for our interest in two-sided fibrations is the fact that the
discrete objects in 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 are precisely the modules1 from 𝐴 to 𝐵, which
we define and study in §7.4. The calculus of modules, developed in Chapter
8, is the main site of the formal category theory of ∞-categories, which is the
subject of Chapter 9.

7.1 Two-Sided Fibrations

By factoring, any span in an ∞-cosmos 𝒦 from 𝐴 to 𝐵 may be replaced up to
equivalence by a two-sided isofibration, a span 𝐴 𝑞 𝐸 𝑝 𝐵 for which the
functor (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴×𝐵 is an isofibration. Two-sided isofibrations from 𝐴 to
𝐵 are the objects of the ∞-cosmos 𝒦/𝐴×𝐵. In this section, we describe what it
means for a two-sided isofibration to be cocartesian on the left or cartesian on
the right, and then introduce two-sided fibrations, which integrate these notions.

To motivate these concepts, consider the span 𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴 associated
to the arrow ∞-category of 𝐴 in an ∞-cosmos 𝒦. In Proposition 5.5.11, we
observed that

𝐴𝟚 𝐴 × 𝐴

𝐴

(𝑝1,𝑝0)

𝑝1 𝜋

defines a cartesian fibration in the sliced ∞-cosmos 𝒦/𝐴 – in fact a discrete
cartesian fibration, though we postpone consideration of discreteness until we
1 In the 1- and ∞-categorical literature, the names “distributor” [10], “profunctor” [132], and

“correspondence” [5, 78] are all used as synonyms for “module.”
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introduce modules in §7.4. The proof invokes Theorem 5.2.8(iii), which charac-
terizes cartesian fibrations via a fibered adjunction over the codomain. In this in-
stance, the fibered adjunction lies in the ∞-cosmos (𝒦/𝐴)/𝜋∶ 𝐴×𝐴↠𝐴 ≅ 𝒦/𝐴×𝐴
and is equivalent to the canonical adjunction

𝟚 𝟚 × 𝟚 𝟛 𝐴𝟚 ⊥ 𝐴𝟛

𝟙 + 𝟙 𝐴 × 𝐴

𝟚×0
⊤

𝛿1

𝟚×!
⊤
ℓ

𝑘

𝜍0

⇝

Δ𝑝0=Δ(𝑝1,𝑝0)

(𝑝1,𝑝0) (𝑝2,𝑝0)

𝑟

(2,0)(1,0)

arising from an adjunction between the indexing categories. In terminology we
presently introduce this is what it means to say that the two-sided isofibration
𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴 is cartesian on the right.

When we postcompose with the projection 𝜋∶ 𝐴 × 𝐴 ↠ 𝐴 onto the right
factor, we are left with an adjunction

𝐴𝟚 ⊥ 𝐴𝟛

𝐴

Δ𝑝0

𝑝0 𝑝0
𝑟

that witnesses the fact established in Proposition 5.2.9 that 𝑝0∶ 𝐴𝟚 ↠ 𝐴 is a
cartesian fibration. So part of what it means for a two-sided isofibration to be
cartesian on the right is that its right leg is a cartesian fibration. To say that
this adjunction lies over 𝐴 × 𝐴 not merely over 𝐴 amounts to the assertion that
𝑝0-cartesian lifts can be chosen to lie in fibers of 𝑝1∶ 𝐴𝟚 ↠ 𝐴, whiskering along
the left leg to identity arrows. It follows that every 𝑝0-cartesian transformation
whiskers with 𝑝1 to an isomorphism.

These two properties can be expressed in another way: by demanding that the
functor

𝐴𝟚 𝐴 × 𝐴

𝐴
𝑝0

(𝑝1,𝑝0)

𝜋

lies in the ∞-cosmos 𝒞𝑎𝑟𝑡(𝒦)/𝐴 ⊂ 𝒦/𝐴. This asserts first that 𝑝0∶ 𝐴𝟚 ↠ 𝐴 is
a cartesian fibration and second that (𝑝1, 𝑝0) defines a cartesian functor from
this cartesian fibration to the cartesian fibration 𝜋∶ 𝐴 × 𝐴 ↠ 𝐴 of Example
5.4.6. As observed there, 𝜋-cartesian cells are those natural transformations that
whisker with the other projection to isomorphisms. Thus to say that (𝑝1, 𝑝0) is
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a cartesian functor is exactly to say that 𝑝1 carries 𝑝0-cartesian transformations
to isomorphisms.

We now formalize these intuitions:

Lemma 7.1.1 (cartesian on the right). For a two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵
in an ∞-cosmos 𝒦, the following are equivalent:

(i) The functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

is a cartesian fibration in the slice ∞-cosmos 𝒦/𝐴.
(ii) The functor

𝐸 𝐴 × 𝐵

𝐵
𝑝

(𝑞,𝑝)

𝜋

in 𝒦/𝐵 lies in the sub ∞-cosmos 𝒞𝑎𝑟𝑡(𝒦)/𝐵.
(iii) The functor induced by id𝑝 admits a right adjoint in 𝒦/𝐴×𝐵.

𝐸 ⊥ Hom𝐵(𝐵, 𝑝)

𝐴 × 𝐵

Δ𝑝

(𝑞,𝑝) (𝑞𝑝1,𝑝0)
𝑟

(iv) The isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration in 𝒦 and for every

𝑝-cartesian transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 , the whiskered composite

𝑋 𝐸 𝐴
𝑒′

𝑒
⇓𝜓

𝑞
is an isomorphism.

A two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵 is cartesian on the right when these
equivalent conditions are satisfied

Proof The equivalence (i)⇔(iii) is exactly the interpretation of the equivalence
of Theorem 5.2.8(i)⇔(iii) applied to the isofibration (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 in the
∞-cosmos𝒦/𝐴. This latter result asserts that the isofibration (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴×𝐵
is a cartesian fibration in 𝒦/𝐴 if and only if the functor induced by id(𝑞,𝑝) from
𝐸 to the right representation of the functor (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 admits a right
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adjoint over the codomain 𝜋∶ 𝐴 × 𝐵 ↠ 𝐴; since (𝒦/𝐴)/𝜋∶ 𝐴×𝐵↠𝐴 ≅ 𝒦/𝐴×𝐵
this is the same as asserting this adjunction over 𝐴 × 𝐵.

The only subtlety in interpreting Theorem 5.2.8 in 𝒦/𝐴 has to do with the
correct interpretation of the left representable comma ∞-category in 𝒦/𝐴 for
the functor (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵. This comma ∞-category is constructed as
a subobject of the 𝟚-cotensor of the object 𝜋∶ 𝐴 × 𝐵 → 𝐴 in 𝒦/𝐴, which
Proposition 1.2.22 tells us is formed as the left-hand vertical of the pullback
diagram

𝐴 × 𝐵𝟚 (𝐴 × 𝐵)𝟚

𝐴 𝐴𝟚
𝜋

⌟
𝜋𝟚

Δ

By (3.4.2) the comma ∞-category is constructed by the pullback in 𝒦/𝐴

Hom𝐵(𝐵, 𝑝) 𝐴 × 𝐵𝟚 𝐴 × 𝐵

𝐸 𝐴 × 𝐵

𝐴

⌟
𝑝1 𝑞𝑝1

𝜋

id×𝑝0

𝜋

(𝑞,𝑝)

𝑞 𝜋

id×𝑝1

(7.1.2)

which is created by the forgetful functor 𝒦/𝐴 → 𝒦, and its domain projection
functor is the top composite (𝑞𝑝1, 𝑝0)∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐴×𝐵. Now we see that
the interpretation of Theorem 5.2.8(i)⇔(iii) in 𝒦/𝐴 is exactly the equivalence
(i)⇔(iii).

It remains to demonstrate the equivalence with (ii) and (iv). Assuming (iii)
and composing with𝜋∶ 𝐴×𝐵 ↠ 𝐵 yields a fibered adjunction that demonstrates
that 𝑝 is a cartesian fibration. The counit of both fibered adjunctions is the same,
and by Theorem 5.2.8(iii) the composite

𝐸
Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝) 𝐸

Δ𝑝𝑟

⇓𝜖 𝑝1

is the generic 𝑝-cartesian cell. Since 𝜖 is fibered over 𝐴 × 𝐵, when we postcom-
pose with 𝑞 we get an identity, which tells us that 𝑞∶ 𝐸 ↠ 𝐴 carries 𝑝-cartesian
cells to isomorphisms. This proves that (iii) implies (iv).

By Example 5.4.6, the cartesian cells for the cartesian fibration 𝜋∶ 𝐴 ×
𝐵 ↠ 𝐵 are precisely those 2-cells whose component with codomain 𝐴 is an
isomorphism, so (iv) says exactly that (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 defines a cartesian
functor from 𝑝 to 𝜋. Thus (iv) implies (ii).
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To complete the argument, we show that (ii) implies (i). Assume (ii) and
consider a 2-cell in 𝒦/𝐴

𝑋 𝐸

𝐴 × 𝐵

𝑒

(𝑎,𝑏)

⇑(id,𝛽) (𝑞,𝑝)

Because 𝑝 is a cartesian fibration, 𝛽∶ 𝑏 ⇒ 𝑝𝑒 has a 𝑝-cartesian lift 𝜒∶ 𝑒′ ⇒ 𝑒,
and since (𝑞, 𝑝) is a cartesian functor, the whiskered 2-cell 𝑞𝜒∶ 𝑞𝑒′ ⇒ 𝑎 is an
isomorphism. Because (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 is an isofibration, we may lift the
2-cell (𝑞𝜒−1, id)∶ (𝑎, 𝑏) ⇒ 𝑒′ to an invertible 2-cell 𝛾∶ 𝑒″ ⇒ 𝑒′ with 𝑝𝛾 = id𝑏.
The composite 𝜒 ⋅ 𝛾∶ 𝑒″ ⇒ 𝑒 is a lift of (id, 𝛽) along (𝑞, 𝑝) over 𝐴, which
is easily verified to satisfy the weak universal properties that characterize a
(𝑞, 𝑝)-cartesian lift of (id, 𝛽) in 𝒦/𝐴 as established by Proposition 5.2.11. This
proves (i).

Combining Lemma 7.1.1 and its dual, which defines the class of two-sided
isofibrations that are cocartesian on the left:

Corollary 7.1.3. A two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵 in an ∞-cosmos 𝒦
is cocartesian on the left and cartesian on the right if the following equivalent
conditions are satisfied:

(i) The functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

lies in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 and defines a cartesian fibration in 𝒦/𝐴.
(ii) The functor

𝐸 𝐴 × 𝐵

𝐵
𝑝

(𝑞,𝑝)

𝜋

lies in 𝒞𝑎𝑟𝑡(𝒦)/𝐵 and defines a cocartesian fibration in 𝒦/𝐵.

A two-sided fibration is a span that is cocartesian on the left, cartesian on
the right, and satisfies a further compatibility condition that can be stated in a
number of equivalent ways, which boil down to the assertion that the processes
of taking 𝑞-cocartesian and 𝑝-cartesian lifts commute:

Theorem 7.1.4. For a two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵 in an ∞-cosmos 𝒦,
the following are equivalent:
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(i) The functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

defines a cartesian fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴.
(ii) The functor

𝐸 𝐴 × 𝐵

𝐵
𝑝

(𝑞,𝑝)

𝜋

defines a cocartesian fibration in 𝒞𝑎𝑟𝑡(𝒦)/𝐵.
(iii) The canonical functors admit the displayed adjoints in 𝒦/𝐴×𝐵

𝐸 Hom𝐵(𝐵, 𝑝)

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝)

Δ𝑝

⊤

Δ𝑞⊣ (Δ𝑞𝑝1,id) ⊢

𝑟

ℓ

(id,Δ𝑝𝑝0)

⊥

ℓ

𝑟

and the mate of the identity 2-cell in this displayed commutative square
defines an isomorphism ℓ𝑟 ≅ 𝑟ℓ.

(iv) The two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵 is cocartesian on the left,
cartesian on the right, and satisfies a further condition: Given any pair
of natural transformations as below-left together with a 𝑞-cocartesian
lift 𝜓∶ 𝑒 ⇒ 𝛼∗𝑒 of 𝛼 over 𝐵 and a 𝑝-cartesian lift 𝜒∶ 𝛽∗𝑒 ⇒ 𝑒 of 𝛽 over
𝐴 as below-right:

𝑋 𝑋

𝐴 𝐸 𝐵 𝐴 𝐸 𝐵

𝛼
⇐

𝑒
𝑎 𝑏

𝛽
⇐

⇝ 𝑒𝜓𝛼∗𝑒 ⇐
𝜒

𝛽∗𝑒⇐

𝑞 𝑝 𝑞 𝑝

then there is an isomorphism 𝛼∗𝛽∗𝑒 ≅ 𝛽∗𝛼∗𝑒 over 𝐴 × 𝐵 commuting
with the 𝑞-cocartesian lift of 𝛼 ⋅ 𝑞𝜒 over 𝐵 and the 𝑝-cartesian lift of
𝑝𝜓 ⋅ 𝛽 over 𝐴.

𝑒

𝛼∗𝑒 𝛽∗𝑒

𝛽∗𝛼∗𝑒 ≅ 𝛼∗𝛽∗𝑒

𝜓

𝜓𝛼⋅𝑞𝜒

𝜒

𝜒𝑝𝜓⋅𝛽
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A two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵 defines a two-sided fibration from 𝐴 to 𝐵
when these equivalent conditions are satisfied.

Proof Our strategy is to show that condition (i) is equivalent to (iii), an equa-
tionally witnessed condition in the slice ∞-cosmos 𝒦/𝐴×𝐵. A dual argument
shows that condition (ii) is equivalent to (iii). We then unpack this condition to
prove its equivalence with (iv).

If (i) holds, then 𝐴 𝑞 𝐸 𝑝 𝐵 also satisfies condition (i) of Corollary 7.1.3,
since the property of being a cartesian fibration is preserved by the cosmological
functor 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 ↪ 𝒦/𝐴. So 𝐴 𝑞 𝐸 𝑝 𝐵 is in particular cocartesian on
the left and cartesian on the right and is thus equipped with adjunctions

Hom𝐴(𝑞, 𝐴) 𝐸 Hom𝐵(𝐵, 𝑝)

𝐴 × 𝐵

ℓ

⊥

(𝑝1,𝑝𝑝0)

Δ𝑞 (𝑞,𝑝)

Δ𝑝

⊥

(𝑞𝑝1,𝑝0)

𝑟

By Lemma 3.6.6, we may pull back the left-hand adjunction along 𝐴×𝑝1∶ 𝐴×
𝐵𝟚 ↠ 𝐴 × 𝐵 and then compose with 𝐴 × 𝑝0∶ 𝐴 × 𝐵𝟚 ↠ 𝐴 × 𝐵 to obtain the
right-hand fibered adjunction below, and also pull back the right-hand adjunction
along 𝑝0×𝐵∶ 𝐴𝟚×𝐵 ↠ 𝐴×𝐵 and then compose with 𝑝1×𝐵∶ 𝐴𝟚×𝐵 ↠ 𝐴×𝐵
to obtain the left-hand fibered adjunction below:

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

𝐴 × 𝐵

(id,Δ𝑝𝑝0)

⊥

(𝑝1,𝑝𝑝0)

𝑟

(𝑝1,𝑝0)

ℓ

⊥

(𝑞𝑝1,𝑝0)

(Δ𝑞𝑝1,id)

It remains to account for the assumption in (i) that (𝑞, 𝑝) defines a cartesian
fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 rather than merely in 𝒦/𝐴. By Theorem 5.2.8(iii) this
additional condition is equivalent to the assertion that the right adjoint

Hom𝐵(𝐵, 𝑝) 𝐸

𝐴

𝑟

𝑞𝑝1 𝑞

defines a cartesian functor from the cocartesian fibration 𝑝1 to the cocartesian
fibration 𝑞. By Theorem 5.3.4(iii) this is equivalent to the assertion that the mate
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of the isomorphism in the solid-arrow square

Hom𝐵(𝐵, 𝑝) 𝐸

Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐴(𝑞, 𝐴)

(Δ𝑞𝑝1,id)⊣

𝑟

Δ𝑞 ⊢ℓ

𝑟

ℓ

defines an isomorphism.2 This proves that (i) implies (iii).
Conversely assuming (iii), by Lemma 7.1.1 and Corollary 7.1.3 we conclude

from two of the adjunctions that the functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

lies in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 and defines a cartesian fibration in 𝒦/𝐴. By Theorem
5.2.8(iii) it defines a cartesian fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 if and only if the right
adjoint 𝑟 defines a cartesian functor from 𝑞𝑝1∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐴 to 𝑞∶ 𝐸 ↠ 𝐴;
recall that the inclusion 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 ↪ 𝒦/𝐴 is full on positive dimensional
arrows so there is no comparable condition on the unit and counit. By Theorem
5.3.4(iii) this follows from the invertibility of the mate ℓ𝑟 ≅ 𝑟ℓ. In this way we
see that (iii) implies (i).

Thus, we have shown that condition (i) is equivalent to (iii) positing the exis-
tence of adjunctions in𝒦/𝐴×𝐵 so that all of the mates of the solid-arrow diagram
are isomorphisms. Dualizing this argument, we see that (iii) is equivalent to
condition (ii).

Finally, (iii) and (iv) are equivalent since the existence of the left adjoints
in (iii) is equivalent to the span being cocartesian on the left, the existence of
the right adjoints is equivalent to being cartesian on the right, and the compat-
ibility condition for the cartesian and cocartesian lifts is the meaning of the
isomorphism ℓ𝑟 ≅ 𝑟ℓ.

The internal characterization of two-sided fibrations has a familiar conse-
quence:

Corollary 7.1.5. Any two-sided isofibration (𝑎, 𝑏)∶ 𝑋 ↠ 𝐴× 𝐵 that is equiv-
alent over 𝐴 × 𝐵 to a two-sided fibration (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 is a two-sided
fibration.
2 The isomorphism in the solid-arrow square is the inverse of the mate that witnesses the fact that
Δ𝑞 defines a cartesian functor from 𝑝 to 𝑝0, which is part of what it means for (𝑞, 𝑝) to be
cartesian on the right.
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Proof The assertion of Theorem 7.1.4(iii) is invariant under fibered equiva-
lence.

Theorem 7.1.4 may be used to establish an important family of examples
involving the ordinal categories from Definition 1.1.4.

Proposition 7.1.6. For any ∞-category 𝐴 and any 𝑛 ≥ 2, the two-sided
isofibration 𝐴 𝑝𝑛−1 𝐴𝕟 𝑝0 𝐴 defines a two-sided fibration.

This result is a generalization of Proposition 5.5.11 and its dual and the proof
uses similar ideas.

Proof We use Theorem 7.1.4(iii). The right representable comma ∞-category
associated to the evaluation at the initial object 𝑝0∶ 𝐴𝕟 ↠ 𝐴 is constructed by
the pullback

𝐴𝟚∨𝕟 𝐴𝟚

𝐴𝕟 𝐴

⌟
𝑝1

𝑝0

which is equivalent to (𝑝𝑛, 𝑝0)∶ 𝐴𝕟+𝟙 ↠ 𝐴 × 𝐴 over the endpoint evaluation
maps. The canonical functor that tests whether (𝑝𝑛−1, 𝑝0)∶ 𝐴𝕟 ↠ 𝐴 × 𝐴 is
cartesian on the right is given by restriction along the epimorphism 𝜎0∶ 𝕟+𝟙 →
𝕟 that sends the objects 0, 1 ∈ 𝕟+𝟙 to 0 ∈ 𝕟. This functor admits a left adjoint
under the endpoint inclusions

𝕟 ⊥ 𝕟+𝟙 ⇝ 𝐴𝕟 ⊤ 𝐴𝕟+𝟙

𝟙 + 𝟙 𝐴 × 𝐴

𝛿1

𝜍0
(𝑝𝑛−1,𝑝0)

𝐴𝜍0
(𝑝𝑛,𝑝0)

𝐴𝛿1

(𝑛,0)(𝑛−1,0)

which provides the desired fibered right adjoint displayed above left.
A dual argument shows that (𝑝𝑛−1, 𝑝0)∶ 𝐴𝕟 ↠ 𝐴× 𝐴 is cocartesian on the

left. The final condition asks that the mate of the commutative square defined
by the degeneracy maps

𝕟 𝕟+𝟙

𝕟+𝟙 𝕟+𝟚

𝛿1

𝛿𝑛
𝜍0
⊥

𝛿𝑛+1𝜍𝑛⊢

𝛿1

𝜍𝑛+1 ⊣
𝜍0

⊤
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is an isomorphism, encoding one of the familiar simplicial identities. The square
in Theorem 7.1.4(iii) is obtained by applying 𝐴(−).

We defer further discussion of the closure properties of the class of two-
sided fibrations to the next section, where we deploy cosmological arguments
to streamline their proofs. These observations allow us to further enlarge our
family of examples.

To prepare for that work, we consider the structure-preserving morphisms
between two-sided fibrations, proving a relative analogue of Theorem 7.1.4:

Proposition 7.1.7. For map of spans between a pair of two-sided fibrations
from 𝐴 to 𝐵 in an ∞-cosmos 𝒦

𝐸

𝐴 𝐵

𝐹

𝑞 𝑝

ℎ

𝑠 𝑟

the following are equivalent:

(i) ℎ defines a cartesian functor between cartesian fibrations in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴.
(ii) ℎ defines a cartesian functor between cocartesian fibrations in𝒞𝑎𝑟𝑡(𝒦)/𝐵.
(iii) The mates of the canonical isomorphisms

𝐸 𝐹 𝐸 𝐹

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑠, 𝐴) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑟)

ℎ

≅⇖

ℎ

≅⇘

Homid(ℎ,id)

ℓ ℓ

Homid(id,ℎ)

𝑟 𝑟

define isomorphisms in 𝒦/𝐴×𝐵.
(iv) ℎ defines a cartesian functor between the cocartesian fibrations 𝑞 and 𝑠

and a cartesian functor between the cartesian fibrations 𝑝 and 𝑟 in 𝒦.

The map of spans defines a cartesian functor between two-sided fibrations from
𝐴 to 𝐵 when these equivalent conditions are satisfied.

Proof By Theorem 5.3.4(iii), condition (iv) is equivalent to demanding that
the two mates on display in (iii) are isomorphisms in 𝒦/𝐴 and 𝒦/𝐵, respectively.
But since the spans are two-sided fibrations from 𝐴 to 𝐵 and ℎ is a map over
𝐴 × 𝐵, both natural transformations lie in 𝒦/𝐴×𝐵. By Proposition 3.6.2, if
these natural transformations admit inverses in 𝒦/𝐴 and 𝒦/𝐵, then these inverse
transformations lift to an inverse isomorphism in 𝒦/𝐴×𝐵. This proves that (iv)
is equivalent to (iii).
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We next prove that (i) is equivalent to (iii). The proof of the equivalence of
(ii) and (iii) is dual. To assert, as in (i) that the map

𝐸 𝐹

𝐴 × 𝐵

𝐴

ℎ

(𝑞,𝑝)

𝑞

(𝑠,𝑟)

𝑠
𝜋

defines a cartesian functor between cartesian fibrations in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 means
first that the mate

𝐸 𝐹 𝐸 𝐹

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑠, 𝐴) Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑠, 𝐴)

ℎ

Δ𝑞 ≅⇗ Δ𝑠 ⇝

ℎ

≅⇖

Homid(ℎ,id) Homid(ℎ,id)

ℓ ℓ

defines an isomorphism in 𝒦/𝐴, because ℎ defines a cartesian functor between
the cocartesian fibrations 𝑞 and 𝑠, over 𝐴 and second that the mate

𝐸 𝐹 𝐸 𝐹

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑟) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑟)

ℎ

Δ𝑝 ≅⇙ Δ𝑟 ⇝

ℎ

≅⇘

Homid(id,ℎ) Homid(id,ℎ)

𝑟 𝑟

is an isomorphism in (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋. Since the spans are two-sided fibrations
and ℎ is a map over 𝐴 × 𝐵, the first pair of mates lies in 𝒦/𝐴×𝐵. And since the
inclusion (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ↪ 𝒦/𝐴×𝐵 is full on positive-dimensional arrows,
to ask that the second pair of mates are isomorphisms in (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 is
equivalent to asking the same condition in 𝒦/𝐴×𝐵. This proves the equivalence
with (iii).

It follows from the internal characterizations of Theorem 7.1.4 and Proposition
7.1.7.

Corollary 7.1.8. Any cosmological functor preserves two-sided fibrations
and cartesian functors between them.

Proof By Proposition 1.3.4(vi) any cosmological functor 𝐹∶ 𝒦 → ℒ induces
a cosmological functor 𝐹∶ 𝒦/𝐴×𝐵 → ℒ/𝐹𝐴×𝐹𝐵 for any pair of ∞-categories
𝐴 and 𝐵 in 𝒦. This functor preserves the fibered adjunctions and invertible
mates of Theorem 7.1.4(iii). Thus 𝐹∶ 𝒦 → ℒ preserves two-sided fibrations.
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Similarly, any cosmological functor preserves the invertible mates of Proposition
7.1.7(iii).

Exercises
Exercise 7.1.i. Prove that the product projection span 𝐴 𝜋 𝐴×𝐵 𝜋 𝐵 defines
a two-sided fibration for any ∞-categories 𝐴 and 𝐵.

Exercise 7.1.ii. Prove that

(i) A two-sided isofibration 1 ! 𝐸 𝑝 𝐵 defines a two-sided fibration from
1 to 𝐵 if and only if 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration.

(ii) A map of spans as below defines a cartesian functor of two-sided fi-
brations if and only if ℎ∶ 𝐸 → 𝐹 defines a cartesian functor from 𝑝 to
𝑞.

𝐸

1 𝐵

𝐹

! 𝑝

ℎ

! 𝑞

Exercise 7.1.iii. Suppose 𝐴 𝑞 𝐸 𝑝 𝐵 and 𝐴 𝑠 𝐹 𝑟 𝐵 are two-sided
fibrations and 𝛼∶ ℎ ≅ ℎ′ is a fibered natural isomorphism

𝐸

𝐴 𝐵

𝐹

ℎℎ′
𝛼
≅

𝑝𝑞

𝑟𝑠

so that 𝑟𝛼 = id𝑝 and 𝑠𝛼 = id𝑞; in particular, ℎ and ℎ′ each define maps of spans.
Show that ℎ is a cartesian functor if and only if ℎ′ is a cartesian functor.

7.2 The ∞-Cosmos of Two-Sided Fibrations

The first pair of equivalent conditions of Theorem 7.1.4 and Proposition 7.1.7
provide two equivalent ways to define the ∞-cosmos of two-sided fibrations,
using the ∞-cosmoi of Proposition 6.3.14.

Definition 7.2.1 (the ∞-cosmos of two-sided fibrations). By Theorem 7.1.4
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and Proposition 7.1.7, for any ∞-categories 𝐴 and 𝐵 in an ∞-cosmos 𝒦 the
pair of quasi-categorically enriched subcategories

𝒞𝑎𝑟𝑡(𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋∶ 𝐴×𝐵↠𝐴 and 𝑐𝑜𝒞𝑎𝑟𝑡(𝒞𝑎𝑟𝑡(𝒦)/𝐵)/𝜋∶ 𝐴×𝐵↠𝐵

of 𝒦/𝐴×𝐵 coincide. We write

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ⊂ 𝒦/𝐴×𝐵

for this common subcategory and refer to it as the ∞-cosmos of two-sided fi-
brations from 𝐴 to 𝐵, employing terminology that will be justified momentarily.

By definition its functor space from 𝐴 𝑞 𝐸 𝑝 𝐵 to 𝐴 𝑠 𝐹 𝑟 𝐵

Fun
𝐴\ℱ𝑖𝑏(𝒦)/𝐵(𝐸, 𝐹) ≔ Funcart

𝐴×𝐵(𝐸, 𝐹) ⊂ Fun𝐴×𝐵(𝐸, 𝐹)

is the quasi-category of maps of spans that define cartesian functors from 𝐸 to
𝐹 (see Proposition 7.1.7).

Since a two-sided isofibration from 𝐴 to 𝐵 is simply an isofibration over𝐴×𝐵,
we may refer to 𝒦/𝐴×𝐵 as the ∞-cosmos of two-sided isofibrations from 𝐴 to
𝐵.

Proposition 7.2.2. For any ∞-categories 𝐴 and 𝐵 in an ∞-cosmos 𝒦, the
∞-cosmos of two-sided fibrations is cosmologically embedded in the ∞-cosmos
of isofibrations 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵, with the inclusion creating an∞-cosmos
structure.

Proof This inclusion factors as

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵

𝑐𝑜𝒞𝑎𝑟𝑡(𝒞𝑎𝑟𝑡(𝒦)/𝐵)/𝐴×𝐵↠𝐵 (𝒞𝑎𝑟𝑡(𝒦)/𝐵)/𝐴×𝐵↠𝐵 (𝒦/𝐵)/𝐴×𝐵↠𝐵

≅ ≅

and by Proposition 6.3.14, both inclusions are cosmological embeddings.

Observation 7.2.3 (two-sided fibrations generalize co/cartesian fibrations). By
Exercise 7.1.ii, a two-sided fibration from 𝐵 to 1 is a cocartesian fibration over
𝐵, while a two-sided fibration from 1 to 𝐵 is a cartesian fibration over 𝐵. Indeed,
as ∞-cosmoi

𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≅ 𝐵\𝐹𝑖𝑏(𝒦)/1 and 𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≅ 1\𝐹𝑖𝑏(𝒦)/𝐵.

In this sense, statements about two-sided fibrations simultaneously generalize
statements about cartesian and cocartesian fibrations.

We now turn our attention to the promised closure properties:
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Proposition 7.2.4. For any pair of functors 𝑎∶ 𝐴′ → 𝐴 and 𝑏∶ 𝐵′ → 𝐵, the
cosmological pullback functor restricts to define a cosmological functor

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵

𝐴′\ℱ𝑖𝑏(𝒦)/𝐵′ 𝒦/𝐴′×𝐵′

(𝑎,𝑏)∗ (𝑎,𝑏)∗

In particular, the pullback of a two-sided fibration is again a two-sided fibration.

Proof By factoring the functor (𝑎, 𝑏) as 𝐴′ ×𝐵′ id×𝑏 𝐴′ ×𝐵 𝑎×id 𝐴×𝐵 we
see that it suffices to consider pullback along one side at a time. Proposition 5.2.4
and Exercise 5.3.i prove that pullback along 𝑏∶ 𝐵′ → 𝐵 preserves cartesian
fibrations and cartesian functors, defining a restricted functor

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒦/𝐵

𝒞𝑎𝑟𝑡(𝒦)/𝐵′ 𝒦/𝐵′

𝑏∗ 𝑏∗

Since limits and isofibrations in 𝒞𝑎𝑟𝑡(𝒦)/𝐵 are created in 𝒦/𝐵, this restricted
functor is cosmological (see Lemma 10.1.1). Applying this result to the map

𝐴 × 𝐵′ 𝐴 × 𝐵

𝐴

id×𝑏

𝜋 𝜋

in the ∞-cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴, we conclude that pullback restricts to define a
cosmological functor

𝒞𝑎𝑟𝑡(𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋∶ 𝐴×𝐵↠𝐴 (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋∶ 𝐴×𝐵↠𝐴 𝒦/𝐴×𝐵

𝒞𝑎𝑟𝑡(𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋∶ 𝐴×𝐵′↠𝐴 (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋∶ 𝐴×𝐵′↠𝐴 𝒦/𝐴×𝐵′

(id×𝑏)∗ (id×𝑏)∗ (id×𝑏)∗

Lemma 7.2.5. If 𝐴 𝑞 𝐸 𝑝 𝐵 is a two-sided fibration from 𝐴 to 𝐵, 𝑣∶ 𝐴 ↠ 𝐶
is a cocartesian fibration and 𝑢∶ 𝐵 ↠ 𝐷 is a cartesian fibration, then the
composite span

𝐶 𝐴 𝐸 𝐵 𝐷𝑣 𝑞 𝑝 ᵆ

defines a two-sided fibration from 𝐶 to 𝐷. Moreover, a cartesian functor ℎ
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between two-sided fibrations from 𝐴 to 𝐵 induces a cartesian functor between
two-sided fibrations from 𝐶 to 𝐷:

𝐸

𝐶 𝐴 𝐵 𝐷

𝐹

ℎ

𝑝𝑞

𝑣 ᵆ

𝑠 𝑟

This whiskering composition does not define a cosmological functor from
𝐴\ℱ𝑖𝑏(𝒦)/𝐵 to 𝐶\ℱ𝑖𝑏(𝒦)/𝐷 since the functor defined by composition with an
isofibration (𝑣 × 𝑢)∗∶ 𝒦/𝐴×𝐵 → 𝒦/𝐶×𝐷 does not preserve flexible weighted
limits (see Non-Example 1.3.6).

Proof By Theorem 7.1.4, it suffices to consider composition on one side at
a time, say with a cocartesian fibration 𝑣∶ 𝐴 ↠ 𝐶. Working in the ∞-cosmos
𝒞𝑎𝑟𝑡(𝒦)/𝐵, we are given cocartesian fibrations

𝐸 𝐴 × 𝐵 𝐴 × 𝐵 𝐶 × 𝐵

𝐵 𝐵
𝑝

(𝑞,𝑝)

𝜋 𝜋

𝑣×id

𝜋

These compose to define a cocartesian fibration

𝐸 𝐶 × 𝐵

𝐵
𝑝

(𝑣𝑞,𝑝)

𝜋

and hence a two-sided fibration from 𝐶 to 𝐵, as desired.
By Lemma 5.2.3, the 𝑣𝑞-cocartesian cells are the 𝑞-cocartesian lifts of the

𝑣-cocartesian cells. If ℎ is a cartesian functor from 𝑞 to 𝑠, then these are clearly
preserved, proving that ℎ also defines a cartesian functor from 𝑣𝑞 to 𝑣𝑠. By
Proposition 7.1.7(iv) this proves that ℎ defines a cartesian functor between the
whiskered two-sided fibrations.

Proposition 7.2.4 and Lemma 7.2.5 combine to prove that two-sided fibrations
can be composed “horizontally.”

Proposition 7.2.6. The pullback of a two-sided fibration from 𝐴 to 𝐵 along
a two-sided fibration from 𝐵 to 𝐶 defines a two-sided fibration from 𝐴 to 𝐶 as
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displayed.

𝐸 ×
𝐵
𝐹

𝐸 𝐹

𝐴 𝐵 𝐶

𝜋1 ⌜ 𝜋0

𝑞 𝑝 𝑠 𝑟

Proof The composite two-sided fibration is constructed in two stages, first by
pulling back

𝐸 ×
𝐵
𝐹 𝐹

𝐸 × 𝐶 𝐵 × 𝐶

(𝜋1,𝑟𝜋0)
⌟

(𝑠,𝑟)

𝑝×𝐶

and then by composing the left leg with the cocartesian fibration 𝑞∶ 𝐸 ↠ 𝐴.
By Proposition 7.2.4 and Lemma 7.2.5, the result is a two-sided fibration from
𝐴 to 𝐶. Alternatively, the composite can be constructed by pulling back along
𝐴×𝑠 and composing with the cartesian fibration 𝑟∶ 𝐹 ↠ 𝐶, resulting in another
two-sided fibration from 𝐴 to 𝐶 that is canonically isomorphic to the first.

With these results in hand, we may add to our library of examples:

Example 7.2.7. If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration and 𝑞∶ 𝐹 ↠ 𝐴 is a
cocartesian fibration, then the span formed by composing with the product-
projections

𝐴 𝑞 𝐹 𝜋 𝐹 × 𝐸 𝜋 𝐸 𝑝 𝐵

defines a two-sided fibration from 𝐴 to 𝐵 by Exercise 7.1.i.

Example 7.2.8. By Proposition 7.1.6 and Proposition 7.2.4, a general comma
span

𝐶 Hom𝐴(𝑓, 𝑔) 𝐵
𝑝1 𝑝0

is a two-sided fibration, as a pullback of 𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴.

Example 7.2.9. By Proposition 7.2.6 and Example 7.2.8, horizontal compos-
ites of comma spans are also two-sided fibrations. For instance, the two-sided
fibrations 𝐴 𝑝𝑛 𝐴𝕟+𝟙 𝑝0 𝐴 are 𝑛-ary horizontal composites of the arrow span
𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴.

Other notable two-sided fibrations include horizontal composites of comma
spans, one instance of which features prominently in the next section.
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Exercises
Exercise 7.2.i. Consider a diagram in which ℎ and 𝑘 define cartesian functors
between two-sided fibrations from 𝐴 to 𝐵 and from 𝐵 to 𝐶, respectively:

𝐸 𝐹

𝐴 𝐵 𝐶

𝐸′ 𝐵′

𝑞 𝑝

ℎ 𝑘

𝑠 𝑟

𝑞′ 𝑝′ 𝑠′ 𝑟′

Prove that ℎ and 𝑘 pull back to define a cartesian functor (ℎ, 𝑘)∶ 𝐸×
𝐵
𝐹 → 𝐸′×

𝐵
𝐹′

between two-sided fibrations from 𝐴 to 𝐶.

7.3 The Two-Sided Yoneda Lemma

In this section, we prove a two-sided version of the Yoneda lemma using the
following notion of representable two-sided fibration:

Definition 7.3.1. For any span of generalized elements 𝐴 𝑎 𝑋 𝑏 𝐵, the span

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏)

Hom𝐴(𝑎, 𝐴) Hom𝐵(𝐵, 𝑏)

𝐴 𝑋 𝐵

𝜋1 ⌜ 𝜋0

𝑝1 𝑝0 𝑝1 𝑝0

defines a two-sided fibration from 𝐴 to 𝐵 that we refer to as the two-sided
fibration represented by 𝑎 and 𝑏. As is the case for one-sided representables,
there is a canonical generalized element (⌜id𝑎⌝, ⌜id𝑏⌝)∶ 𝑋 → Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏) in the fiber over (𝑎, 𝑏)∶ 𝑋 → 𝐴 × 𝐵.

The terminology of Definition 7.3.1 is justified by the Yoneda lemma for
two-sided fibrations, which we prove using the Yoneda lemma for generalized
elements of Corollary 5.7.19.

Theorem 7.3.2 (Yoneda lemma). For any span 𝐴 𝑎 𝑋 𝑏 𝐵 and any two-sided
fibration 𝐴 𝑞 𝐸 𝑝 𝐵, restriction along the element (⌜id𝑎⌝, ⌜id𝑏⌝)∶ 𝑋 →
Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏) defines an equivalence of quasi-categories

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏)

𝐴 × 𝐵

(𝑝1𝜋1,𝑝0𝜋0)
,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼

ev(⌜id𝑎⌝,⌜id𝑏⌝)Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝑋

𝐴 × 𝐵

(𝑎,𝑏) ,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠
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Proof We prove this result using the perspective of Theorem 7.1.4(i), consider-
ing the target two-sided fibration 𝐴 𝑞 𝐸 𝑝 𝐵 in an ∞-cosmos 𝒦 as a cartesian
fibration over 𝜋∶ 𝐴 × 𝐵 ↠ 𝐴 in the ∞-cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴×𝐵. We deduce
this result by applying Corollary 5.7.19 twice: first for cartesian fibrations over
𝜋∶ 𝐴 × 𝐵 ↠ 𝐴 in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 and then for cocartesian fibrations over 𝐴 in
𝒦.

To prepare for the first application of Yoneda, we need to produce a generalized
element with codomain 𝜋∶ 𝐴 × 𝐵 ↠ 𝐴 in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 from the map

𝑋 𝐴 × 𝐵

𝐴
𝑎

(𝑎,𝑏)

𝜋
(7.3.3)

over 𝐴. Corollary 5.7.19 supplies an equivalence

Funcart
𝐴 (Hom𝐴(𝑎, 𝐴)

𝑝1 𝐴,𝐴 × 𝐵
𝜋
𝐴) Fun𝐴(𝑋

𝑎
𝐴,𝐴 × 𝐵

𝜋
𝐴)∼

ev⌜id𝑎⌝

which tells us that the reflection of 𝑎∶ 𝑋 → 𝐴 into 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 is given by
𝑝1∶ Hom𝐴(𝑎, 𝐴) ↠ 𝐴. So we take our generalized element to be the cartesian
functor between cocartesian fibrations over 𝐴

Hom𝐴(𝑎, 𝐴) 𝐴 × 𝐵

𝐴
𝑝1

(𝑝1,𝑏𝑝0)

𝜋
(7.3.4)

which restricts along ⌜id𝑎⌝∶ 𝑋 → Hom𝐴(𝑎, 𝐴) to (7.3.3).
By Corollary 5.7.19 once more, the reflection of the object (7.3.4) from

(𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋∶ 𝐴×𝐵↠𝐴 into 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 is given by the codomain projection
from its right comma representation, formed in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴. This recovers the
two-sided fibration

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏) 𝐴 × 𝐵

𝐴

(𝑝1𝜋1,𝑝0𝜋0)

𝑝1𝜋1 𝜋

Thus, that result supplies an equivalence

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴)×
𝑋

Hom𝐵(𝐵, 𝑏)

𝐴 × 𝐵

,
𝐸

𝐴 × 𝐵

⎞
⎟
⎟
⎟
⎠

∼

ev(id,⌜id𝑏𝑝0⌝)Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴)

𝐴 × 𝐵

(𝑝1,𝑏𝑝0) ,
𝐸

𝐴 × 𝐵

⎞
⎟
⎟
⎟
⎠
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where the right-hand functor space is defined by the pullback

Funcart
𝐴×𝐵(Hom𝐴(𝑎, 𝐴), 𝐸) Funcart

𝐴 (Hom𝐴(𝑎, 𝐴)
𝑝1 𝐴, 𝐸

𝑞
𝐴)

𝟙 Funcart
𝐴 (Hom𝐴(𝑎, 𝐴)

𝑝1 𝐴,𝐴 × 𝐵
𝜋
𝐴)

⌟
(𝑞,𝑝)∗

(𝑝1,𝑏𝑝0)

of functor spaces in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴. Corollary 5.7.19 again supplies natural equiv-
alences

Funcart
𝐴 (Hom𝐴(𝑎, 𝐴)

𝑝1 𝐴, 𝐸
𝑞
𝐴) Fun𝐴(𝑋, 𝐸)

Funcart
𝐴 (Hom𝐴(𝑎, 𝐴)

𝑝1 𝐴,𝐴 × 𝐵
𝜋
𝐴) Fun𝐴(𝑋, 𝐴 × 𝐵)

(𝑞,𝑝)∗

∼

ev⌜id𝑎⌝

(𝑞,𝑝)∗

∼

ev⌜id𝑎⌝

which induce an equivalence between the fiber of the left-hand isofibration over
(𝑝1, 𝑏𝑝0) and the fiber of the right-hand isofibration over (𝑝1, 𝑏𝑝0) ⋅ ⌜id𝑎⌝ =
(𝑎, 𝑏). To compute this fiber, observe that the right-hand isofibration is itself a
pullback

Fun𝐴×𝐵(𝑋, 𝐸) Fun𝐴(𝑋, 𝐸) Fun(𝑋, 𝐸)

𝟙 Fun𝐴(𝑋, 𝐴 × 𝐵) Fun(𝑋, 𝐴 × 𝐵)

𝟙 Fun(𝑋, 𝐴)

⌟
(𝑞,𝑝)∗

⌟

𝑞∗
(𝑞,𝑝)

(𝑎,𝑏) ⌟
𝜋∗

𝑎

The composite equivalence is the map defined by precomposition with the
canonical generalized element completing the proof.

Funcart
𝐴×𝐵(Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏), 𝐸) Funcart

𝐴×𝐵(Hom𝐴(𝑎, 𝐴), 𝐸)

Fun𝐴×𝐵(𝑋, 𝐸)

∼
ev(⌜id𝑎⌝,⌜id𝑏⌝)

∼

ev(id,⌜id𝑏𝑝0⌝)

∼ evid𝑎

As with Corollary 5.7.19, we interpret Theorem 7.3.2 as defining a left
biadjoint to the inclusion of the subcategory of two-sided fibrations, sending a
span 𝐴 𝑎 𝑋 𝑏 𝐵 to the two-sided isofibration constructed in Definition 7.3.1.
In the case of spans represented by a single nonidentity functor a “one-sided”
version of Theorem 7.3.2, which is much more simply established, may be
preferred:
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Proposition 7.3.5 (one-sided Yoneda for two-sided fibrations). For any funct-
or 𝑓∶ 𝐴 → 𝐵 and two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵, restriction along
⌜id𝑓⌝∶ 𝐴 → Hom𝐵(𝐵, 𝑓) induces an equivalence of quasi-categories

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐵(𝐵, 𝑓)

𝐴 × 𝐵

(𝑝1,𝑝0)
,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼

ev⌜id𝑓⌝ Fun𝐴×𝐵
⎛
⎜
⎜
⎝

𝐴

𝐴 × 𝐵

(id𝐴,𝑓) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎠

.

Proof This follows by applying the Yoneda lemma of Theorem 5.7.3 to the
element (id, 𝑓)∶ 𝐴 → 𝐴 × 𝐵 and the cartesian fibration (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 in
the ∞-cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴.

Exercises
Exercise 7.3.i. State and prove the other one-sided Yoneda lemma for two-sided
fibrations, establishing an equivalence of functor spaces induced by restricting
along the functor ⌜id𝑓⌝∶ 𝐵 → Hom𝐴(𝑓, 𝐴).

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑓, 𝐴)

𝐴 × 𝐵

(𝑝1,𝑝0)
,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼ Fun𝐴×𝐵
⎛
⎜
⎜
⎝

𝐵

𝐴 × 𝐵

(𝑓,id) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎠

7.4 Modules as Discrete Two-Sided Fibrations

We now turn our attention to the special properties of certain two-sided fibrations,
such as comma spans, which are discrete as objects in a sliced ∞-cosmos.

Definition 7.4.1. A module from 𝐴 to 𝐵 in an ∞-cosmos 𝒦 is a two-sided
fibration 𝐴 𝑞 𝐸 𝑝 𝐵 that is a discrete object in 𝐴\ℱ𝑖𝑏(𝒦)/𝐵.

An object in the cosmologically embedded ∞-cosmos 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵
is discrete in there if and only if it is discrete as an object of𝒦/𝐴×𝐵 (see Exercise
6.3.iv). Our work in this chapter enables us to give a direct characterization of
modules:

Proposition 7.4.2. A two-sided isofibration 𝐴 𝑞 𝐸 𝑝 𝐵 defines a module
from 𝐴 to 𝐵 if and only if it is

(i) cocartesian on the left,
(ii) cartesian on the right,
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(iii) and discrete as an object of 𝒦/𝐴×𝐵.

Proof Comparing Definition 7.4.1 with the statement, we see that we need only
argue that these three properties suffice to prove that 𝐸 is a two-sided fibration
from 𝐴 to 𝐵. Theorem 7.1.4(iv) tells us that a two-sided fibration 𝐸 from 𝐴 to
𝐵 in 𝒦 is a two-sided isofibration that is cocartesian on the left, cartesian on
the right, and for which a certain natural transformation with codomain 𝐸 in
𝒦/𝐴×𝐵 is an isomorphism. When 𝐸 is a discrete object in 𝒦/𝐴×𝐵 all natural
transformations with codomain 𝐸 are invertible, so properties (i), (ii), and (iii)
suffice.

The following properties of modules are easily deduced from our results about
two-sided fibrations.

Lemma 7.4.3. If 𝐴 𝑞 𝐸 𝑝 𝐵 defines a module from 𝐴 to 𝐵 in an ∞-cosmos
𝒦, then

(i) The functors displayed below define a discrete cocartesian fibration and
a discrete cartesian fibration, respectively, in the ∞-cosmoi 𝒞𝑎𝑟𝑡(𝒦)/𝐵
and 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴.

𝐸 𝐴 × 𝐵 𝐸 𝐴 × 𝐵

𝐵 𝐴
𝑝

(𝑞,𝑝)

𝜋 𝑞

(𝑞,𝑝)

𝜋

(ii) The functors 𝑞∶ 𝐸 ↠ 𝐴 and 𝑝∶ 𝐸 ↠ 𝐵 respectively define a cocartesian
fibration and a cartesian fibration in 𝒦.

(iii) For any natural transformation 𝜓 with codomain 𝐸, 𝜓 is 𝑝-cartesian if
and only if 𝑞𝜓 is invertible, and 𝜓 is 𝑞-cocartesian if and only if 𝑝𝜓 is
invertible.

(iv) In particular, any natural transformation that is fibered over𝐴×𝐵 is both
𝑝- and 𝑞-cocartesian and any map of spans from a two-sided fibration

𝐹

𝐴 𝐵

𝐸

𝑠 𝑟

ℎ

𝑞 𝑝

to a module defines a cartesian functor of two-sided fibrations, and also
a cartesian functor from 𝑠 to 𝑞 and from 𝑟 to 𝑝.

Proof By Lemma 7.1.1, conditions (ii) and (iii) of Proposition 7.4.2 combine
to tell us that the two-sided isofibration (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 defines a discrete
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cartesian fibration in 𝒦/𝐴. Since modules are two-sided fibrations and discrete-
ness is reflected by cosmological embeddings, in fact (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴×𝐵 defines
a discrete cartesian fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴, proving (i).

Statement (ii) holds for any two-sided fibration (see Lemma 7.1.1(iv)). The
point of reasserting it here is that it is to emphasize that the legs of a module are
not necessarily discrete fibrations themselves (see Exercise 7.4.i).

One direction of statement (iii) is proven as Lemma 7.1.1(iv). For the con-
verse, consider a natural transformation 𝜓 with codomain 𝐸 and suppose 𝑞𝜓 is
invertible. Composing with a lift of 𝑞𝜓−1 along the isofibration 𝑞∶ 𝐸 ↠ 𝐴, we
see that 𝜓 is isomorphic to a natural transformation 𝜓′ with 𝑞𝜓′ an identity. By
isomorphism stability of 𝑝-cartesian transformations, it suffices to prove that
𝜓′ is 𝑝-cartesian. By Proposition 3.6.2, 𝜓′ can be lifted along the smothering
2-functor 𝔥(𝒦/𝐴) → (𝔥𝒦)/𝐴 to a natural transformation in the sliced∞-cosmos
𝒦/𝐴 with codomain 𝑞∶ 𝐸 ↠ 𝐴; as we typically perform such liftings without
comment, we retain the notation 𝜓′ for the fibered natural transformation in
𝒦/𝐴. Since (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 is a discrete cartesian fibration in 𝒦/𝐴, every
such natural transformation is (𝑞, 𝑝)-cartesian. By Theorem 5.2.8(iii), it follows
that 𝜓′ is isomorphic to a whiskered copy of the counit of the fibered adjunction
Δ𝑝 ⊣ 𝑟 over 𝐴× 𝐵. As the same data, regarded this time as a fibered adjunction
over 𝐵, witnesses the fact that 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, Theorem
5.2.8(iii) also tells us that 𝜓′ and thus 𝜓 is 𝑝-cartesian, as claimed.

Statement (iv) follows from (iii) and Proposition 7.1.7(iv).

As the modules are exactly the discrete objects in the ∞-cosmos of two-sided
fibrations:

Corollary 7.4.4. For any ∞-categories 𝐴 and 𝐵 in an ∞-cosmos 𝒦, there is
a cosmologically embedded ∞-cosmos

𝐴\ℳ𝑜𝑑(𝒦)/𝐵 𝐴\ℱ𝑖𝑏(𝒦)/𝐵

𝒦/𝐴×𝐵

defined as a full subcategory of either the ∞-cosmos of two-sided fibrations
from 𝐴 to 𝐵 or of the ∞-cosmos of isofibrations from 𝐴 to 𝐵.

Proof Proposition 6.1.6 proves that 𝐴\ℳ𝑜𝑑(𝒦)/𝐵 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 is a cosmo-
logically embedded sub ∞-cosmos in the ∞-cosmos of Proposition 7.2.2, while
Lemma 7.4.3(iv) proves that the inclusion 𝐴\ℳ𝑜𝑑(𝒦)/𝐵 ↪ 𝒦/𝐴×𝐵 is also
full.

An important property of modules is that they are stable under pullback:
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Proposition 7.4.5. If 𝐴 ↞ 𝐸 ↠ 𝐵 is a module from 𝐴 to 𝐵 and 𝑎∶ 𝐴′ → 𝐴
and 𝑏∶ 𝐵′ → 𝐵 are any pair of functors, then the pullback defines a module
𝐴′ ↞ 𝐸(𝑏, 𝑎) ↠ 𝐵′ from 𝐴′ to 𝐵′.

𝐸(𝑏, 𝑎) 𝐸

𝐴′ × 𝐵′ 𝐴 × 𝐵

⌟

𝑎×𝑏

Proof The cosmological functor (𝑎, 𝑏)∗∶ 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ⟶ 𝐴′\ℱ𝑖𝑏(𝒦)/𝐵′ of
Proposition 7.2.4, like all cosmological functors, preserves discrete objects.

Applying Proposition 7.4.5 to a pair of elements 𝑎∶ 1 → 𝐴 and 𝑏∶ 1 → 𝐵,
we see that a module from𝐴 to 𝐵 is a two-sided fibration whose fibers 𝐸(𝑏, 𝑎) are
discrete ∞-categories. The converse does not generally hold, as being discrete
as an object of the sliced ∞-cosmos 𝒦/𝐴×𝐵 is a stronger condition than merely
having discrete fibers. However, when 𝒦 is an ∞-cosmos of (∞, 1)-categories,
Proposition 12.2.3 proves that discreteness in a slice is implied by fiberwise
discreteness.

The prototypical examples of modules are given by the arrow and comma
∞-category constructions.

Proposition 7.4.6 (comma ∞-categories are modules).

(i) For any ∞-category 𝐴, the arrow ∞-category 𝐴𝟚 defines a module from
𝐴 to 𝐴.

(ii) For any cospan 𝐶 𝑔 𝐴 𝑓 𝐵, the comma ∞-category Hom𝐴(𝑓, 𝑔)
defines a module from 𝐶 to 𝐵.

As just remarked, the fact that 𝐴𝟚 ↠ 𝐴×𝐴 is discrete is related to but stronger
than the fact, proven in Proposition 3.4.10, that the mapping space between any
pair of elements of 𝐴 is a discrete ∞-category.

Proof By Proposition 7.4.5, the second statement follows from the first, but it
is no harder to prove both statements at once from our suite of established results.
Proposition 7.1.6 and Example 7.2.8 prove that arrow and comma spans define
two-sided fibrations, so it remains only to verify the discreteness conditions. By
Lemma 5.5.1, discreteness of 𝐴𝟚 ↠ 𝐴× 𝐴 in the sliced ∞-cosmos over 𝐴 × 𝐴
and Hom𝐴(𝑓, 𝑔) ↠ 𝐶 × 𝐵 in the sliced ∞-cosmos over 𝐶 × 𝐵 are immediate
consequences of 2-cell conservativity of Proposition 3.2.5 and Proposition 3.4.6:
for the latter, if 𝜏 is any 2-cell with codomain Hom𝐴(𝑓, 𝑔) so that 𝑝1𝜏 and 𝑝0𝜏
are invertible, then 𝜏 is itself invertible.
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Two special cases of these comma modules, those studied in §3.5, deserve a
special name:

Definition 7.4.7. To any functor 𝑓∶ 𝐴 → 𝐵 between ∞-categories

(i) the module Hom𝐵(𝐵, 𝑓) from𝐴 to 𝐵 is right or covariantly represented
by 𝑓, while

(ii) the module Hom𝐵(𝑓, 𝐵) from 𝐵 to 𝐴 is left or contravariantly repre-
sented by 𝑓.

More generally, a module is covariantly or contravariantly represented by 𝑓
if it is fibered equivalent to the left or right represented modules.

As in §5.7, the Yoneda lemma for two-sided fibrations simplifies when map-
ping into a module on account of the observation in Lemma 7.4.3(iv) that any
map of spans from a two-sided fibration to a module defines a cartesian functor.

Theorem 7.4.8 (Yoneda for modules). For any span 𝐴 𝑎 𝑋 𝑏 𝐵 and any
module 𝐴 𝑞 𝐸 𝑝 𝐵, restriction along (⌜id𝑎⌝, ⌜id𝑏⌝)∶ 𝑋 → Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏) defines an equivalence of Kan complexes

Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏)

𝐴 × 𝐵

(𝑝1𝜋1,𝑝0𝜋0)
,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼
ev(⌜id𝑎⌝,⌜id𝑏⌝)Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝑋

𝐴 × 𝐵

(𝑎,𝑏) ,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

and for any functors 𝑓∶ 𝐴 → 𝐵 or 𝑔∶ 𝐵 → 𝐴, restriction along ⌜id𝑓⌝∶ 𝐴 →
Hom𝐵(𝐵, 𝑓) or ⌜id𝑔⌝∶ 𝐵 → Hom𝐴(𝑔, 𝐴) define equivalences of Kan complexes

Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐵(𝐵, 𝑓) 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(𝑝1,𝑝0) , (𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼

ev⌜id𝑓⌝ Fun𝐴×𝐵
⎛
⎜
⎜
⎝

𝐴 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(id,𝑓) , (𝑞,𝑝)

⎞
⎟
⎟
⎠

Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑔, 𝐴) 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(𝑝1,𝑝0) , (𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼

ev⌜id𝑔⌝ Fun𝐴×𝐵
⎛
⎜
⎜
⎝

𝐵 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(𝑔,id) , (𝑞,𝑝)

⎞
⎟
⎟
⎠

.

We have not yet explained the curious terminology – why we refer to discrete
two-sided fibrations as “modules.” This moniker is intended to suggest a deep
structural analogy between the calculus of modules and the calculus of the more
familiar algebraic structure, a subject to which we now turn.
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Exercises
Exercise 7.4.i. Demonstrate by means of an example that if 𝐴 𝑞 𝐸 𝑝 𝐵
defines a module from 𝐴 to 𝐵 then it is not necessarily the case that 𝑝∶ 𝐸 ↠ 𝐵
is a discrete cartesian fibration or 𝑞∶ 𝐸 ↠ 𝐴 is a discrete cocartesian fibration.

Exercise 7.4.ii.

(i) Explain why the two-sided fibration (𝑝𝑛−1, 𝑝0)∶ 𝐴𝕟 ↠ 𝐴×𝐴 of Propo-
sition 7.1.6 does not define a module for 𝑛 > 2.

(ii) Conclude that the horizontal composite of modules, as defined in Propo-
sition 7.2.6, is not necessarily a module.

Exercise 7.4.iii. State and prove an analogue of Exercise 7.1.ii characterizing
modules from 1 to 𝐵 and modules from 𝐵 to 1, and resolve any apparent conflicts
between this statement and Exercise 7.4.i.
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The Calculus of Modules

The calculus of modules between ∞-categories bears a strong resemblance to
the calculus of (bi)modules between unital rings. Here ∞-categories take the
place of rings, with functors between ∞-categories playing the role of ring
homomorphisms, which we display vertically in the following table. A module
𝐸 from 𝐴 to 𝐵, like the two-sided fibrations considered in Chapter 7, is an
∞-category on which 𝐴 “acts on the left” and 𝐵 “acts on the right” and these
actions commute; this is analogous to the notation of 𝐴–𝐵 bimodule in ring
theory and explains our choice of terminology. A module 𝐴 𝑞 𝐸 𝑝 𝐵 will now
be depicted as 𝐴 𝐸 𝐵 whenever explicit names for the legs of the constituent
span are not needed.

unital rings 𝐴 ∞-categories

ring homomorphisms
𝐴′

𝐴

𝑓 ∞-functors

bimodules between rings 𝐴 𝐵𝐸 modules between
∞-categories

module maps
𝐴′ 𝐵′

𝐴 𝐵

𝑓 ⇓𝛼

𝐸′

𝑔

𝐸

module maps

Finally, there is a notion of module map whose boundary is a square comprised
of two modules and two functors as displayed. In ring theory, a module map with
this boundary is given by an𝐴′–𝐵′ module homomorphism 𝐸′ → 𝐸(𝑔, 𝑓), whose
codomain is the 𝐴′–𝐵′ bimodule defined by restricting the scalar multiplication
in the 𝐴–𝐵 module 𝐸 along the ring homomorphisms 𝑓 and 𝑔. A similar idea is
encoded by Definition 8.1.4.

305
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The analogy extends deeper than this: unital rings, ring homomorphisms,
bimodules, and module maps define a proarrow equipment, in the sense of
Wood [132].1 Our main result in this chapter is Theorem 8.2.6, which asserts
that∞-categories, functors, modules, and module maps in any∞-cosmos define
a virtual equipment, in the sense of Cruttwell and Shulman [32].

As a first step, in §8.1 we introduce the double category of two-sided isofibra-
tions, which restricts to define a virtual double category of modules. A double
category is a sort of 2-dimensional category with objects; two varieties of 1-
morphisms, the “horizontal” and the “vertical”; and 2-dimensional cells fitting
into “squares” whose boundaries consist of horizontal and vertical 1-morphisms
with compatible domains and codomains (see Definition B.1.9). A motivating
example from abstract algebra is the double category of modules: objects are
rings, vertical morphisms are ring homomorphisms, horizontal morphisms are
bimodules, and whose squares are bimodule homomorphisms. Vertical composi-
tion is by composing homomorphisms, a strictly associative and unital operation,
while horizontal composition is by tensor product of modules, which is associa-
tive and unital up to coherent natural isomorphism. In the literature, this sort
of structure is sometimes called a pseudo double category – morphisms and
squares compose strictly in the “vertical” direction but only up to isomorphism
in the “horizontal” direction – but we refer to this simply as a “double category”
as it is the only variety considered in the main text.2

Our aim in §8.1 is to describe a similar structure whose objects and vertical
morphisms are the ∞-categories and functors in any fixed ∞-cosmos, whose
horizontal morphisms are modules, and whose squares are module maps. If the
horizontal morphisms are replaced by the larger class of two-sided fibrations or
the still larger class of two-sided isofibrations, then these morphisms assemble
into a double category with the horizontal composition operation defined by
Proposition 7.2.6 (see Proposition 8.1.6). However, this horizontal composition
operation does not preserve modules: the arrow∞-category 𝐴𝟚 defines a module
from 𝐴 to 𝐴 whose horizontal composite with itself is equivalent to the two-
sided fibration (𝑝2, 𝑝0)∶ 𝐴𝟛 ↠ 𝐴×𝐴 of Proposition 7.1.6, which is not discrete
in the sliced ∞-cosmos over 𝐴 × 𝐴. To define a genuine “tensor product for
modules” operation requires a two-stage construction: first forming the pullback
that defines a composite two-sided fibration as in Proposition 7.2.6, and then
reflecting this into a two-sided discrete fibration by means of some sort of
1 This can be seen as a special case of the prototypical equipment comprised of 𝒱-categories,
𝒱-functors, 𝒱-modules, and 𝒱-natural transformations between them, for any closed symmetric
monoidal category 𝒱. The equipment for rings is obtained from the case where 𝒱 is the category
of abelian groups by restricting to abelian group enriched categories with a single object.

2 Strict double categories make a brief appearance in Theorem B.3.6 to express the functoriality
of the mates correspondence.



8.1 The Double Category of Two-Sided Isofibrations 307

“homotopy coinverter” construction. As colimits that are not within the purview
of the axioms of an ∞-cosmos, this presents somewhat of an obstacle.3

Rather than leave the comfort of our axiomatic framework in pursuit of a
double category of modules, we instead describe the structure that naturally
arises within the axiomatization, which turns out to be familiar to category
theorists and robust enough for our desired applications. We first demonstrate
that ∞-categories, functors, modules, and module maps assemble into a virtual
double category, a weaker structure than a double category in which cells are
permitted to have a multi horizontal source, as a “virtual” replacement for
horizontal composition of modules. Virtual double categories relate to double
categories as multicategories relate to monoidal categories; indeed virtual double
categories are the “generalized multicategories” defined relative to the free
category monad on directed graphs [32, 76].

A virtual equipment is a virtual double category satisfying two additional
axioms. One of these provides a “restriction of scalars” operation, allowing a
horizontal morphism𝐴 𝐸 𝐵 to be pulled back along a pair of vertical morphisms
𝑓∶ 𝐴′ → 𝐴 and 𝑔∶ 𝐵′ → 𝐵. The other condition requires each object to have
a horizontal “unit” morphism, satisfying a suitable universal property that
serves as a substitute, in the absence of a composition operation, for the unital
composition rules. Once the definition of a virtual equipment is given in §8.2,
these axioms follow easily from the results of Chapter 7. The final two sections
are devoted to exploring the consequences of this structure, which are put to full
use in the development of the formal category theory of∞-categories in Chapter
9. In §8.3, we explain how certain horizontal composites of modules can be
recognized in the virtual equipment, even if the general construction of the tensor
product of an arbitrary composable pair of modules is not known. The final §8.4
collects together many special properties of the modules 𝐴 Hom𝐵(𝐵,𝑘) 𝐵 and
𝐵 Hom𝐵(𝑘,𝐵) 𝐴 represented by a functor 𝑘∶ 𝐴 → 𝐵 of ∞-categories, revisiting
some of the properties first established in §3.5.

8.1 The Double Category of Two-Sided Isofibrations

Recall from Corollary 7.4.4 that the ∞-cosmos of modules may be defined
as a full subcategory of either the ∞-cosmos of two-sided fibrations or the
∞-cosmos of two-sided isofibrations. This presents us with two options for
constructing the virtual double category of modules, which may be realized as a
3 The ∞-cosmoi that one encounters in practice in fact admit all flexible weighted homotopy

colimits – including homotopy coinverters in particular – as they tend to be accessible in a sense
defined by Bourke, Lack, and Vokřínek [22] (see Digression E.1.8).
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full subcategory of the double category of two-sided fibrations or of the double
category of two-sided isofibrations. We adopt the latter tactic as it is marginally
simpler, but the reader is invited to opt for the former route instead (see Exercise
8.1.iv).

Our first task is to define the 2-dimensional morphisms in the double categor-
ies that we will introduce.

Definition 8.1.1. A fibered map of two-sided isofibrations from𝐴 𝑞 𝐸 𝑝 𝐵
to 𝐴 𝑠 𝐹 𝑟 𝐵 is a fibered isomorphism class of strictly commuting functors

𝐸

𝐴 𝐵

𝐹

𝑎

𝑝𝑞

𝑟𝑠

where two such functors 𝑎 and 𝑎′ are considered equivalent if there exists a
natural isomorphism 𝛾∶ 𝑎 ≅ 𝑎′ so that 𝑠𝛾 = id𝑞 and 𝑟𝛾 = id𝑝.

When 𝐴 𝑞 𝐸 𝑝 𝐵 and 𝐴 𝑠 𝐹 𝑟 𝐵 are modules, we refer to a fibered map
of two-sided isofibrations between them as fibered map of modules from 𝐸 to
𝐹.

Observation 8.1.2 (the 1-categories of modules and fibered maps). The 1-cat-
egory of two-sided isofibrations from 𝐴 to 𝐵 in an ∞-cosmos 𝒦 and fibered
maps may be obtained as a quotient of the quasi-categorically enriched category
𝒦/𝐴×𝐵, or of its homotopy 2-category 𝔥(𝒦/𝐴×𝐵), or of the slice homotopy 2-
category 𝔥𝒦/𝐴×𝐵. The quotient 1-category has the same collection of objects
and has isomorphism classes of functors as its morphisms.

By Lemma 7.4.3, the 1-category of modules from 𝐴 to 𝐵 and fibered maps
is a full subcategory, or alternatively may be regarded as a quotient of the
Kan complex enriched category 𝐴\ℳ𝑜𝑑(𝒦)/𝐵, or of its homotopy 2-category
𝔥(𝐴\ℳ𝑜𝑑(𝒦)/𝐵) in the same manner.

The 1-categories of Observation 8.1.2 are of interest because they precisely
capture the correct notion of equivalence between two-sided isofibrations or
modules first introduced in Definition 3.2.7.

Lemma 8.1.3. In an ∞-cosmos 𝒦:

(i) A pair of two-sided isofibrations are equivalent in 𝒦/𝐴×𝐵 if and only if
they are isomorphic in the 1-category of two-sided isofibrations from 𝐴
to 𝐵.

(ii) A pair of modules are equivalent over 𝐴 times 𝐵 if and only if they are
isomorphic in the 1-category of modules from 𝐴 to 𝐵.



8.1 The Double Category of Two-Sided Isofibrations 309

Each of the definitions just presented admits a common generalization, which
defines the 2-dimensional maps inhabiting squares.

Definition 8.1.4 (maps in squares). A map of modules or a map of two-sided
isofibrations from 𝐴′ 𝑞′ 𝐸′ 𝑝′ 𝐵′ to 𝐴 𝑞 𝐸 𝑝 𝐵 over 𝑓∶ 𝐴′ → 𝐴 and
𝑔∶ 𝐵′ → 𝐵, depicted as

𝐴′ 𝐵′

𝐴 𝐵

𝑓 ⇓𝛼

𝐸′

𝑔

𝐸

is a fibered isomorphism class of strictly commuting functors 𝑎

𝐴′ 𝐸′ 𝐵′

𝐴 𝐸 𝐵

𝑓

𝑞′ 𝑝′

𝑎 𝑔

𝑞 𝑝

where two such functors 𝑎 and 𝑎′ are considered equivalent if there exists a
natural isomorphism 𝛾∶ 𝑎 ≅ 𝑎′ so that 𝑞𝛾 = id𝑎𝑞′ and 𝑝𝛾 = id𝑏𝑝′.

Observation 8.1.5. In the case of modules or two-sided isofibrations, the
functor space Fun𝑓×𝑔(𝐸′, 𝐸) of maps from 𝐸′ to 𝐸 over 𝑓 × 𝑔 is defined by the
pullback

Fun𝑓×𝑔(𝐸′, 𝐸) Fun(𝐸′, 𝐸)

𝟙 Fun(𝐸′, 𝐴 × 𝐵)

⌟
(𝑞,𝑝)

(𝑓𝑞′,𝑔𝑝′)

As in Observation 8.1.2, module maps are defined to be isomorphism classes of
objects in this functor space.

We now introduce the double category of two-sided isofibrations. This struc-
ture can be viewed either as a collection of data present in the homotopy 2-
category 𝔥𝒦 of an ∞-cosmos or as a quotient of quasi-categorically enriched
structures described in Exercise 8.1.i. In some sense the latter point of view
is more natural, since its horizontal composition is characterized by a strict
universal property and no isomorphism classes of maps are required, but the
2-categorical approach is more familiar and provides a convenient setting within
which to develop the formal category theory of ∞-categories.
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Proposition 8.1.6 (the double category of two-sided isofibrations). The homo-
topy 2-category of an ∞-cosmos 𝒦 supports a (non-unital) double category of
two-sided isofibrations whose:

• objects are ∞-categories,
• vertical arrows are functors,
• horizontal arrows 𝐴 𝐸 𝐵 are two-sided isofibrations 𝐴 𝑞 𝐸 𝑝 𝐵, and
• cells with boundary

𝐴′ 𝐵′

𝐴 𝐵

𝑓 ⇓𝛼

𝐸′

𝑔

𝐸

are maps of two-sided isofibrations over 𝑓×𝑔, or equivalently, are isomorph-
ism classes of objects in the quasi-category Fun𝑓×𝑔(𝐸′, 𝐸).

Proof Vertical composition of arrows and cells is by composition in 𝒦. The
composition of horizontal arrows is defined in Proposition 7.2.6, while the
horizontal composition of cells is defined in Exercise 7.2.i. By simplicial func-
toriality of pullback and composition in 𝒦, both constructions are associative
up to canonical natural isomorphism.

The double category just introduced does not contain horizontal unit arrows.
For technical reasons, we find it most convenient to leave them out.

Remark 8.1.7 (why the horizontal unit is missing). The unit for the span com-
position operation defined in Proposition 7.2.6 is the identity span, which is
not typically a two-sided isofibration. Rather than formally adjoin horizontal
units to the “double category” of Proposition 8.1.6, we find it less confusing
to leave them out because when we restrict to the structure of greatest interest
– the virtual equipment of modules – we will see that the arrow ∞-category
plays the role of the horizontal unit for composition in a sense to be described
in Proposition 8.2.4, even though it does not define a horizontal composition
unit for the span composition operation.

By Exercise 7.4.ii, modules do not form double category under span composi-
tion, which leads us to search for another categorical structure to axiomatize their
behavior. A virtual double category is a multicategorical analogue of a double
category appropriate for settings when horizontal composition and units may or
may not be defined. This notion has been studied by Burroni [24] and Leinster
[76] under various names, though we adopt the terminology and notation of
Cruttwell and Shulman [32].
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Definition 8.1.8 (virtual double category). A virtual double category consists
of

• a category of objects and vertical arrows
• for any pair of objects 𝐴, 𝐵, a collection of horizontal arrows 𝐴 ⇸ 𝐵
• cells, with boundary depicted as follows

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵𝑛

𝑓

𝐸1

⇓𝛼

𝐸2 𝐸𝑛

𝑔

𝐹

(8.1.9)

including, in the case 𝐴0 = 𝐴𝑛, those whose horizontal source has length
zero

• a composite cell as below-right, for any configuration as below-left

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶0 𝐶𝑛

𝑓0

𝐸11,…,𝐸1𝑘1

⇓

𝐸21,…,𝐸2𝑘2

𝑓1 ⇓

𝐸𝑛1,…,𝐸𝑛𝑘𝑛

⋯ ⇓ 𝑓𝑛

𝑔

𝐹1 𝐹2

⇓

𝐹𝑛

ℎ

𝐺

≕
𝐴0 ⋅ ⋅ 𝐴𝑛

𝐶0 𝐶𝑛

𝑔𝑓0

𝐸11 𝐸12,…,𝐸𝑛𝑘𝑛−1

⇓

𝐸𝑛𝑘𝑛

ℎ𝑓𝑛

𝐺

(8.1.10)
• an identity cell for every horizontal arrow

𝐴 𝐵

𝐴 𝐵

𝐸

⇓id𝐸

𝐸

so that composition of cells is associative and unital in the usual multicategorical
sense.

Lemma 8.1.11. There exists a virtual double category of two-sided isofibrations
whose:

• objects are ∞-categories,
• vertical arrows are functors,
• horizontal arrows are two-sided isofibrations, and
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• 𝑛-ary cells (8.1.9) are maps of two-sided isofibrations over 𝑓 × 𝑔

𝐴0 𝐴𝑛

𝐵0 𝐵𝑛

𝑓

𝐸1×
𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛

⇓𝛼 𝑔

𝐹

↭

𝐸1 ×
𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛

𝐴0 𝐴𝑛

𝐵0 𝐵𝑛

𝐹

𝑎𝑓 𝑔
(8.1.12)

whose single vertical source is the (𝑛 − 1)-fold span composite of the
sequence of spans comprising the vertical source in (8.1.9).

Proof The required composition laws can be defined by embedding the virtual
double categories into the double categories of Proposition 8.1.6. For instance,
the composition of a configuration as on the left of (8.1.10) can be defined by
horizontally composing the 𝑘 top cells in the double category of isofibrations,
and then vertically composing the result with the bottom cell. The result is a
𝑘1 +⋯+ 𝑘𝑛-ary cell in the virtual double category of the correct form.

It remains only to define the nullary cells4 which have an empty sequence as
their vertical domain

𝐴 𝐴

𝐵 𝐶

𝑓 ⇓𝛼 𝑔

𝐹

↭

𝐴

𝐵 𝐶

𝐹

𝑓 𝑔

𝑎

𝑠 𝑟

which we interpret as a 0-fold pullback, this being the identity span from 𝐴 to
𝐴. So the nullary cells displayed above-left are fibered isomorphism classes of
maps above-right where 𝑎 and 𝑎′ lie in the same equivalence class if there exists
a natural isomorphism 𝛾∶ 𝑎 ≅ 𝑎′ so that 𝑠𝛾 = id𝑓 and 𝑟𝛾 = id𝑔.

Remark 8.1.13. For instance, the map

𝐴

𝐴 𝐴

𝐴𝕀

Δ

𝑞1 𝑞0

↭
𝐴 𝐴

𝐴 𝐴

⇓𝛿

𝐴𝕀

defines a nullary morphism with codomain𝐴 𝐴𝕀 𝐴 in the virtual double categor-
y of two-sided isofibrations. Note, however, that despite the fact that Δ∶ 𝐴 ∼ 𝐴𝕀

4 Note the use of the symbol 𝐴 𝐴 to denote the nullary source of a nullary cell, adopted
so such cells fit naturally into pasting diagrams of cells in a virtual double category.
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defines an equivalence in the ambient ∞-cosmos, this cell does not define an
isomorphism in the virtual double category of any kind. This nullary morphism
endows 𝐴 𝐴𝕀 𝐴 with the structure of a unit in a sense suitable to virtual double
categories (see Exercise 8.2.iii). It is for this sort of reason that we left out the
identity horizontal arrows in Proposition 8.1.6.

Our main example of interest is a full sub virtual double category defined
by restricting the class of horizontal arrows and taking all cells between them.
Since the only operations given in the structure of a virtual double category
are vertical sources and targets, vertical identities, and vertical composition, it
is clear that this substructure is closed under all of these operations, and thus
inherits the structure of a virtual double category.

Corollary 8.1.14. For any ∞-cosmos 𝒦, there is a virtual double category of
modules 𝕄od(𝒦) defined as a full subcategory of the virtual double categories
of isofibrations whose

• objects are ∞-categories,
• vertical arrows are functors,
• horizontal arrows 𝐴 𝐸 𝐵 are modules 𝐸 from 𝐴 to 𝐵,
• 𝑛-ary cells are fibered isomorphism classes of maps of two-sided isofibra-

tions over 𝑓 × 𝑔:

𝐸1 ×
𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛

𝐴0 𝐴1 ⋯ 𝐴𝑛 𝐴0 𝐴𝑛

𝐵0 𝐵𝑛 𝐵0 𝐵𝑛
𝐹

𝑎𝑓

𝐸1

⇓𝛼

𝐸2 𝐸𝑛

𝑔 ↭ 𝑓 𝑔

𝐹

(8.1.15)

The 𝑛-ary module maps of (8.1.15) can be thought of as special cases of the
𝑛-ary cells of Lemma 8.1.11 where 𝐸1,… , 𝐸𝑛, 𝐹 are all required to be modules:
the single horizontal source in the diagram (8.1.12) is the two-sided fibration
defined by the (𝑛 − 1)-fold pullback of the sequence of modules comprising
the horizontal source in the left-hand diagram. We refer to the finite sequence
of modules occurring as the horizontal domain of an 𝑛-ary module map as
a compatible sequence of modules, which just means that their horizontal
sources and targets are compatible in the evident way.

A hint at the relevance of this notion of 𝑛-ary module map is given by the
following special case.
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Lemma 8.1.16. There is a bijection between 𝑛-ary module maps whose codo-
main module is a comma module as displayed below-left and natural transfor-
mations in the homotopy 2-category whose boundary is displayed above-right.

𝐸1 ×
𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛

𝐴0 𝐴1 ⋯ 𝐴𝑛 𝐴0 𝐴𝑛

𝐵 𝐶 𝐵 𝐶
𝐷

⇐𝑓

𝐸1

⇓

𝐸2 𝐸𝑛

𝑔 ↭ 𝑓 𝑔

Hom𝐷(ℎ,𝑘) 𝑘 ℎ

Proof Combine Definition 8.1.4 with Proposition 3.4.7.

For any pair of objects 𝐴 and 𝐵 in the virtual double category of modules,
there is a vertical 1-category of modules from 𝐴 to 𝐵 and module maps over a
pair of identity functors, which coincides with the 1-category of modules from
𝐴 to 𝐵 introduced in Observation 8.1.2. In this context, Lemma 8.1.3 may be
restated as follows:

Lemma 8.1.17. A parallel pair of modules 𝐴 𝐸 𝐵 and 𝐴 𝐹 𝐵 are isomorphic
as objects of vertical 1-category of modules in the virtual double category of
modules if and only if 𝐸 ≃𝐴×𝐵 𝐹.

For consistency with the rest of the text, we write 𝐸 ≃ 𝐹 or 𝐸 ≃𝐴×𝐵 𝐹
whenever the modules 𝐴 𝐸 𝐵 and 𝐴 𝐹 𝐵 are isomorphic as objects of the
vertical 1-category of modules from 𝐴 to 𝐵. For instance, Proposition 4.1.1
proves that a functor 𝑓∶ 𝐵 → 𝐴 is left adjoint to a functor 𝑢∶ 𝐴 → 𝐵 if
and only if Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢), that is, if and only if the modules
𝐵 Hom𝐴(𝑓,𝐴) 𝐴 and 𝐴 Hom𝐵(𝐵,ᵆ) 𝐵 are isomorphic as objects of the vertical
1-category of modules from 𝐴 to 𝐵.

Exercises
Exercise 8.1.i. By Exercise 6.1.iii, for any∞-cosmos𝒦, there is an∞-cosmos
𝒦⤩ whose objects are two-sided isofibrations between an arbitrary pair of
∞-categories, these being exactly the “fibrant diagrams” indexed by the span,
considered as an inverse category. Use this∞-cosmos together with the endpoint
evaluation functors 𝒦⤩ → 𝒦 to give a second description of the double cate-
gory of two-sided isofibrations as as quotient of a nonunital internal category
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defined at the level of ∞-cosmoi, cosmological functors, and simplicial natural
isomorphisms.5

Exercise 8.1.ii. Prove that any double category defines a virtual double cate-
gory.6

Exercise 8.1.iii. Use the three statements of Theorem 7.4.8 to describe three
bijections between cells with various boundary shapes in the virtual double
category of modules.

Exercise 8.1.iv. Let 𝐴 𝑞 𝐸 𝑝 𝐵 and 𝐴 𝑠 𝐹 𝑟 𝐵 be two-sided fibrations. A
map of two-sided fibrations from 𝐴 𝑞 𝐸 𝑝 𝐵 to 𝐴 𝑠 𝐹 𝑟 𝐵 is a fibered
isomorphism class of strictly commuting functors 𝑎 so that the left square defines
a cartesian functor between the cocartesian fibrations and the right square defines
a cartesian functor between the cartesian fibrations (see Proposition 7.1.7).

𝐴′ 𝐸′ 𝐵′

𝐴 𝐸 𝐵

𝑓

𝑞′ 𝑝′

𝑎 𝑔

𝑞 𝑝

Define a double category of two-sided fibrations as a nonfull subcategory of the
double category of two-sided isofibrations of Proposition 8.1.6.

8.2 The Virtual Equipment of Modules

The virtual double category of modules𝕄od(𝒦) in an∞-cosmos𝒦 has two spe-
cial properties that characterize a virtual equipment. Before stating the definition,
we explore each of these in turn.

Proposition 8.2.1 (restriction). Any diagram in 𝕄od(𝒦) as below-left can be
completed to a cartesian cell as below-right

𝐴′ 𝐵′ 𝐴′ 𝐵′

𝐴 𝐵 𝐴 𝐵

𝑎 𝑏 ⇝ 𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸 𝐸

5 We consider it to be an open problem whether it is useful to take a “double quasi-categorical” on
the nonunital double category of two-sided isofibrations or the virtual double category of
modules.

6 If the double category lacks horizontal identity morphisms, the corresponding virtual double
category may lack nullary morphisms – unless these can be defined in some other way as we did
in the proof of Lemma 8.1.11.
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characterized by the universal property that any cell as displayed below-left
factors uniquely through 𝜌 as below-right:

𝑋0 𝑋1 ⋯ 𝑋𝑛

𝐴 𝐵

𝑎𝑓

𝐸1

⇓

𝐸2 𝐸𝑛

𝑏𝑔

𝐸

≕

𝑋0 𝑋1 ⋯ 𝑋𝑛

𝐴′ 𝐵′

𝐴 𝐵

𝑓

𝐸1

∃!⇓

𝐸2 𝐸𝑛

𝑔

𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸

Proof The horizontal source of the cartesian cell is defined by restricting the
module 𝐴 𝐸 𝐵 along the functors 𝑎 and 𝑏:

𝐸(𝑏, 𝑎) 𝐸

𝐴′ × 𝐵′ 𝐴 × 𝐵

⌟
𝜌

𝑎×𝑏

(8.2.2)

By Proposition 7.4.5, this left-hand isofibration defines a module from 𝐴′ to 𝐵′,
while by Definition 8.1.4 the top horizontal functor represents a module map
inhabiting the desired square. By Observation 8.1.5, the simplicial pullback in
𝒦 induces an equivalence7 of functor spaces:

Fun𝑓×𝑔(𝐸1 ×
𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛, 𝐸(𝑏, 𝑎)) Fun𝑎𝑓×𝑏𝑔(𝐸1 ×

𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛, 𝐸)∼𝜌∘−

which descends to a bijection on isomorphism classes of objects. This defines
the unique factorization of cells as displayed above-left through the cartesian
restriction cell 𝜌.

We refer to the module 𝐴′ 𝐸(𝑏,𝑎) 𝐵′ as the restriction of 𝐴 𝐸 𝐵 along the
functors 𝑎 and 𝑏, because the pullback (8.2.2) is analogous to the restriction of
scalars of a bimodule along a pair of ring homomorphisms.

Example 8.2.3. The module 𝐶 Hom𝐴(𝑓,𝑔) 𝐵 is the restriction of the module
encoded by the arrow ∞-category 𝐴 𝑝1 𝐴𝟚 𝑝0 𝐴 along 𝑔∶ 𝐶 → 𝐴 and
𝑓∶ 𝐵 → 𝐴. To make this restriction relationship more transparent, we typically
7 If the pullbacks are defined strictly, then in fact pullback induces an isomorphism of functor

spaces, but even if 𝐸(𝑏, 𝑎) is replaced by an equivalent module, the functor spaces are still
equivalent, which is enough to induce a bijection on isomorphism classes of objects.
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write 𝐴 Hom𝐴 𝐴 when regarding the arrow ∞-category as a module.

𝐶 𝐵

𝐴 𝐴

𝑔

Hom𝐴(𝑓,𝑔)

⇓𝜌 𝑓

Hom𝐴

Since the common notation for hom bifunctors places the contravariant variable
on the left and the covariant variable on the right, we have adopted a similar
notation convention for restrictions in Proposition 8.2.1.

Proposition 8.2.4 (units). Any object 𝐴 in 𝕄od(𝒦) is equipped with a nullary
cocartesian cell

𝐴 𝐴

𝐴 𝐴

⇓𝜄

Hom𝐴

characterized by the universal property that any cell in 𝕄od(𝒦) whose horizon-
tal source includes the object 𝐴 factors uniquely through 𝜄 as below:

𝑋 ⋯ 𝐴 ⋯ 𝑌

𝐵 𝐶

𝑋 ⋯ 𝐴 𝐴 ⋯ 𝑌

𝑋 ⋯ 𝐴 𝐴 ⋯ 𝑌

𝐵 𝐶

𝑓

𝐸1 𝐸𝑛 𝐹1

⇓

𝐹𝑚

𝑔

𝐺

≕

𝐸1

⇓id𝐸1 ⇓id𝐸𝑛⋯

𝐸𝑛

⇓𝜄

𝐹1

⇓id𝐹1

𝐹𝑚

⋯ ⇓id𝐹𝑚

𝑓

𝐸1 𝐸𝑛 Hom𝐴

⇓∃!

𝐹1 𝐹𝑚

𝑔

𝐺

Proof The nullary cell is represented by the map of spans induced by the
identity 2-cell at the identity 1-cell at 𝐴.

𝐴 𝐴

𝐴 𝐴 ↭ 𝐴 𝐴

Hom𝐴 𝐴

𝜄 ⇐
id𝐴

𝑝1 𝑝0

Elsewhere this functor is denoted by ⌜idid𝐴⌝∶ 𝐴 → 𝐴𝟚; recall from Example
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8.2.3 that we write 𝐴 Hom𝐴 𝐴 for the module encoded by the arrow ∞-category
construction to help us recognize its restrictions.

In the case where both of the sequences 𝐸𝑖 and 𝐹𝑗 are empty, the one-sided
version of the Yoneda lemma for modules given by Theorem 7.4.8 tells us that
restriction along this map induces an equivalence of functor spaces

Fun𝐴×𝐴(Hom𝐴, 𝐺(𝑔, 𝑓)) ∼ Fun𝐴×𝐴(𝐴, 𝐺(𝑔, 𝑓)).

Taking isomorphism classes of objects gives the bijection of the statement.
In the case where one or both of the sequences are nonempty, we may form

their horizontal composite two-sided fibrations 𝑋 𝑞 𝐸 𝑝 𝐴 and 𝐴 𝑠 𝐹 𝑟 𝑌
and then form either the horizontal composite 𝐸 ×

𝐴
Hom𝐴 or the horizontal

composite Hom𝐴 ×
𝐴
𝐹 of the composable triple below:

𝐸 ×
𝐴

Hom𝐴 ×
𝐴
𝐹

Hom𝐴(𝐴, 𝑝) Hom𝐴(𝑠, 𝐴)

𝐸 Hom𝐴 𝐹

𝑋 𝐴 𝐴 𝑌

⌜

⌜ ⌜

𝑞 𝑝 𝑝1 𝑝0 𝑠 𝑟

The horizontal composite of the left pair of modules is the two-sided fibration
(𝑞𝑝1, 𝑝0)∶ Hom𝐴(𝐴, 𝑝) ↠ 𝑋 × 𝐴, while the composite of the right pair is the
two-sided fibration (𝑝1, 𝑟𝑝0)∶ Hom𝐴(𝑠, 𝐴) ↠ 𝐴 × 𝑌. By Theorem 7.1.4, these
two-sided fibrations give rise to fibered adjunctions:

𝐸 ⊥ Hom𝐴(𝐴, 𝑝) 𝐹 ⊥ Hom𝐴(𝑠, 𝐴)

𝑋 × 𝐴 𝐴 × 𝑌

𝐸×
𝐴
𝜄=⌜id𝑝⌝

(𝑞,𝑝) (𝑞𝑝1,𝑝0)
𝑟 𝜄×

𝐴
𝐹=⌜id𝑠⌝

(𝑠,𝑟) (𝑝1,𝑟𝑝0)

ℓ

By inspection, the solid-arrow adjoints ⌜id𝑝⌝ and ⌜id𝑠⌝ can be constructed by
pulling back the map 𝜄∶ 𝐴 → Hom𝐴.

We only require one of these adjunctions, so without loss of generality we
use the former. This fibered adjunction pulls back along 𝑠 and pushes forward
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along 𝑟 to define a fibered adjunction

𝐸 ×
𝐴
𝐹 ⊥ 𝐸 ×

𝐴
Hom𝐴 ×

𝐴
𝐹

𝑋 × 𝑌

𝐸×
𝐴
𝜄×
𝐴
𝐹

𝑟

between two-sided fibrations. Upon mapping into the discrete object 𝐺(𝑔, 𝑓) ∈
𝒦/𝑋×𝑌, this adjunction becomes an adjoint equivalence. In particular, restriction
along 𝜄 induces an equivalence of Kan complexes

Fun𝑋×𝑌(𝐸 ×
𝐴

Hom𝐴 ×
𝐴
𝐹,𝐺(𝑔, 𝑓)) Fun𝑋×𝑌(𝐸 ×

𝐴
𝐹,𝐺(𝑔, 𝑓)),∼

−∘(𝐸×
𝐴
𝜄×
𝐴
𝐹)

and once again taking isomorphism classes of objects gives the bijection of the
statement.

Propositions 8.2.1 and 8.2.4 imply that the virtual double category of modules
is a virtual equipment in the sense introduced by Cruttwell and Shulman [32,
§7].

Definition 8.2.5. A virtual equipment is a virtual double category so that

(i) For any horizontal arrow 𝐴 𝐸 𝐵 and pair of vertical arrows 𝑎∶ 𝐴′ → 𝐴
and 𝑏∶ 𝐵′ → 𝐵, there exists a horizontal arrow 𝐵′ 𝐸(𝑏,𝑎) 𝐴′ and unary
cartesian cell 𝜌 satisfying the universal property of Proposition 8.2.1.

(ii) Every object 𝐴 admits a unit horizontal arrow 𝐴 Hom𝐴 𝐴 equipped
with a nullary cocartesian cell 𝜄 satisfying the universal property of
Proposition 8.2.4.

Thus, Propositions 8.2.1 and 8.2.4 combine to prove:

Theorem 8.2.6. The virtual double category 𝕄od(𝒦) of modules in an ∞-cos-
mos 𝒦 is a virtual equipment.

By abstract nonsense, the relatively simple axioms (i) and (ii) established
in Theorem 8.2.6 establish a robust “calculus of modules.” In an effort to fa-
miliarize the reader with this little-known categorical structure and expedite
the proofs of the formal category theory of ∞-categories in Chapter 9, we de-
vote the remainder of this chapter to proving a plethora of results that actually
follow formally from this axiomatization: namely, Lemmas 8.3.10 and 8.3.15,
Proposition 8.4.1, Theorem 8.4.4, Corollary 8.4.6, Proposition 8.4.7, Corollary
8.4.8, Corollary 8.4.9, and the bijection of Proposition 8.4.11 between unary
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cells in the virtual equipment of modules.8 One additional formal result is left
as Exercise 8.4.v for the reader.

Notation 8.2.7. The following notational conventions streamline certain virtual
equipment diagrams.

• We adopt the convention that an unlabeled unary cell whose vertical bound-
aries are identities and whose horizontal sources and targets agree is an
identity cell.

𝐴 𝐵 𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

𝐸

≔ ⇓id𝐸

𝐸

𝐸 𝐸

• Cells whose vertical boundary functors are identities and therefore whose
source and target spans lie between the same pair of ∞-categories

𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 ≔

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐴0 𝐴𝑛

𝐸1

⇓𝜇

𝐸2 𝐸𝑛

𝐸

may be displayed in line using the notation 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸, an

expression which implicitly asserts that the modules appearing in the domain
define a compatible sequence, with the symbol “⨰” meant to suggest the
pullback appearing as the horizontal domain of (8.1.9) rather than a product.
In the virtual equipment of modules, cells of the form 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸
correspond to fibered maps, in the sense introduced in Definition 8.1.1.

• Given a compatible sequence of modules 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from 𝐴0 to 𝐴𝑛 we

write 𝐴0 ↞ ⃗𝐸 ↠ 𝐴𝑛 for the composite two-sided fibration and similarly
abbreviate an 𝑛-ary module map (8.1.9) with this sequence as its source as
below-left:

𝐴0 𝐴𝑛 𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵𝑛 𝐵0 𝐵𝑛

𝐸⃗

⇓𝛼𝑓 𝑔 ≔ 𝑓

𝐸1

⇓𝛼

𝐸2 𝐸𝑛

𝑔

𝐹 𝐹
8 A point of minor distinction is that we observe here that the composites referenced in many of

these statements are “strong,” a notion that has no meaning in a generic virtual equipment.



8.3 Composition of Modules 321

Exercises
Exercise 8.2.i. Given a diagram of functors 𝐸 𝑘 𝐶 𝑔 𝐴 𝑓 𝐵 ℎ 𝐷, compute
the restriction of the module 𝐶 Hom𝐴(𝑓,𝑔) 𝐵 along the functors 𝑘 and ℎ.

Exercise 8.2.ii. Prove that unital rings, ring homomorphisms, bimodules, and
bimodule maps also define a virtual equipment.

Exercise 8.2.iii. Prove that the virtual double category of two-sided isofibra-
tions forms a virtual equipment with the units cells of Remark 8.1.13.

8.3 Composition of Modules

In a virtual equipment, there is no assumption that a generic pair 𝐴 𝐸 𝐵 and
𝐵 𝐹 𝐶 of horizontal arrows admits a composite but there is a mechanism
that recognizes a particular horizontal composite 𝐴 𝐺 𝐶 when it happens to
exist. When 𝐺 is the horizontal composite of 𝐸 and 𝐹, we write 𝐸 ⊗ 𝐹 ≃ 𝐺 or
𝜇∶ 𝐸⊗𝐹 ≃ 𝐺 to reinforce the intuition provided by the analogy with bimodules.

In the virtual equipment of modules, there are two possible meanings we
can ascribe to a “horizontal composite” of modules. In the first of these, a
composition relation 𝜇∶ 𝐸 ⊗ 𝐹 ≃ 𝐺 is witnessed by a fibered module map
𝜇∶ 𝐸 ⨰ 𝐹 ⇒ 𝐺 that defines a cocartesian cell in a sense analogous to the uni-
versal property stated in Proposition 8.2.4 (see Definition 8.3.1). This definition
of composition can be given in any virtual double category and is well-behaved
in any virtual equipment, such as the virtual equipment of modules. Composites
of 𝑛-ary sequences of composable modules are defined analogously.

In the virtual equipment of modules, all of our formally defined composites
satisfy a stronger universal property expressed at the level of the ∞-cosmos.
Recall that a fibered map 𝜇∶ 𝐸 ⨰ 𝐹 ⇒ 𝐺 between modules 𝐴 𝐸 𝐵, 𝐵 𝐹 𝐶,
and 𝐴 𝐺 𝐶 corresponds to a fibered isomorphism class of maps ⌜𝜇⌝∶ 𝐸 ×𝐵
𝐹 → 𝐺 of spans over 𝐴 × 𝐶. Part of what it means to say that 𝜇 witnesses a
strong composite in Definition 8.3.5 is the requirement that its representing
functor induces an equivalence of Kan complexes − ∘ ⌜𝜇⌝∶ Fun𝐴×𝐶(𝐺,𝐻) ∼

Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐻) for all modules 𝐴 𝐻 𝐶. When this is the case, the module
𝐺 may be understood as the “reflection” of the two-sided isofibration 𝐸 ×𝐵 𝐹
into the subcategory of modules; note however that 𝐺 and 𝐸 ×𝐵 𝐹 are not
necessarily equivalent over 𝐴×𝐶. A special case of Theorem 7.3.2, reappearing
as Proposition 8.3.11, is one instance of a strong composite.

As this terminology suggests, strong composites are necessarily composites.
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Since the weaker universal property of being a composite characterizes the
composite module up to fibered equivalence, if we are working in an ∞-cosmos
where strong composites are guaranteed to exist, then the 2-categorical universal
property we introduce now suffices to detect them.9

Definition 8.3.1. A compatible sequence of modules

𝐴 𝐸1 𝐴1, 𝐴1
𝐸2 𝐴2,… , 𝐴𝑛−1

𝐸𝑛 𝐵

admits a composite if there exists a module 𝐴 𝐸 𝐵 and a cocartesian cell

𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸

characterized by the universal property that any cell of the form

𝑋 ⋯ 𝐴 ⋯ 𝐵 ⋯ 𝑌

𝐶 𝐷

𝑓

𝐹1 𝐹𝑚 𝐸1

⇓

𝐸𝑛 𝐺1 𝐺𝑘

𝑔

𝐻

factors uniquely through 𝜇 as follows:

𝑋 ⋯ 𝐴 ⋯ 𝐵 ⋯ 𝑌

𝑋 ⋯ 𝐴 𝐵 ⋯ 𝑌

𝐶 𝐷

𝐹1 𝐹𝑚

⋯

𝐸1

⇓𝜇

𝐸𝑛 𝐺1 𝐺𝑘

⋯

𝑓

𝐹1 𝐹𝑚 𝐸

⇓∃!

𝐺1 𝐺𝑘

𝑔

𝐻

We have already seen one instance of this definition. Proposition 8.2.4 proves
that units define nullary composites 𝜄∶ ∅ ⇒ Hom𝐴 in the virtual equipment of
modules.

Observation 8.3.2 (uniqueness of composites). Immediately from this univer-
sal property, composites are unique up to vertical isomorphism in the virtual
equipment of modules. Recall from Lemma 8.1.17 that parallel modules are
vertically isomorphic in the virtual equipment if and only if they are equivalent
in the usual fibered sense.

A composite 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 can be used to reduce the domain of

a cell by replacing any occurrence of the compatible sequence 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛

from 𝐴 to 𝐵 by a single module 𝐸. Particularly in the case of binary composites,
9 This is analogous to the relationship between the universal properties that define weak
𝑝-cartesian transformations and 𝑝-cartesian transformations considered in Proposition 5.2.11.
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we write 𝐸1 ⊗𝐸2 to denote the composite of the modules 𝐸1 and 𝐸2, appearing
as the codomain of the cocartesian cell 𝐸1 × 𝐸2 ⇒ 𝐸1 ⊗ 𝐸2. Note that the
universal property of Definition 8.3.1 demands more than simply the condition
that 𝜇∶ 𝐸1

⨰ 𝐸2 ⇒ 𝐸1 ⊗ 𝐸2 is universal among binary cells whose source is
𝐸1

⨰ 𝐸2. As observed by Hermida, that weaker universal property is not enough
to prove that the tensor product of modules is associative (see [53, §8.1] and
Exercise 8.3.ii). By contrast, the universal property of Definition 8.3.1 allows
us to use an expression like 𝐸1 ⊗ 𝐸2 ⊗ 𝐸3, without parentheses, for ternary and
higher composites, since composition is “associative” in the following sense:

Lemma 8.3.3. Suppose the cells 𝜇𝑖∶ 𝐸𝑖1
⨰ ⋯ ⨰ 𝐸𝑖𝑘𝑖 ⇒ 𝐸𝑖 exhibit composites

for 𝑖 = 1,… , 𝑛.

(i) If 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits a composite then the composite cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1
⨰⋯⨰𝜇𝑛 𝜇

exhibits 𝐸 as a composite of the sequence 𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛.

(ii) If the composite cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1
⨰⋯⨰𝜇𝑛 𝜇

exhibits𝐸 as a composite of the sequence𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛, then𝜇∶ 𝐸1

⨰

⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits 𝐸 as a composite of the sequence 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛.

Proof For (i), the required bijection factors as a composite of 𝑛 + 1 bijections
induced by the maps 𝜇1,… , 𝜇𝑛 and 𝜇. For (ii), the required bijection induced by
𝜇 composes with the bijections supplied by the maps 𝜇1,… , 𝜇𝑛 to a bijection
and is thus itself a bijection.

Remark 8.3.4. On account of the universal property of restrictions established
in Proposition 8.2.1, to prove that a cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits a
composite in a virtual equipment, it suffices to prove the factorization property
of Definition 8.3.1 in the case where the vertical functors are identities, i.e.,
when all of the cells are “fibered.”

Definition 8.3.5. A compatible sequence of modules

𝐴 𝐸1 𝐴1, 𝐴1
𝐸2 𝐴2,… , 𝐴𝑛−1

𝐸𝑛 𝐵

admits a strong composite if there exists a module 𝐴 𝐸 𝐵 and a fibered cell

𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸
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represented by a functor ⌜𝜇⌝∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 → 𝐸 over 𝐴 × 𝐵 that induces an

equivalence of Kan complexes

Fun𝑋×𝑌( ⃗𝐹 ⨰ 𝐸 ⨰ ⃗𝐺,𝐻) Fun𝑋×𝑌( ⃗𝐹 ⨰ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛

⨰ ⃗𝐺,𝐻)∼−∘(𝐹⃗⨰⌜𝜇⌝⨰𝐺⃗)

for all compatible sequences of modules 𝐹1,… , 𝐹𝑚 from 𝑋 to 𝐴 and 𝐺1,… , 𝐺𝑘
from 𝐵 to 𝑌 and all modules 𝑋 𝐻 𝑌.

Lemma 8.3.6 (strong composites are composites). If 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 is

a strong composite then 𝜇 exhibits 𝐸 as the composite 𝐸1 ⊗⋯⊗𝐸𝑛.

Proof Given a compatible sequence of modules 𝐹1,… , 𝐹𝑚 from 𝑋 to 𝐴 and a
compatible sequence of modules 𝐺1,… , 𝐺𝑘 from 𝐵 to 𝑌, form the composite
two-sided fibrations 𝑋 𝑞 ⃗𝐹 𝑝 𝐴 and 𝐵 𝑠 ⃗𝐺 𝑟 𝑌. By Remark 8.3.4, it suffices
to check the universal property of the composite cell for fibered maps whose
codomain is a module 𝑋 𝐻 𝑌. The hypothesis that 𝜇 is a strong composite
provides an equivalence of Kan complexes

Fun𝑋×𝑌( ⃗𝐹 ×
𝐴
𝐸 ×

𝐵
⃗𝐺, 𝐻) Fun𝐴×𝐵( ⃗𝐹 ×

𝐴
𝐸1 ×

𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛 ×

𝐵
⃗𝐺, 𝐻)∼

−∘(𝐹⃗×
𝐴
⌜𝜇⌝×

𝐵
𝐺⃗)

An equivalence of Kan complexes defines a bijection on path components, with
each path component corresponding to an isomorphism class of functors by
Observation 8.1.2.

At first blush, the definition of “strong composite” appears unreasonably
strong. Examples will arise from the same structure used in the proof of Propo-
sition 8.2.4 to demonstrate that units define nullary composites in the virtual
equipment of modules.

Lemma 8.3.7. Consider an 𝑛-ary module morphism 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 in

the virtual equipment of modules whose codomain is a module from 𝐴 to 𝐵. If
any representing map of spans

𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 𝐸

𝐴 × 𝐵

⌜𝜇⌝

admits a fibered adjoint over 𝐴 × 𝐵, then 𝜇 exhibits 𝐸 as the strong composite
𝐸1 ⊗⋯⊗𝐸𝑛.

Proof To verify the universal property of Definition 8.3.5, consider a com-
patible sequence of modules 𝐹1,… , 𝐹𝑚 from 𝑋 to 𝐴 and a compatible sequence
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of modules 𝐺1,… , 𝐺𝑘 from 𝐵 to 𝑌, and form the horizontal composite two-
sided fibrations 𝑋 𝑞 𝐹 𝑝 𝐴 and 𝐵 𝑠 𝐺 𝑟 𝑌. The fibered adjunction of the
statement pulls back along 𝑝 × 𝑠∶ 𝐹 × 𝐺 ↠ 𝐴 × 𝐵 and pushes forward along
𝑞 × 𝑟∶ 𝐹 × 𝐺 → 𝑋 × 𝑌 to a fibered adjoint to

𝐹 ×
𝐴
𝐸1 ×

𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛 ×

𝐵
𝐺 𝐹 ×

𝐴
𝐸 ×

𝐵
𝐺

𝑋 × 𝑌

𝐹×
𝐴
⌜𝜇⌝×

𝐵
𝐺

Via Remark 8.3.4, it suffices to verify the universal property of the compos-
ite for modules 𝑋 𝐻 𝑌. Since modules are discrete, applying Fun𝑋×𝑌(−,𝐻)
transforms this fibered adjunction into an adjoint equivalence

Fun𝑋×𝑌(𝐹 ×
𝐴
𝐸 ×

𝐵
𝐺,𝐻) Fun𝑋×𝑌(𝐹 ×

𝐴
𝐸1 ×

𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛 ×

𝐵
𝐺,𝐻).∼

−∘(𝐹×
𝐴
⌜𝜇⌝×

𝐵
𝐺)

establishing the universal property that characterizes strong composites.

Strong composites satisfy an associativity property analogous to Lemma
8.3.3 with a similar proof:

Lemma 8.3.8. Suppose the cells 𝜇𝑖∶ 𝐸𝑖1
⨰ ⋯ ⨰ 𝐸𝑖𝑘𝑖 ⇒ 𝐸𝑖 exhibit strong

composites for 𝑖 = 1,… , 𝑛.

(i) If 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits a strong composite then the composite

cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1
⨰⋯⨰𝜇𝑛 𝜇

exhibits 𝐸 as a strong composite of the sequence 𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛.

(ii) If the composite cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1
⨰⋯⨰𝜇𝑛 𝜇

exhibits 𝐸 as a strong composite of the sequence 𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛, then

𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits 𝐸 as a strong composite of the sequence

𝐸1
⨰ ⋯ ⨰ 𝐸𝑛.

Proof Exercise 8.3.iii.

We now turn to examples. The trivial instances of composites are easily
verified:

Lemma 8.3.9. In the virtual equipment of modules:
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(i) The units 𝜄∶ ∅ ⇒ Hom𝐴 of Proposition 8.2.4 define nullary strong
composites.

(ii) A unary cell 𝜇∶ 𝐸 ⇒ 𝐹 is a composite if and only if it is an isomorphism
in the vertical category of modules from 𝐴 to 𝐵 and fibered module maps.
When this is the case, 𝜇∶ 𝐸 ⇒ 𝐹 is a strong composite.

Proof Exercise 8.3.iv.

As one might hope, the unit modules 𝐴 Hom𝐴 𝐴 are units for the composition
notion introduced in Definition 8.3.1 in the following sense: for any module
𝐴 𝐸 𝐵, there is a strong composite relation Hom𝐴 ⊗ 𝐸 ⊗ Hom𝐵 ≃ 𝐸.

Lemma 8.3.10 (composites with units). For any module 𝐴 𝐸 𝐵 the unique cell
∘∶ Hom𝐴×𝐸×Hom𝐵 ⇒ 𝐸 defined using the universal property of the unit cell

𝐴 𝐴 𝐵 𝐵

𝐴 𝐴 𝐵 𝐵

𝐴 𝐵

⇓𝜄

𝐸

⇓𝜄
Hom𝐴 𝐸

⇓∘

Hom𝐵

𝐸

≔
𝐴 𝐵

𝐴 𝐵

𝐸

𝐸

displays 𝐸 as the strong composite Hom𝐴 ⊗ 𝐸 ⊗ Hom𝐵.

Proof The result is immediate from Lemma 8.3.8(ii) and Lemma 8.3.9.

Proposition 8.3.11. Let𝐴 𝐸 𝐵 be a module encoded by the span𝐴 𝑞 𝐸 𝑝 𝐵.
Then the binary module map represented by composite left and right adjoints of
Theorem 7.1.4(iii)

𝐴 𝐸 𝐵

𝐴 𝐵

Hom𝐴(𝑞,𝐴)

⇓𝜇

Hom𝐵(𝐵,𝑝)

𝐸

exhibits a strong composite Hom𝐴(𝑞, 𝐴) ⊗ Hom𝐵(𝐵, 𝑝) ≃ 𝐸 expressing the
module as the composite of the modules representing its legs.

Proof The result is immediate from Theorem 7.1.4(iii) and Lemma 8.3.7
applied twice.10

10 Of course the composite of a left and a right adjoint is not an adjoint but here we are effectively
composing adjoint equivalences in which case the direction does not matter.
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Remark 8.3.12. Nothing in the proof of Proposition 8.3.11 requires that the
span 𝐴 𝑞 𝐸 𝑝 𝐵 is actually a module, rather than a mere two-sided fibration,
except for the interpretation that 𝜇 is a binary cell in the virtual equipment
of modules. For any two-sided fibration 𝐴 𝑞 𝐸 𝑝 𝐵, it is still the case that
restriction along the map of spans ⌜𝜇⌝ defines a bijection between maps of two-
sided isofibrations whose source includes the span 𝐸 and whose codomain is
a module and maps whose source instead includes Hom𝐴(𝑞, 𝐴)

⨰ Hom𝐵(𝐵, 𝑝).
In particular, for any compatible sequence of modules 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 from 𝐴 to
𝐵 whose span composite defines the two-sided fibration 𝐴 𝑞 ⃗𝐸 𝑝 𝐵, there is a
bijection between module maps in the virtual equipment of modules:

𝑋 𝐴 𝐵 𝑌 𝑋 𝐴 ⃗𝐸 𝐵 𝑌

𝐶 𝐷 𝐶 𝐷

𝐹⃗

𝑓

𝐸⃗

⇓

𝐺⃗

𝑔

𝐹⃗

𝑓

Hom𝐴(𝑞,𝐴) Hom𝐵(𝐵,𝑝)

⇓

𝐺⃗

𝑔

𝐻

↭

𝐻

Remark 8.3.13. The composite map 𝜇∶ Hom𝐴(𝑞, 𝐴)
⨰ Hom𝐵(𝐵, 𝑝) ⇒ 𝐸

in Proposition 8.3.11 and Remark 8.3.12 can be described in another way.
The comma cones for Hom𝐴(𝑞, 𝐴) and Hom𝐵(𝐵, 𝑝) define a pair of natural
transformations to which the premises of Theorem 7.1.4(iv) apply.

Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝)

Hom𝐴(𝑞, 𝐴) Hom𝐵(𝐵, 𝑝)

𝐴 𝐸 𝐵

⌜

𝑝1 𝑝0
𝜙
⇐

𝑝1 𝑝0
𝜙
⇐

𝑞 𝑝

The conclusion of that result asserts that there is a well-defined fibered isomorph-
ism class of functors ⌜𝜇⌝∶ Hom𝐴(𝑞, 𝐴) ×𝐸 Hom𝐵(𝐵, 𝑝) → 𝐸 defined by taking
the 𝑞-cocartesian lift of the left comma cone, composing with the right comma
cone, and then taking the codomain of a 𝑝-cartesian lift of this composite cell –
or by first taking the 𝑝-cartesian lift, composing, and then taking the domain of a
𝑞-cartesian lift of this composite – this being the functor ℓ𝑟 ≃ 𝑟ℓ in the notation
of Theorem 7.1.4(iii). In the case where 𝐴 𝐸 𝐵 is itself a comma module, the
resulting fibered isomorphism class of functors ⌜𝜇⌝ is the one that classifies the
2-cell defined by pasting the displayed composite with the comma cone under
𝐸.

Any virtual double category has a vertical identity cell for each horizon-
tal arrow 𝐴 𝐸 𝐵 whose vertical boundary arrows are identities. In a virtual
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equipment, we also have a horizontal unary unit cell for each vertical arrow
𝑓∶ 𝐴 → 𝐵 whose horizontal boundary is given by the unit modules 𝐴 Hom𝐴 𝐴
and 𝐵 Hom𝐵 𝐵 of Proposition 8.2.4.

Definition 8.3.14. Using the unit modules in𝕄od(𝒦), for any functor 𝑓∶ 𝐴 →
𝐵 we may define a unary unit cell as displayed below-left by appealing to the
universal property of the nullary unit cell 𝜄∶ ∅ ⇒ Hom𝐴 for 𝐴 in the equation
below-right:

𝐴 𝐴

𝐵 𝐵

𝑓

Hom𝐴

⇓Hom𝑓 𝑓

Hom𝐵

⇜

𝐴 𝐴 𝐴 𝐴

𝐴 𝐴 𝐵 𝐵

𝐵 𝐵 𝐵 𝐵

⇓𝜄 𝑓 𝑓

𝑓

Hom𝐴

⇓Hom𝑓 𝑓

≔
⇓𝜄

Hom𝐵 Hom𝐵

In the characterization of Lemma 8.1.16, both sides of the pasting equality

defining the unary unit cell correspond to the identity 2-cell 𝐴 𝐵
𝑓

𝑓

⇓id𝑓 .

As one might hope, the unit cells are units for the vertical composition of
cells in the virtual equipment of modules.

Lemma 8.3.15 (composition with unit cells). Any cell 𝛼 as below-right equals
the pasted composite below-left:

𝐴0 𝐴0 𝐴𝑛 𝐴𝑛

𝐴0 𝐴0 𝐴𝑛 𝐴𝑛

𝐵 𝐵 𝐶 𝐶

𝐵 𝐶

⇓𝜄

𝐸⃗

⇓𝜄

𝑓

Hom𝐴0

⇓Hom𝑓 𝑓 ⇓𝛼

𝐸⃗

𝑔

Hom𝐴𝑛

⇓Hom𝑔 𝑔

⇓∘
Hom𝐵 𝐸 Hom𝐶

𝐸

=
𝐴0 𝐴𝑛

𝐵 𝐶

𝑓

𝐸⃗

⇓𝛼 𝑔

𝐸

Proof By Definition 8.3.14 and the laws for composition with identity cells
in a virtual double category stated in Definition 8.1.8, the left-hand composite
of the statement equals the left-hand composite cell displayed below and the
right-hand side of the statement equals the right-hand composite cell displayed
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below:

𝐴0 𝐴0 𝐴𝑛 𝐴𝑛

𝐵 𝐵 𝐶 𝐶

𝐵 𝐵 𝐶 𝐶

𝐵 𝐶

𝑓 𝑓

𝐸⃗

⇓𝛼 𝑔 𝑔

⇓𝜄
𝐸

⇓𝜄

⇓∘
Hom𝐵 𝐸 Hom𝐶

𝐸

=

𝐴0 𝐴𝑛

𝐵 𝐶

𝐵 𝐶

𝑓

𝐸⃗

⇓𝛼 𝑔

𝐸

𝐸

By Lemma 8.3.10, the left-hand side equals the right-hand side.

Definition 8.3.16 (horizontal composition of cells). If given a horizontally
compatible sequence of unary cells

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝑓0

𝐸1

⇓𝛼1 𝑓1

𝐸2

⇓𝛼2 ⋯

𝐸𝑛

𝑓𝑛⇓𝛼𝑛

𝐹1 𝐹2 𝐹𝑛

for which the compatible sequences 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 and 𝐹1

⨰ ⋯ ⨰ 𝐹𝑛 both admit
composites, then there exists a horizontal composite unary cell 𝛼1 ∗⋯ ∗ 𝛼𝑛
that is uniquely determined up to the specification of the composites ∘∶ 𝐸1

⨰

⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 and 𝐹1
⨰ ⋯ ⨰ 𝐹𝑛 ⇒ 𝐹 by the pasting equality:

𝐴0 𝐴1 ⋯ 𝐴𝑛 𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐴0 𝐴𝑛 𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐵0 𝐵𝑛 𝐵0 𝐵𝑛

𝐸1

⇓∘

𝐸2 𝐸𝑛

𝑓0

𝐸1

⇓𝛼1 𝑓1

𝐸2

⇓𝛼2 ⋯

𝐸𝑛

⇓𝛼𝑛 𝑓𝑛

𝑓0 ⇓𝛼1∗⋯∗𝛼𝑛

𝐸

𝑓𝑛

≔

⇓∘

𝐹1 𝐹2 𝐹𝑛

𝐹 𝐹
(8.3.17)

By an argument very similar to the proof of Lemma 8.3.15 using the compos-
ites of Lemma 8.3.10, the horizontal composite Hom𝑓 ∗ 𝛼 ∗ Hom𝑔 of a unary
cell 𝛼 with the unit cells Hom𝑓 and Hom𝑔 at its vertical boundary functors
recovers 𝛼 (see Exercise 8.3.v). Using the horizontal composition of unary cells
of Definition 8.3.16, we can understand 𝕄od(𝒦) to contain various “vertical”
and “horizontal” bicategories.
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Proposition 8.3.18 (the vertical 2-category in the virtual equipment). Any
virtual equipment contains a vertical 2-category whose objects are the objects
of the virtual equipment, whose arrows are the vertical arrows, and whose
2-cells are those unary cells

𝐴 𝐴

𝐵 𝐵

𝑔

Hom𝐴

⇓𝛼 𝑓

Hom𝐵

whose horizontal boundary arrows are given by the unit modules.

Proof To prove that these structures define a 2-category we must – adopting the
standard terminology from Definition B.1.1 – define “horizontal” composition
of 2-cells (composing along a boundary 0-cell) and “vertical” composition of
2-cells (composing along a boundary 1-cell). The “horizontal” composition
in the 2-category is defined via the vertical composition in the virtual double
category described in Definition 8.1.8. The “vertical” composition in the 2-
category is defined by Definition 8.3.16. To see that this yields a 2-category and
not a bicategory note that any bicategory in which the composition of 1-cells
is strictly associative and unital is a 2-category; in this case, the 1-cells are
the vertical arrows of the virtual double category, which do indeed compose
strictly.

In Proposition 8.4.11 we prove that the vertical 2-category in the virtual
equipment 𝕄od(𝒦) is isomorphic to the homotopy 2-category 𝔥𝒦.

Remark 8.3.19 (horizontal bicategories in the virtual equipment). Via Def-
inition 8.3.16, a virtual equipment can also be understood to contain various
“horizontal” bicategories, defined by taking the 1-cells to be composable mod-
ules and the 2-cells to be unary module maps whose vertical boundary functors
are identities. Particular horizontal bicategories of interest are described in
Definition 8.4.12.

Exercises
Exercise 8.3.i. Extending Exercise 8.1.ii, prove that in a virtual double category
arising from an actual double category, every compatible sequence of horizontal
arrows admits a composite in the sense of Definition 8.3.1.

Exercise 8.3.ii ([53, 8.5],[76, 3.3.4]).

(i) Suppose that for every compatible sequence 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 in a virtual
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equipment there exists a cell 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 that is weakly

cocartesian meaning that every 𝑛-ary cell 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐻 factors

uniquely through 𝜇 via a unary cell 𝐸 ⇒ 𝐻. If moreover the weakly
cocartesian cells are closed under composition in the virtual double
category, show that every weakly cocartesian cell is in fact cocartesian,
satisfying the universal property of Definition 8.3.1, and conclude that
the virtual equipment then admits all composites.

(ii) Suppose 𝒦 is an ∞-cosmos in which every two-sided fibration 𝐴 𝑞

𝐸 𝑝 𝐵 can be reflected into a module, meaning that that there exists
a map of spans with ̄𝐸 a module so that for every module 𝐴 𝐻 𝐵, 𝜇
induces an equivalence of Kan complexes

𝐸

𝐴 𝐵

̄𝐸

𝜇

𝑞 𝑝

̄𝑝̄𝑞

⇝ Fun𝐴×𝐵( ̄𝐸, 𝐻) Fun𝐴×𝐵(𝐸,𝐻).∼−∘𝜇

Conclude that the virtual equipment 𝕄od(𝒦) has all composites.

Exercise 8.3.iii. Prove Lemma 8.3.8.

Exercise 8.3.iv. Prove Lemma 8.3.9.

Exercise 8.3.v. For any unary cell as displayed show that the horizontal com-
posite Hom𝑓 ∗ 𝛼 ∗ Hom𝑔 equals 𝛼.

𝐴 𝐵

𝐶 𝐷

𝐸

𝑓 ⇓𝛼 𝑔

𝐹

8.4 Representable Modules

Any vertical arrow 𝑓∶ 𝐴 → 𝐵 in a virtual equipment has a pair of associated
horizontal arrows 𝐵 Hom𝐵(𝑓,𝐵) 𝐴 and 𝐴 Hom𝐵(𝐵,𝑓) 𝐵, defined as restrictions of
the horizontal unit arrows, that have universal properties similar to companions
and conjoints in an ordinary double category [47]. In the virtual equipment of
modules, these are sensibly referred to as the left and right representations of a
functor as a module, using the familiar terminology and notation because these
coincide exactly with the left and right representables introduced in Definitions
3.5.1 and 7.4.7.
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Proposition 8.4.1 (companion and conjoint relations for representables). To
any functor 𝑓∶ 𝐴 → 𝐵 in the virtual equipment of modules, there exist canonical
restriction cells displayed below-left and application cells displayed below-right

𝐵 𝐴 𝐴 𝐵 𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵 𝐵 𝐴 𝐴 𝐵

Hom𝐵(𝑓,𝐵)

⇓𝜌 𝑓 𝑓 ⇓𝜌

Hom𝐵(𝐵,𝑓)

𝑓 ⇓𝜅

Hom𝐴

⇓𝜅

Hom𝐴

𝑓

Hom𝐵 Hom𝐵 Hom𝐵(𝑓,𝐵) Hom𝐵(𝐵,𝑓)

defining unary maps between the unit modules 𝐴 Hom𝐴 𝐴 and 𝐵 Hom𝐵 𝐵 and
the left and right representable modules 𝐵 Hom𝐵(𝑓,𝐵) 𝐴 and 𝐴 Hom𝐵(𝐵,𝑓) 𝐵.
These satisfy the identities:

𝐴 𝐴

𝐵 𝐴

𝐵 𝐵

𝑓 ⇓𝜅

Hom𝐴

⇓𝜌

Hom𝐵(𝑓,𝐵)

𝑓

Hom𝐵

=
𝐴 𝐴

𝐵 𝐵

𝑓

Hom𝐴

⇓Hom𝑓 𝑓

Hom𝐵

=

𝐴 𝐴

𝐴 𝐵

𝐵 𝐵

⇓𝜅

Hom𝐴

𝑓

𝑓 ⇓𝜌

Hom𝐵(𝐵,𝑓)

Hom𝐵

(8.4.2)

and

𝐵 𝐴 𝐴 𝐵 𝐴 𝐴

𝐵 𝐵 𝐴 𝐵 𝐴

𝐵 𝐴 𝐴 𝐴 𝐵

𝐴 𝐴 𝐵 𝐴 𝐵 𝐴

𝐴 𝐵 𝐴 𝐵

Hom𝐵(𝑓,𝐵)

⇓𝜌 𝑓

Hom𝐴

⇓𝜅

Hom𝐵(𝑓,𝐵)

⇓∘

Hom𝐴

Hom𝐵 Hom𝐵(𝑓,𝐵)

⇓∘

=

Hom𝐵(𝑓,𝐵)

Hom𝐵(𝑓,𝐵)

Hom𝐴

⇓𝜅 𝑓

Hom𝐵(𝐵,𝑓)

⇓𝜌
Hom𝐴

⇓∘

Hom𝐵(𝐵,𝑓) Hom𝐵(𝐵,𝑓) Hom𝐵

⇓∘

Hom𝐵(𝐵,𝑓)

=

Hom𝐵(𝐵,𝑓)

(8.4.3)

Proof The unary module maps 𝜅 are defined by the equations (8.4.2) by ap-
pealing to the universal property of the restriction cells in Proposition 8.2.1.
The relations (8.4.3) could also be verified directly from the axioms of Theorem
8.2.6 via Propositions 8.2.4 and Lemmas 8.3.10 and 8.3.15. For sake of vari-
ety, we appeal to Lemma 8.1.16 to characterize each of the cells in the virtual
equipment as natural transformations in the homotopy 2-category.

We prove this for the right representables. By Remark 8.3.13, the binary
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module morphism on the left-hand side of the rightmost equality of (8.4.3)
represents the natural transformation below-left, while the right-hand composite
is below-right:

𝐴𝟚 ×
𝐴

Hom𝐵(𝐵, 𝑓)

𝐴𝟚 Hom𝐵(𝐵, 𝑓)

𝐴 𝐴 𝐵

⌜

𝑝1 𝑝0
𝜅
⇐

𝑝1 𝑝0
𝜙
⇐

𝑓

=

𝐴𝟚 ×
𝐴

Hom𝐵(𝐵, 𝑓)

𝐴𝟚 Hom𝐵(𝐵, 𝑓)

Hom𝐵(𝐵, 𝑓) 𝐴 𝐵𝟚

𝐴 𝐵 𝐵

⌜

⌜𝑓𝜅⌝𝑝1

𝑝0 ⌜𝜙⌝
𝑝1

𝑝0

𝑝1 𝑝0
𝜙
⇐

𝑓
𝑝1 𝑝0

𝜅
⇐

𝑓

By the definition of the induced functors 𝜙⌜𝑓𝜅⌝ = 𝑓𝜅 and 𝜙 = 𝜅⌜𝜙⌝. Thus, the
left-hand side equals the right-hand side.

The companions and conjoints of Proposition 8.4.1 can be deployed to “bend”
vertical functors into horizontal modules, producing bijections between cells
whose boundaries involve these arrows. The following result is often called the
“spider lemma,” in reference to a graphical calculus that can be used to illustrate
virtual equipment cells and their composites [87].

Theorem 8.4.4 (spider lemma). In the virtual equipment of modules there are
natural bijections between cells of the following four forms implemented by
composing with the canonical cells 𝜅 and 𝜌 of Proposition 8.4.1 and with the
composition and nullary cells associated to the units.

𝐴 𝐵

𝐶 𝐷

𝐶 𝐴 𝐵 𝐴 𝐵 𝐷

𝐶 𝐷 𝐶 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

↭

𝑓

𝐸⃗

⇓ 𝑔

↭
𝐹

Hom𝐶(𝑓,𝐶)

⇓

𝐸⃗

𝑔 𝑓 ⇓

𝐸⃗ Hom𝐷(𝐷,𝑔)

𝐹

↭

𝐹

↭
Hom𝐶(𝑓,𝐶)

⇓

𝐸⃗ Hom𝐷(𝐷,𝑔)

𝐹
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Proof The composite bijection displayed vertically in the statement carries
cells 𝛼 and 𝛽 to the cells displayed below-left and below-right, respectively:

𝛼̂≔

𝐶 𝐴 𝐵 𝐷

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

Hom𝐶(𝑓,𝐶)

⇓𝜌 ⇓𝛼𝑓

𝐸⃗

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌
Hom𝐶

⇓∘

𝐹 Hom𝐷

𝐹

̌𝛽≔

𝐴 𝐴 𝐵 𝐵

𝐴 𝐴 𝐵 𝐵

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

⇓𝜄

𝐸⃗

⇓𝜄

𝑓 ⇓𝜅

Hom𝐴 𝐸⃗

⇓𝜅

Hom𝐵

𝑔
Hom𝐶(𝑓,𝐶)

⇓𝛽

𝐸⃗ Hom𝐷(𝐷,𝑔)

𝐹

By Proposition 8.4.1 and Lemma 8.3.15

̌𝛼̂ ≔

𝐴 𝐴 𝐵 𝐵 𝐴 𝐴 𝐵 𝐵

𝐴 𝐴 𝐵 𝐵 𝐴 𝐴 𝐵 𝐵

𝐶 𝐴 𝐵 𝐷 𝐶 𝐶 𝐷 𝐷

𝐶 𝐶 𝐷 𝐷 𝐶 𝐷

𝐶 𝐷 𝐴 𝐵

𝐶 𝐷

⇓𝜄

𝐸⃗

⇓𝜄 ⇓𝜄

𝐸⃗

⇓𝜄

𝑓 ⇓𝜅

Hom𝐴 𝐸⃗

⇓𝜅

Hom𝐵

𝑔 𝑓 ⇓Hom𝑓 ⇓𝛼

Hom𝐴 𝐸⃗

𝑓 ⇓Hom𝑔𝑔

Hom𝐵

𝑔
Hom𝐶(𝑓,𝐶)

⇓𝜌 ⇓𝛼𝑓

𝐸⃗

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌

= Hom𝐶

⇓∘

𝐹 Hom𝐷

Hom𝐶

⇓∘

𝐹 Hom𝐷

𝐹

=

𝐹
𝑓

𝐸⃗

⇓𝛼 𝑔

𝐹
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The other composite is:

̂̌𝛽 ≔

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

Hom𝐶(𝑓,𝐶)

⇓𝜄

𝐸⃗

⇓𝜄

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓,𝐶)

⇓𝜌 𝑓 ⇓𝜅

Hom𝐴 𝐸⃗

⇓𝜅

Hom𝐵

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌
Hom𝐶 Hom𝐶(𝑓,𝐶)

⇓𝛽

𝐸⃗ Hom𝐷(𝐷,𝑔) Hom𝐷

Hom𝐶

⇓∘
𝐹

Hom𝐷

𝐹

(8.4.5)

By Lemma 8.3.10, we have

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

⇓𝜄

Hom𝐶(𝑓,𝐶) 𝐸⃗ Hom𝐷(𝐷,𝑔)

⇓𝜄
Hom𝐶 Hom𝐶(𝑓,𝐶)

⇓𝛽

𝐸⃗ Hom𝐷(𝐷,𝑔) Hom𝐷

Hom𝐶

⇓∘
𝐹

Hom𝐷

𝐹

=

⇓𝜄

Hom𝐶(𝑓,𝐶) 𝐸⃗ Hom𝐷(𝐷,𝑔)

⇓𝜄
Hom𝐶

⇓∘

Hom𝐶(𝑓,𝐶) 𝐸⃗ Hom𝐷(𝐷,𝑔)

⇓∘

Hom𝐷

Hom𝐶(𝑓,𝐶)

⇓𝛽

𝐸⃗ Hom𝐷(𝐷,𝑔)

𝐹

since both composites equal 𝛽. By the universal property of the unit cells in
Proposition 8.2.4, the bottom two rows of these diagrams are equal, so we may
substitute the bottom two rows of the right-hand diagram for the bottom two
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rows of (8.4.5) to obtain:

̂̌𝛽 =

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

Hom𝐶(𝑓,𝐶)

⇓𝜄

𝐸⃗

⇓𝜄

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓,𝐶)

⇓𝜌 𝑓 ⇓𝜅

Hom𝐴 𝐸⃗

⇓𝜅

Hom𝐵

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌
Hom𝐶

⇓∘

Hom𝐶(𝑓,𝐶) 𝐸⃗ Hom𝐷(𝐷,𝑔)

⇓∘

Hom𝐷

Hom𝐶(𝑓,𝐶)
⇓𝛽

𝐸⃗
Hom𝐷(𝐷,𝑔)

𝐹

=

By Proposition 8.4.1 and Lemma 8.3.10 this reduces to 𝛽.

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

Hom𝐶(𝑓,𝐶)

⇓𝜄

𝐸⃗

⇓𝜄

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓,𝐶)

⇓∘

Hom𝐴 𝐸⃗ Hom𝐵

⇓∘

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓,𝐶)
⇓𝛽

𝐸⃗
Hom𝐷(𝐷,𝑔)

𝐹

=
𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

Hom𝐶(𝑓,𝐶)

⇓𝛽

𝐸⃗ Hom𝐷(𝐷,𝑔)

𝐹

By vertically bisecting this construction, one obtains the one-sided bijections
of the statement.

We frequently apply this result in the following form:

Corollary 8.4.6. Given a compatible sequence of modules 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛

from 𝐴 to 𝐵, a module 𝐹 from 𝐶 to 𝐷, and functors 𝑓∶ 𝐴 → 𝐶 and 𝑔∶ 𝐵 → 𝐷,
there is a bijection between fibered module maps Hom𝐶(𝑓, 𝐶)

⨰ 𝐸1
⨰ ⋯ ⨰

𝐸𝑛
⨰ Hom𝐷(𝐷, 𝑔) ⇒ 𝐹 and fibered module maps 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐹(𝑔, 𝑓), i.e.,
between cells

𝐶 𝐴 𝐵 𝐷 𝐴 𝐵

𝐶 𝐷 𝐴 𝐵

Hom𝐶(𝑓,𝐶)

⇓

𝐸⃗ Hom𝐷(𝐷,𝑔)

↭

𝐸⃗

⇓

𝐹 𝐹(𝑔,𝑓)

Proof Combine Theorem 8.4.4 with Proposition 8.2.1.
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Proposition 8.4.7. For any module 𝐴 𝐸 𝐵 and pair of functors 𝑎∶ 𝑋 → 𝐴
and 𝑏∶ 𝑌 → 𝐵, the strong composite Hom𝐴(𝐴, 𝑎) ⊗ 𝐸 ⊗ Hom𝐵(𝑏, 𝐵) exists
and is given by the restriction 𝐸(𝑏, 𝑎), with the ternary strong composite map
𝜇∶ Hom𝐴(𝐴, 𝑎)

⨰ 𝐸 ⨰ Hom𝐵(𝑏, 𝐵) ⇒ 𝐸(𝑏, 𝑎) defined by the universal prop-
erty of the restriction by the pasting diagram:

𝑋 𝐴 𝐵 𝑌

𝑋 𝑌

𝐴 𝐵

Hom𝐴(𝐴,𝑎)

⇓𝜇

𝐸 Hom𝐵(𝑏,𝐵)

𝑎
𝐸(𝑏,𝑎)
⇓𝜌 𝑏

𝐸

≔

𝑋 𝐴 𝐵 𝑌

𝐴 𝐴 𝐵 𝐵

𝐴 𝐵

𝑎 ⇓𝜌

Hom𝐴(𝐴,𝑎) 𝐸

⇓𝜌

Hom𝐵(𝑏,𝐵)

𝑏

Hom𝐴

⇓∘

𝐸
Hom𝐵

𝐸

Proof The horizontal composite two-sided fibration of the compatible se-
quence is

Hom𝐴(𝐴, 𝑎) ×
𝐴
𝐸 ×

𝐵
Hom𝐵(𝑏, 𝐵)

Hom𝐴(𝑞, 𝑎) Hom𝐵(𝑏, 𝑝)

Hom𝐴(𝐴, 𝑎) 𝐸 Hom𝐵(𝑏, 𝐵)

𝑋 𝐴 𝐵 𝑌

⌜

⌜ ⌜

𝑝1 𝑝0 𝑞 𝑝 𝑝1 𝑝0

from which we see that the binary composite cell

Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝) 𝐸

𝐴 × 𝐵
(𝑞,𝑝)

of Proposition 8.3.11 pulls back along 𝑎×𝑏∶ 𝑋 ×𝑌 → 𝐴×𝐵 to define the map
𝜇. By Lemma 8.3.7, we conclude that 𝜇∶ Hom𝐴(𝐴, 𝑎)

⨰ 𝐸 ⨰ Hom𝐵(𝑏, 𝐵) ⇒
𝐸(𝑏, 𝑎) is a strong composite.

When one of the three modules appearing in the source of the ternary com-
posite of Proposition 8.4.7 is a unit module, we can use Lemma 8.3.8 and the
nullary composite cell associated with the unit to reduce this ternary composite
to a binary composite (see Exercise 8.4.iii). This argument proves the following
pair of corollaries.

Corollary 8.4.8. For any cospan of functors 𝐶 𝑔 𝐴 𝑓 𝐵, the comma module
Hom𝐴(𝑓, 𝑔) factors as a strong composite

Hom𝐴(𝐴, 𝑔) ⊗ Hom𝐴(𝑓, 𝐴) ≃ Hom𝐴(𝑓, 𝑔).
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A similar reduction (see Exercise 8.2.i) proves that right representable mod-
ules can always be composed with each other and dually left representable
modules can always be composed with each other:

Corollary 8.4.9. Any composable pair of functors 𝐴 𝑓 𝐵 𝑔 𝐶 defines a
strongly composable pair of right represented modules and a strongly compos-
able pair of left represented modules

𝐴 𝐵 𝐶 𝐶 𝐵 𝐴
Hom𝐵(𝐵,𝑓) Hom𝐶(𝐶,𝑔) Hom𝐶(𝑔,𝐶) Hom𝐵(𝑓,𝐵)

and moreover the strong composites are again represented:

Hom𝐵(𝐵, 𝑓) ⊗ Hom𝐶(𝐶, 𝑔) ≃ Hom𝐶(𝐶, 𝑔𝑓) and
Hom𝐶(𝑔, 𝐶) ⊗ Hom𝐵(𝑓, 𝐵) ≃ Hom𝐶(𝑔𝑓, 𝐶).

This result combines with Proposition 8.3.11 to prove a generalization of
Theorem 3.5.12, which allows us to detect representable modules.

Proposition 8.4.10. Let 𝐴 𝑞 𝐸 𝑝 𝐵 encode a module.

(i) The module𝐴 𝐸 𝐵 is right representable just when its left leg 𝑞∶ 𝐸 ↠ 𝐴
has a right adjoint 𝑟∶ 𝐴 → 𝐸 in which case 𝐸 ≃ Hom𝐵(𝐵, 𝑝𝑟).

(ii) The module𝐴 𝐸 𝐵 is left representable just when its right leg𝑝∶ 𝐸 ↠ 𝐵
has a left adjoint ℓ∶ 𝐵 → 𝐸 in which case 𝐸 ≃ Hom𝐴(𝑞ℓ, 𝐴).

Proof By Lemma 3.5.9 and Theorem 3.5.12, the claimed adjoints and fibered
equivalences exist for representable modules, so it remains only to prove the
converse. By Proposition 8.3.11, any module 𝐸 can be expressed as a com-
posite Hom𝐴(𝑞, 𝐴) ⊗ Hom𝐵(𝐵, 𝑝) ≃ 𝐸 of the left representation of its left leg
followed by the right representation of its right leg. If 𝑞 ⊣ 𝑟, then by Proposi-
tion 4.1.1 Hom𝐴(𝑞, 𝐴) ≃ Hom𝐸(𝐸, 𝑟) as modules from 𝐴 to 𝐸, so by Lemma
8.3.3, Hom𝐸(𝐸, 𝑟) ⊗ Hom𝐵(𝐵, 𝑝) ≃ 𝐸. By Corollary 8.4.9, Hom𝐸(𝐸, 𝑟) ⊗
Hom𝐵(𝐵, 𝑝) ≃ Hom𝐵(𝐵, 𝑝𝑟) so by Lemma 8.3.3 again, Hom𝐵(𝐵, 𝑝𝑟) ≃ 𝐸.

Finally, we revisit the “cheap” version of the Yoneda lemma presented in
Corollary 3.5.11, which encodes natural transformations in the homotopy 2-cat-
egory as maps of represented modules.

Proposition 8.4.11. For any parallel pair of functors there are natural bijec-
tions between 2-cells in the homotopy 2-category

𝐴 𝐵
𝑓

𝑔
⇓𝛼
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and cells in the virtual equipment of modules:

𝐴 𝐵 𝐴 𝐴 𝐵 𝐴

𝐴 𝐵 𝐵 𝐵 𝐵 𝐴

⇓𝛼∗

Hom𝐵(𝐵,𝑓)

↭ ⇓𝛼⃖𝑔

Hom𝐴

𝑓 ↭

Hom𝐵(𝑔,𝐵)

⇓𝛼∗

Hom𝐵(𝐵,𝑔) Hom𝐵 Hom𝐵(𝑓,𝐵)

Proof The bijections in 𝕄od(𝒦) can then be derived from Theorem 8.4.4 and
Corollary 8.4.6. The bijection between 2-cells in the homotopy 2-category and
unary module maps between left or right representables is simply a restatement
of Corollary 3.5.11.

Definition 8.4.12 (the covariant and contravariant embeddings). Proposition
8.4.11 defines the action on 2-cells of two identity-on-objects locally fully
faithful homomorphisms

𝔥𝒦 𝕄od(𝒦) 𝔥𝒦coop 𝕄od(𝒦)

𝐴
𝑓
𝐵 𝐴

Hom𝐵(𝐵,𝑓) 𝐵 𝐴
𝑓
𝐵 𝐵

Hom𝐵(𝑓,𝐵) 𝐴

that embed the homotopy 2-category fully faithfully into the sub “bicategory”
of 𝕄od(𝒦) containing only those unary cells whose vertical boundaries are
identities.

This substructure of𝕄od(𝒦) is not quite a bicategory because not all horizon-
tally composable modules can be composed, but if we restrict only to the right
representable modules or only to the left representable modules, then by Corol-
lary 8.4.9 the composites do exist and the embeddings define genuine bicategori-
cal homomorphisms: given 𝐴 𝑓 𝐵 𝑔 𝐶we have Hom𝐵(𝐵, 𝑓)⊗Hom𝐶(𝐶, 𝑔) ≃
Hom𝐶(𝐶, 𝑔𝑓) and Hom𝐶(𝑔, 𝐶)⊗Hom𝐵(𝑓, 𝐵) ≃ Hom𝐶(𝑔𝑓, 𝐶). We refer to these
as the covariant and contravariant embeddings, respectively.

Remark 8.4.13. In addition to the covariant and contravariant embeddings,
there is a third locally fully faithful embedding of the homotopy 2-category 𝔥𝒦
into 𝕄od(𝒦) that is identity on objects, sends 𝑓∶ 𝐴 → 𝐵 to the corresponding
vertical 1-cell, and uses the third bijection of Proposition 8.4.11 to define the
action on 2-cells. Since Hom𝐴 ⊗ Hom𝐴 ≃ Hom𝐴, the unary cells in this image
of this embedding can be composed horizontally as well as vertically, and
this embedding is functorial in both directions: vertical composites of natural
transformations in 𝔥𝒦 coincide with horizontal composites of unary cells and
horizontal composites of natural transformations in 𝔥𝒦 coincide with vertical
composites of unary cells. The image is precisely the vertical 2-category of
Proposition 8.3.18. We make much greater use of the covariant and contravariant
embeddings of Definition 8.4.12 however.
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Exercises
Exercise 8.4.i. Prove Proposition 8.4.1 in any virtual equipment, without ap-
pealing to Lemma 8.1.16.

Exercise 8.4.ii. State and prove a generalization of Theorem 8.4.4 in which the
bottom 𝑛 + 2-ary cell appearing in the statement is not fibered, but has vertical
boundary defined by an arbitrary pair of nonidentity functors.

Exercise 8.4.iii. Prove a binary version of Proposition 8.4.7: that for any module
𝐴 𝐸 𝐵 and any functors 𝑎∶ 𝑋 → 𝐴 and 𝑏∶ 𝑌 → 𝐵 the strong composites
Hom𝐴(𝐴, 𝑎) ⊗ 𝐸 and 𝐸 ⊗ Hom𝐵(𝑏, 𝐵) exist and are given by the restrictions
𝐸(1, 𝑎) and 𝐸(𝑏, 1), respectively.

Exercise 8.4.iv. Prove the nonstrong version of Proposition 8.4.7 in any virtual
equipment, without appealing to Lemma 8.3.7.

Exercise 8.4.v. For any functor 𝑓∶ 𝐴 → 𝐵, define a canonical unary cell
𝜂∶ Hom𝐴 ⇒ Hom𝐵(𝑓, 𝑓) ≃ Hom𝐵(𝐵, 𝑓) ⊗ Hom𝐵(𝑓, 𝐵) and a binary cell
𝜖∶ Hom𝐵(𝑓, 𝐵)

⨰ Hom𝐵(𝐵, 𝑓) ⇒ Hom𝐵. Use this data to demonstrate that the
modules 𝐴 Hom𝐵(𝐵,𝑓) 𝐵 and 𝐵 Hom𝐵(𝑓,𝐵) 𝐴 are “adjoint” in a suitable sense.



9

Formal ∞-Category Theory in a Virtual
Equipment

Mac Lane famously asserted that “all concepts are Kan extensions” [81, §X.7],
at least in category theory. Right and left extensions of a functor 𝑓∶ 𝐴 → 𝐶
along a functor 𝑘∶ 𝐴 → 𝐵 can be defined internally to any 2-category (see
Definition 9.1.1) – at this level of generality the eponym “Kan” is typically
dropped. However, in the homotopy 2-category of an ∞-cosmos, the universal
property defining left and right extensions is too weak, and indeed the correct
universal property is associated to the stronger notion of a pointwise extension,
for which the values of a right or left extension at an element of 𝐵 can be
computed as limits or colimits indexed by the appropriate comma ∞-category
(see Proposition 9.4.9 for a precise statement). Indeed, Kelly later amended
Mac Lane’s assertion, arguing that the pointwise Kan extensions, which he
calls simply “Kan extensions” are the important ones, writing “Our present
choice of nomenclature is based on our failure to find a single instance where
a [nonpointwise] Kan extension plays any mathematical role whatsoever” [68,
§4].

Using the calculus of modules, we can now add the theory of pointwise
Kan extensions of functors between ∞-categories to the basic ∞-category
theory developed in Part I. In fact, we give multiple definitions of pointwise
extension. One is fundamentally 2-categorical: a pointwise extension is an
ordinary 2-categorical extension in the homotopy 2-category that is stable under
pasting with comma squares. Another definition is that a natural transformation
defines a pointwise right extension if and only if its image under the covariant
embedding into the virtual equipment of modules defines a right extension there.
Theorem 9.3.3 proves that these two notions coincide.

In §9.1, we introduce right liftings and right extensions in the virtual equip-
ment of modules and establish their elementary properties. Before turning our
attention to pointwise extensions, we first introduce exact squares in §9.2, a
collection of squares in the homotopy 2-category that includes comma squares,
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which are used to characterize the pointwise extensions internally to the homo-
topy 2-category. Pointwise extensions are introduced in a variety of equivalent
ways in §9.3 and deployed in §9.4 to develop a few aspects of the formal theory
of ∞-categories.

The explorations of §9.4 begin with a discussion of adjunctions and fully
faithful functors, revisiting well-trodden ground. The vital applications of point-
wise right and left extensions arrive in the later part of that section, where
we define limits and colimits of ∞-category indexed diagrams in general ∞-
cosmoi, that are not necessarily cartesian closed. In §9.5, we introduce a more
general class of limits and colimits for diagrams between ∞-categories that are
weighted by an arbitrary module and quickly establish the key components of
the calculus of weighted limits and colimits. These results can be understood
as revealing that many aspects of ∞-category are automatically enriched over
discrete ∞-categories.

There is one question we do not address in this chapter: namely criteria that
guarantee the existence of pointwise left and right extensions. We return to this
topic in §12.3 where we take advantage of the results about pointwise defined
universal properties established in Chapter 12 to prove the expected converse to
Proposition 9.4.9 in an ∞-cosmos of (∞, 1)-categories, reducing the question
of the existence of pointwise left or right extensions to the existence of certain
colimits or limits.

9.1 Liftings and Extensions of Modules

In this section we introduce and study liftings and extensions in the virtual equip-
ment of modules. To motivate Definition 9.1.2, we briefly recall the standard
2-categorical notion:

Definition 9.1.1. A right extension of a 1-cell 𝑓∶ 𝐴 → 𝐶 along a 1-cell
𝑘∶ 𝐴 → 𝐵 is given by a pair (𝑟∶ 𝐵 → 𝐶, 𝜈∶ 𝑟𝑘 ⇒ 𝑓) as below-left

𝐴 𝐶 𝐴 𝐶 𝐴 𝐶

𝐵 𝐵 𝐵

𝑘

𝑓

𝑘

𝑓

= 𝑘

𝑓

𝑟
⇑𝜈

𝑔
⇑𝛾

𝑔

𝑟⇑𝜈

⇑∃!

so that any similar pair as above-center factors uniquely through 𝜈 as above
right.

Dually, a left extension of a 1-cell 𝑓∶ 𝐴 → 𝐶 along a 1-cell 𝑘∶ 𝐴 → 𝐵 is
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given by a pair (ℓ∶ 𝐵 → 𝐶, 𝜆∶ 𝑓 ⇒ ℓ𝑘) as below-left

𝐴 𝐶 𝐴 𝐶 𝐴 𝐶

𝐵 𝐵 𝐵

𝑘

𝑓

𝑘

𝑓

= 𝑘

𝑓

ℓ
⇓𝜆

𝑔
⇓𝛿

𝑔

ℓ⇓𝜆

⇓∃!

so that any similar pair as above-center factors uniquely through 𝜆 as above
right.

The op-duals of Definition 9.1.1 define right and left lifting diagrams in
any 2-category. Analogous notions of right extension and right lifting can be
defined for horizontal arrows in a virtual double category, where in the presence
of the restrictions of a virtual equipment it suffices to consider “fibered” cells,
whose vertical boundary arrows are identities. We specialize our language to
the virtual equipment of modules, as this is the case of interest:

Definition 9.1.2. A right extension of a module 𝐴 𝐹 𝐶 along a module
𝐴 𝐾 𝐵 consists of a pair given by a module 𝐵 𝑅 𝐶 together with a binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

𝐾 𝑅

⇓𝜈

𝐹

with the property that every 𝑛 + 1-ary cell of the form displayed below-left
factors uniquely through 𝜈∶ 𝐾 ⨰ 𝑅 ⇒ 𝐹 as below-right:

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐶

𝐾

⇓

𝐸1 𝐸𝑛

𝐹

=

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐵 𝐶

𝐴 𝐶

𝐾

⇓∃!

𝐸1 𝐸𝑛

𝐾

⇓𝜈

𝑅

𝐹

Dually, a right lifting of 𝐴 𝐹 𝐶 through 𝐵 𝐻 𝐶 consists of a pair given by
a module 𝐴 𝐿 𝐵 together with a binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

𝐿 𝐻

⇓𝜆

𝐹
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with the property that every 𝑛 + 1-ary cell of the form displayed below-left
factors uniquely through 𝜆∶ 𝐿 ⨰ 𝐻 ⇒ 𝐹 as below-right:

𝐴 ⋯ 𝐵 𝐶

𝐴 𝐶

𝐸1

⇓

𝐸𝑛 𝐻

𝐹

=

𝐴 ⋯ 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐶

⇓∃!

𝐸1 𝐸𝑛 𝐻

⇓𝜆

𝐿 𝐻

𝐹

Because of the asymmetry in Definition 8.1.8, there is no corresponding
notion of left extension or left lifting. It follows easily from these definitions
that right extensions or right liftings are unique up to vertical isomorphism in
𝕄od(𝒦) (see Exercise 9.1.i).

Lemma 9.1.3. For any functor 𝑓∶ 𝐴 → 𝐵, there is a binary cell

𝐵 𝐴 𝐵

𝐵 𝐵

Hom𝐵(𝑓,𝐵)

⇓𝜖

Hom𝐵(𝐵,𝑓)

Hom𝐵

that defines both a right extension of 𝐵 Hom𝐵 𝐵 through 𝐵 Hom𝐵(𝑓,𝐵) 𝐴 and a
right lifting of 𝐵 Hom𝐵 𝐵 through 𝐴 Hom𝐵(𝐵,𝑓) 𝐵.

Proof The binary cell 𝜖∶ Hom𝐵(𝑓, 𝐵)
⨰ Hom𝐵(𝐵, 𝑓) ⇒ Hom𝐵, which also

appears as a counit of sorts in Exercise 8.4.v, corresponds to the unary unit
cell Hom𝑓 under the bijections of Theorem 8.4.4 and Proposition 8.2.4. The
verification of the universal properties is left as Exercise 9.1.ii.

The result of Lemma 9.1.3 is a special case of a more general family of
examples:

Lemma 9.1.4. For any module 𝐴 𝐸 𝐵 and any pair of functors 𝑔∶ 𝐶 → 𝐴 and
𝑓∶ 𝐷 → 𝐵 the canonical cells

𝐴 𝐶 𝐵 𝐴 𝐷 𝐵

𝐴 𝐵 𝐴 𝐵

Hom𝐴(𝑔,𝐴) 𝐸(1,𝑔)

⇓𝜌

𝐸(𝑓,1) Hom𝐵(𝐵,𝑓)

⇓𝜌

𝐸 𝐸

exhibit 𝐸(1, 𝑔) as the right extension of 𝐸 through Hom𝐴(𝑔, 𝐴) and exhibit
𝐸(𝑓, 1) as the right lifting of 𝐸 through Hom𝐵(𝐵, 𝑓).
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Proof The canonical cells of the statement are defined by applying the bijection
of Theorem 8.4.4 to the restriction cells of Proposition 8.2.1, which is to say
that in the case of the right extension diagram above-left this cell is obtained as
the composite

𝐴 𝐶 𝐵

𝐴 𝐴 𝐵

𝐴 𝐵

Hom𝐴(𝑔,𝐴)

𝑔

𝐸(1,𝑔)

⇓𝜌⇓𝜌

Hom𝐴 𝐸

⇓∘

𝐸

The universal property of the right extension is provided by Corollary 8.4.6.

In particular:

Corollary 9.1.5. Any module 𝐴 𝐸 𝐵 is the right extension of itself along
𝐴 Hom𝐴 𝐴 as well as the right lifting of itself through 𝐵 Hom𝐵 𝐵.

Right extensions and right liftings can be understood as right adjoints to
horizontal composition with a module on the left or on the right, respectively
(see Theorem 12.3.6). This leads to the following “associativity” result, which
we formulate for right extensions, leaving the dual result for right liftings to the
reader.

Proposition 9.1.6. Suppose 𝐴 𝐾 𝐵, 𝐵 𝐻 𝐶, and 𝐴 𝐹 𝐷 are modules so that
the composite 𝐾 ⊗ 𝐻 and right extension 𝐵 𝑅𝐾𝐹 𝐷 modules exist. Then the
right extension of 𝑅𝐾𝐹 along 𝐻 exists if and only if the right extension of 𝐹
along 𝐾 ⊗𝐻 exists, in which case 𝑅𝐻(𝑅𝐾𝐹) ≃𝐶×𝐷 𝑅𝐾⊗𝐻𝐹.

Proof The universal property of the binary composite cell 𝜇∶ 𝐾 ⨰ 𝐻 ⇒ 𝐾⊗𝐻
and right extension cell 𝜈∶ 𝐾 ⨰ 𝑅𝐾𝐹 ⇒ 𝐹 provide a bijection between cells
involving an arbitrary compatible sequence of modules 𝑅1

⨰ ⋯ ⨰ 𝑅𝑛 from 𝐶
to 𝐷 (see Notation 8.2.7):

𝐴 𝐵 𝐶 𝐷 𝐴 𝐵 𝐶 𝐷

𝐴 𝐶 𝐷 𝐴 𝐵 𝐷

𝐴 𝐷 𝐴 𝐷

𝐾 𝐻

⇓𝜇

𝑅⃗ 𝐾 𝐻 𝑅⃗

⇓∃!

𝐾⊗𝐻

⇓∃!

𝑅⃗ ↭
𝐾 𝑅𝐾𝐹

⇓𝜈

𝐹 𝐹



346 Formal ∞-Category Theory in a Virtual Equipment

In the case of an empty sequence of modules, this bijection encodes an ad-
jointness between fibered module maps 𝐾 ⊗𝐻 ⇒ 𝐹 and fibered module maps
𝐻 ⇒ 𝑅𝐾𝐹.

If the right extension 𝑅𝐾⊗𝐻𝐹 exists we take this for 𝑅 and use the binary
cell on the lower-left to induce the binary cell on the upper-right, which can
be shown to exhibit 𝑅𝐾⊗𝐻𝐹 as the right extension 𝑅𝐻(𝑅𝐾𝐹) of 𝑅𝐾𝐹 along 𝐻.
Conversely, if the right extension 𝑅𝐻(𝑅𝐾𝐹) exists we use the binary cell on
the upper-right to induce the binary cell on the lower-left, which can be shown
to exhibit 𝑅𝐻(𝑅𝐾𝐹) as the right extension 𝑅𝐾⊗𝐻𝐹 of 𝐹 along 𝐾 ⊗ 𝐻. This
transference of universal properties is straightforward, following again from the
bijection just exhibited.

Finally, if separately the right extensions 𝑅𝐻(𝑅𝐾𝐹) and 𝑅𝐾⊗𝐻𝐹 are known
to exist, then the argument given above combined with the uniqueness of right
extensions combines to show that 𝑅𝐾⊗𝐻𝐹 ≃ 𝑅𝐻(𝑅𝐾𝐹) as modules from 𝐶 to
𝐷 (see Exercise 9.1.i).

We now explain how Definition 9.1.2 relates to Definition 9.1.1 via the
covariant and contravariant embeddings of Definition 8.4.12.

Lemma 9.1.7. If

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘) Hom𝐶(𝐶,𝑟)

⇓𝜈∗

Hom𝐶(𝐶,𝑓)

defines a right extension in the virtual equipment of modules, then 𝜈∶ 𝑟𝑘 ⇒ 𝑓
defines a right extension in the homotopy 2-category. Dually if

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐴(ℓ,𝐴) Hom𝐵(ℎ,𝐵)

⇓𝜆∗

Hom𝐴(𝑔,𝐴)

defines a right lifting in the virtual equipment of modules, then 𝜆∶ 𝑔 ⇒ ℓℎ is a
left extension in the homotopy 2-category.

Proof By Corollary 8.4.9 binary cells 𝜈∗∶ Hom𝐵(𝐵, 𝑘)
⨰ Hom𝐶(𝐶, 𝑟) ⇒

Hom𝐶(𝐶, 𝑓) correspond to unary cells 𝜈∗∶ Hom𝐶(𝐶, 𝑟𝑘) ⇒ Hom𝐶(𝐶, 𝑓), and
by Proposition 8.4.11, these correspond to natural transformations 𝜈∶ 𝑟𝑘 ⇒ 𝑓 in
the homotopy 2-category. Under this correspondence the universal property of
Definition 9.1.2 clearly subsumes that of Definition 9.1.1 by restricting to right
represented modules. The left extension case is similar, via the contravariant
embedding of Definition 8.4.12.
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A sharper characterization of the right extension diagrams of modules in
the image of the covariant embedding appears in Theorem 9.3.3, but we can
characterize the right lifting diagrams of modules in the image of the covariant
embedding now. Recall the notion of absolute right lifting diagram introduced
in Definition 2.3.5.

Proposition 9.1.8. A natural transformation in the homotopy 2-category of an
∞-cosmos as below-left defines an absolute right lifting diagram if and only if
the corresponding binary cell displayed below-right defines a right lifting in the
virtual equipment of modules:

𝐵 𝐶 𝐵 𝐴

𝐶 𝐴 𝐶 𝐴
⇓𝜌

𝑓 ↭

Hom𝐵(𝐵,𝑟) Hom𝐴(𝐴,𝑓)

⇓𝜌∗
𝑟

𝑔 Hom𝐴(𝐴,𝑔)

Dually, a 2-cell in the homotopy 2-category of an ∞-cosmos as below-left
defines an absolute left lifting diagram if and only if the corresponding binary
cell displayed below-right defines a right extension in the virtual equipment of
modules:

𝐵 𝐴 𝐵 𝐴

𝐶 𝐴 𝐴 𝐶
⇑𝜆

𝑓 ↭

Hom𝐴(𝑓,𝐴) Hom𝐵(ℓ,𝐵)

⇓𝜆∗
ℓ

𝑔 Hom𝐴(𝑔,𝐴)

Proof By Proposition 8.4.11, natural transformations in the homotopy 2-cat-
egory of an ∞-cosmos correspond bijectively to unary squares in the virtual
equipment of modules of various forms. By this result and Corollaries 8.4.6 and
8.4.9, there are canonical bijections:

𝑋

𝐶 𝐵

𝐴

𝑏𝑐

𝜒
⇐

𝑔 𝑓

↭
𝑋 𝐴 𝐶 𝑋 𝐵 𝐴

𝑋 𝐴 𝐶 𝐴

Hom𝐴(𝐴,𝑓𝑏)

⇓𝜒∗ ↭

Hom𝐶(𝑐,𝐶)

⇓𝜒̂

Hom𝐵(𝐵,𝑏) Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔𝑐) Hom𝐴(𝐴,𝑔)

(9.1.9)
If the binary cell 𝜌∗∶ Hom𝐵(𝐵, 𝑟)

⨰ Hom𝐴(𝐴, 𝑓) ⇒ Hom𝐴(𝐴, 𝑔) defines a
right lifting diagram in the virtual equipment of modules, then there is a unique
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factorization

𝐶 𝑋 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑐,𝐶)

⇓𝜒̂

Hom𝐵(𝐵,𝑏) Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

=

𝐶 𝑋 𝐵 𝐴

𝐶 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑐,𝐶) Hom𝐵(𝐵,𝑏)

∃!⇓ ̂𝜁

Hom𝐴(𝐴,𝑓)

Hom𝐵(𝐵,𝑟)
⇓𝜌∗

Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

Reversing the canonical bijection (9.1.9), this defines the desired unique factor-
ization in the homotopy 2-category:

𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴

𝑏

𝑐 ⇓𝜒 𝑓 =

𝑏

𝑐
∃!⇓𝜁

⇓𝜌
𝑓

𝑔 𝑔

𝑟

Thus if 𝜌∗∶ Hom𝐵(𝐵, 𝑟)
⨰ Hom𝐴(𝐴, 𝑓) ⇒ Hom𝐴(𝐴, 𝑔) is a right lifting, then

𝜌∶ 𝑓𝑟 ⇒ 𝑔 is an absolute right lifting.
Conversely, suppose 𝜌∶ 𝑓𝑟 ⇒ 𝑔 is an absolute right lifting and consider a

cell in the virtual equipment of modules of the following form:

𝐶 ⋯ 𝐵 𝐴

𝐶 𝐴

𝐸1

⇓ ̄𝜓

𝐸𝑛 Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

Let 𝐶 𝑞 ⃗𝐸 𝑝 𝐵 denote the composite two-sided fibration 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛. By

Remark 8.3.12, module maps ̄𝜓∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛

⨰ Hom𝐴(𝐴, 𝑓) ⇒ Hom𝐴(𝐴, 𝑔)
correspond to module maps ̂𝜓∶ Hom𝐶(𝑞, 𝐶)

⨰ Hom𝐵(𝐵, 𝑝)
⨰ Hom𝐴(𝐴, 𝑓) ⇒

Hom𝐴(𝐴, 𝑔), as displayed below-left. As argued in (9.1.9), these stand in canon-
ical bijection with natural transformations as below-center:

𝐶 ⃗𝐸 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑞,𝐶)

⇓ ̂𝜓

Hom𝐵(𝐵,𝑝) Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

↭

⃗𝐸

𝐶 𝐵

𝐴

𝑝𝑞

𝜓
⇐

𝑔 𝑓

↭

⃗𝐸

𝐶 𝐵

𝐴

𝑝𝑞 ∃!𝜉
⇐

𝜌
⇐𝑔

𝑟

𝑓

Since 𝜌∶ 𝑓𝑟 ⇒ 𝑔 is assumed to be an absolute right lifting, 𝜓 factors uniquely
through 𝜌 to define a corresponding 2-cell 𝜉∶ 𝑝 ⇒ 𝑟𝑞 as above-right. Applying
(9.1.9) again, this constructs a unique factorization in the virtual equipment of
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modules

𝐶 ⃗𝐸 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑞,𝐶)

⇓ ̂𝜓

Hom𝐵(𝐵,𝑝) Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

=

𝐶 ⃗𝐸 𝐵 𝐴

𝐶 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑞,𝐶)

∃!⇓ ̂𝜉

Hom𝐵(𝐵,𝑝) Hom𝐴(𝐴,𝑓)

Hom𝐵(𝐵,𝑟)
⇓𝜌∗

Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

By Remark 8.3.12, this defines a bijection

𝐶 ⋯ 𝐵 𝐴

𝐶 𝐴

𝐸1

⇓ ̄𝜓

𝐸𝑛 Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

=

𝐶 ⋯ 𝐵 𝐴

𝐶 𝐵 𝐴

𝐶 𝐴

𝐸1

∃!⇓ ̄𝜉

𝐸𝑛 Hom𝐴(𝐴,𝑓)

Hom𝐵(𝐵,𝑟)
⇓𝜌∗

Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑔)

Thus if 𝜌∶ 𝑓𝑟 ⇒ 𝑔 defines an absolute right lifting, then 𝜌∗∶ Hom𝐵(𝐵, 𝑟)
⨰

Hom𝐴(𝐴, 𝑓) ⇒ Hom𝐴(𝐴, 𝑔) defines a right lifting.

In Theorem 9.3.3 we discover that right extensions of modules in the image of
the covariant embedding are precisely characterized by the sought-for pointwise
right extensions in the homotopy 2-category; dually pointwise left extensions
correspond to right liftings of modules in the image of the contravariant embed-
ding. In the next section, we build toward the 2-categorical definition of this
notion.

Exercises
Exercise 9.1.i. Suppose 𝐵 𝑅 𝐶 and 𝐵 𝑆 𝐶 both define right extensions of a
module 𝐴 𝐹 𝐶 along a module 𝐴 𝐾 𝐵 in the sense of Definition 9.1.2. Prove
that 𝑅 ≃𝐵×𝐶 𝑆.

Exercise 9.1.ii. Complete the proof of Lemma 9.1.3 without appealing to
Lemma 9.1.4.

Exercise 9.1.iii. A virtual equipment is closed if the right extensions and right
liftings of Definition 9.1.2 always exist. In a closed virtual equipment, prove
that a cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 is a composite if and only if restriction
along 𝜇 defines a bijection between fibered unary cells 𝐸 ⇒ 𝐹 and fibered cells
𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐹 for all modules 𝐹 that are parallel to 𝐸.
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Exercise 9.1.iv. Dualize Proposition 9.1.6 to characterize right liftings through
a composite of two modules.

Exercise 9.1.v. Establish the dual of Proposition 9.1.8, by verifying that ab-
solute left lifting diagrams 𝜆∶ 𝑔 ⇒ 𝑓ℓ correspond to right extension diagrams
𝜆∗∶ Hom𝐴(𝑓, 𝐴)

⨰ Hom𝐵(ℓ, 𝐵) ⇒ Hom𝐴(𝑔, 𝐴).

9.2 Exact Squares

To motivate the main definition of this section, let us try to guess the universal
property of a pointwise right extension in an∞-cosmos by considering a special
case that we already understand. If the ambient ∞-cosmos is cartesian closed,
then the pointwise right extension of a diagram 𝑓∶ 𝐴 → 𝐶 along a functor
𝑘∶ 𝐴 → 𝐵 is intended to define the value of a right adjoint, which may or
may not exist in toto, to the restriction functor res𝑘∶ 𝐶𝐵 → 𝐶𝐴 at the element
𝑓∶ 1 → 𝐶𝐴. In the case of extensions along a functor !∶ 𝐴 → 1, the restriction
functor is the constant diagram functor Δ∶ 𝐶 → 𝐶𝐴 considered in Definition
2.3.2, and so via Definition 2.3.8 we can understand the pointwise right extension
as computing the limit of 𝑓. The following lemma describes the transposed form
of this universal property.

Lemma 9.2.1. In a cartesian closed ∞-cosmos, the triangle below-left is an
absolute right lifting diagram – defining the limit element and limit cone of 𝑓 –
if and only if the transposed triangle below-center has the property that for any
∞-category 𝑋, the composite diagram below-right is a right extension diagram.

𝐶 𝐴 𝐶 𝑋 × 𝐴 𝐴 𝐶

1 𝐶𝐴 1 𝑋 1
⇓𝜖

Δ ↭ !

𝑓

⌟
𝜋

𝜋 !

𝑓

lim𝑓

𝑓

lim𝑓

⇑𝜖

!
lim𝑓

⇑𝜖

Proof A factorization of a cone with summit 𝑋 through the absolute right
lifting of 𝑓 along the constant diagram functor

𝑋 𝐶 𝑋 𝐶

1 𝐶𝐴 1 𝐶𝐴

!

𝑐

⇓𝜒 Δ = !

𝑐

∃!⇓𝜁

⇓𝜖
Δ

𝑓

lim𝑓

𝑓



9.2 Exact Squares 351

transposes to a factorization as below:

𝑋 × 𝐴 𝐴 𝐶 𝑋 × 𝐴 𝐴 𝐶

𝑋 𝑋 1

𝜋

𝜋

𝑓

=
⌟

𝜋

𝜋 !

𝑓

𝑐

⇑𝜒

!

𝑐

∃!⇑𝜁

lim𝑓
⇑𝜖

Lemma 9.2.1 reveals that to define the limit of 𝑓∶ 𝐴 → 𝐶 in an ∞-cosmos
that is not necessarily cartesian closed, it is not enough to form the right extension
of !∶ 𝐴 → 1. In terminology introduced in Definition 9.3.1, we must ask in
addition that the right extension diagram is stable under pasting with squares of
the form:

𝑋 × 𝐴 𝐴

𝑋 1

𝜋

𝜋
⌟

!

!

How might we characterize such squares? First, they are pullbacks each of whose
legs is a bifibration. Second, they are comma squares, where the comma cone is
an identity 2-cell best regarded as pointing in a direction compatible with 𝜈 in
the statement of Lemma 9.2.1. By Lemmas 9.2.6 and 9.2.7, we shall see that
both of these are instances of exact squares, which we now introduce.

By Proposition 8.4.11, natural transformations in the homotopy 2-category of
an ∞-cosmos correspond bijectively to unary squares in the virtual equipment
of modules of various forms, and in particular, that result, Theorem 8.4.4,
Proposition 8.2.4, and Proposition 8.2.1 defines a canonical bijection:

𝐷

𝐶 𝐵

𝐴

ℎ𝑘

𝛼
⇐

𝑔 𝑓

↭
𝐷 𝐷 𝐶 𝐷 𝐵

𝐴 𝐴 𝐶 𝐵

𝑔𝑘

Hom𝐷

⇓𝛼⃖ 𝑓ℎ ↭

Hom𝐶(𝑘,𝐶)

⇓𝛼̂

Hom𝐵(𝐵,ℎ)

Hom𝐴 Hom𝐴(𝑓,𝑔)

Definition 9.2.2 (exact square). A square in the homotopy 2-category of an
∞-cosmos

𝐷

𝐶 𝐵

𝐴

ℎ𝑘

𝛼
⇐

𝑔 𝑓
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is exact1 if and only if the corresponding cell below-left, which under the
bijection of Lemma 8.1.16 encodes the below-right pasted composite

𝐶 𝐷 𝐵

𝐶 𝐵

Hom𝐶(𝑘,𝐶)

⇓𝛼̂

Hom𝐵(𝐵,ℎ)

Hom𝐴(𝑓,𝑔)

↭

Hom𝐶(𝑘, 𝐶) ×
𝐷

Hom𝐵(𝐵, ℎ)

Hom𝐶(𝑘, 𝐶) Hom𝐵(𝐵, ℎ)

𝐷

𝐶 𝐵

𝐴

⌜

𝑝0

𝑝1
𝜙
⇐

𝑝1

𝑝0
𝜙
⇐
ℎ𝑘

𝛼
⇐

𝑔 𝑓

(9.2.3)
displays Hom𝐴(𝑓, 𝑔) as the composite Hom𝐶(𝑘, 𝐶)⊗Hom𝐵(𝐵, ℎ) as defined in
Definition 8.3.1.

When the boundary square is clear from context, for economy of language we
may write that “𝛼∶ 𝑓ℎ ⇒ 𝑔𝑘 is an exact square” but note that the meaning of
the exactness condition is changed if the positions of any of the four boundary
arrows of the square inhabited by the 2-cell 𝛼 are shifted.2

Remark 9.2.4 (exactness as a Beck–Chevalley condition). By Corollary 8.4.8,
the map of spans defined by 1-cell induction

Hom𝐴(𝐴, 𝑔) ×
𝐴

Hom𝐴(𝑓, 𝐴)

Hom𝐴(𝐴, 𝑔) Hom𝐴(𝑓, 𝐴)

𝐶 𝐴 𝐵

⌜

𝑝1 𝑝0
𝜙
⇐

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

=

Hom𝐴(𝐴, 𝑔) ×
𝐴

Hom𝐴(𝑓, 𝐴)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

⌜𝜇⌝

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

encodes a binary cell 𝜇∶ Hom𝐴(𝐴, 𝑔)
⨰ Hom𝐴(𝑓, 𝐴) ⇒ Hom𝐴(𝑓, 𝑔) which is

a composite. Exactness says that 𝛼 induces an isomorphism

𝛼̂∶ Hom𝐶(𝑘, 𝐶) ⊗ Hom𝐵(𝐵, ℎ) ≃ Hom𝐴(𝐴, 𝑔) ⊗ Hom𝐴(𝑓, 𝐴)

of modules from 𝐶 to 𝐵.
1 Unfortunately the terminology “exact square” is used in a variety of different settings. We hope

that the context makes it clear that the present notion has nothing to do with squares that are
both pushouts and pullbacks in a stable ∞-category. Exercise 9.4.ii reveals a connection
between this notion of exact square and commuting squares between adjoint functors whose
mates are isomorphisms (see Proposition 6.3.10).

2 For instance, compare the statements of Lemmas 9.2.8 and 9.4.4.
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Digression 9.2.5 (strong exactness). Recall from §8.3 that many of the for-
mally defined composite cells that are found in any virtual equipment are in
fact strong composites in the virtual equipment of modules associated to an
∞-cosmos. Based on this experience, one might expect that many of the exact
squares we encounter in the virtual equipment of modules are in fact strongly
exact, meaning that the cell 𝛼̂∶ Hom𝐶(𝑘, 𝐶)

⨰ Hom𝐵(𝐵, ℎ) ⇒ Hom𝐴(𝑓, 𝑔) is
a strong composite, and indeed this is the case. In fact, in an ∞-cosmos of
(∞, 1)-categories, all composites exist and are strong: the tensor product of
modules can be defined by a fiberwise coinverter construction that is stable
under pullback. Since the composite of any compatible sequence of modules
is equivalent to the strong composite, in such ∞-cosmoi, all composites, and
hence all exact squares, automatically satisfy the stronger universal property.

The primary role played by exact squares here is in developing the notion
of pointwise left and right extensions, and for this the weaker 2-categorical
universal property suffices. We note in passing that our formally defined exact
squares are strong, but typically only appeal to the weaker exactness property
in proofs. There is one instance when a stronger notion of exactness may be
preferable, which we discuss in Remark 9.4.12.

The remainder of this section is devoted to examples of exact squares.

Lemma 9.2.6 (comma squares are exact). For any cospan 𝐶 𝑔 𝐴 𝑓 𝐵, the
comma cone defines a strongly exact square:

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

Proof By Proposition 8.3.11, the module 𝐶 Hom𝐴(𝑓,𝑔) 𝐵 is the strong compos-
ite of the left representation of its left leg followed by the right representation
of its right leg. By Remark 8.3.13, the binary composition cell Hom𝐶(𝑝1, 𝐶)

⨰

Hom𝐵(𝐵, 𝑝0) ⇒ Hom𝐴(𝑓, 𝑔) corresponds under the bijection of Lemma 8.1.16
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to the pasted composite

Hom𝐶(𝑝1, 𝐶)
⨰ Hom𝐵(𝐵, 𝑝0)

Hom𝐶(𝑝1, 𝐶) Hom𝐵(𝐵, 𝑝0)

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

⌜

𝑝0

𝑝1
𝜙
⇐

𝑝1

𝑝0
𝜙

⇐

𝑝0𝑝1
𝜙
⇐

𝑔 𝑓

This recovers the cell ̂𝜙 defined by (9.2.3) that tests the exactness of comma
square 𝜙∶ 𝑓𝑝0 ⇒ 𝑔𝑝1.

Lemma 9.2.7. If 𝑔∶ 𝐶 → 𝐴 is a cartesian fibration or 𝑓∶ 𝐵 → 𝐴 is a cocarte-
sian fibration, then the pullback square is strongly exact:

𝑃

𝐶 𝐵

𝐴

𝜋1 𝜋0⌜

𝑔 𝑓

Proof The two statements are dual though the positions of the cocartesian and
cartesian fibrations cannot be interchanged, as the proof reveals. If 𝑓∶ 𝐵 ↠ 𝐴 is
a cocartesian fibration, observe that the functorΔ∶ 𝑃 → Hom𝐴(𝑓, 𝑔) induced by
the identity 2-cell 𝑓𝜋0 = 𝑔𝜋1 is a pullback of the functorΔ𝑓∶ 𝐵 → Hom𝐴(𝑓, 𝐴)
induced by the identity 2-cell id𝑓.

𝑃 𝐵

Hom𝐴(𝑓, 𝑔) Hom𝐴(𝑓, 𝐴)

𝐶 𝐴

𝜋0

Δ
⊥

𝜋1
𝑓

Δ𝑓 ⊥

𝑝1

⌟

ℓ

𝑝1

ℓ

𝑔

Since 𝑓 is a cocartesian fibration, Theorem 5.2.8(iii) tells us that Δ𝑓∶ 𝐵 →
Hom𝐴(𝑓, 𝐴) has a fibered left adjoint over 𝐴. This fibered adjunction pulls back
along 𝑔∶ 𝐶 → 𝐴 to define a fibered left adjoint to Δ∶ 𝑃 → Hom𝐴(𝑓, 𝑔).

Since 𝜋0 = 𝑝0Δ, Corollary 8.4.9 implies that the canonical cell

HomHom𝐴(𝑓,𝑔)(Hom𝐴(𝑓, 𝑔), Δ)
⨰ Hom𝐵(𝐵, 𝑝0) ⇒ Hom𝐵(𝐵, 𝜋0)
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is a strong composite. Since ℓ ⊣ Δ, there is an equivalence Hom𝑃(ℓ, 𝑃) ≃
HomHom𝐴(𝑓,𝑔)(Hom𝐴(𝑓, 𝑔), Δ) by Proposition 4.1.1. And since 𝑝1 = 𝜋1ℓ, by
Corollary 8.4.9 the canonical cell

Hom𝐶(𝜋1, 𝐶)
⨰ Hom𝑃(ℓ, 𝑃) ⇒ Hom𝐶(𝑝1, 𝐶)

is a strong composite. Composing these bijections, we see that cells with do-
main Hom𝐶(𝜋1, 𝐶)

⨰ Hom𝐵(𝐵, 𝜋0) correspond bijectively to cells with domain
Hom𝐶(𝑝1, 𝐶)

⨰ Hom𝐵(𝐵, 𝑝0).
Since ℓ ⊣ Δ is a fibered adjunction, the transpose of the natural transformation

𝜙∶ 𝑓𝑝0 ⇒ 𝑔𝑝1 = 𝑔𝜋1ℓ along ℓ ⊣ Δ equals 𝜙Δ = id∶ 𝑓𝜋0 = 𝑓𝑝0𝑖 ⇒ 𝑔𝑝1𝑖 =
𝑔𝜋1. This tells us that the cells

îd∶ Hom𝐶(𝜋1, 𝐶)
⨰ Hom𝐵(𝐵, 𝜋0) ⇒ Hom𝐴(𝑓, 𝑔) and

̂𝜙∶ Hom𝐶(𝑝1, 𝐶)
⨰ Hom𝐵(𝐵, 𝑝0) ⇒ Hom𝐴(𝑓, 𝑔)

correspond under the bijection just described. Since Lemma 9.2.6 proves that ̂𝜙
is a strong composite, by Lemma 8.3.8 so is îd.

For later use, we note some trivial examples of exact squares:

Lemma 9.2.8. For any pair of functors 𝑘∶ 𝐴 → 𝐵 and ℎ∶ 𝐶 → 𝐷 the pullback
square is strongly exact:

𝐴 × 𝐶

𝐴 × 𝐷 𝐵 × 𝐶

𝐵 × 𝐷

𝑘×𝐶𝐴×ℎ ⌜

𝑘×𝐷 𝐵×ℎ

In particular, the identity cells define strongly exact squares:

𝐴 𝐴

𝐴 𝐵 𝐵 𝐴

𝐵 𝐵

𝑘⌜ 𝑘 ⌜

𝑘 𝑘

Proof Exercise 9.2.ii.

Finally, the exact squares just established can be composed to yield further
exact squares:

Lemma 9.2.9 (composites of exact squares). Given a diagram of squares in the
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homotopy 2-category

𝐻 𝐺

𝐹 𝐷 𝐸

𝐶 𝐵

𝐴

𝑟𝑠
𝛾
⇐

𝑝𝑞

𝛽
⇐

𝑐 ℎ𝑘
𝛼
⇐

𝑏

𝑔 𝑓

if 𝛼∶ 𝑓ℎ ⇒ 𝑔𝑘, 𝛽∶ 𝑏𝑝 ⇒ ℎ𝑞, and 𝛾∶ 𝑘𝑟 ⇒ 𝑐𝑠 are all exact squares then so
are the composite rectangles 𝛼𝑞 ⋅ 𝑓𝛽 and 𝑔𝛾 ⋅ 𝛼𝑟, and these are strongly exact
if the constituent squares are. Consequently, arbitrary “double categorical”
composites of (strongly) exact squares define (strongly) exact squares.

Proof The two cases are co-duals, so it suffices to prove that the rectangle
𝛼𝑞 ⋅ 𝑓𝛽∶ 𝑔(𝑘𝑞) ⇒ (𝑓𝑏)𝑝 is exact. The corresponding cell 𝛼𝑞 ⋅ 𝑓𝛽 displayed
below-left factors as below-right through the composite ̂𝛽

𝐶 𝐷 𝐺 𝐸

𝐶 𝐸

Hom𝐶(𝑘,𝐶)

⇓𝛼𝑞⋅𝑓𝛽

Hom𝐷(𝑞,𝐷) Hom𝐸(𝐸,𝑝)

Hom𝐴(𝑓𝑏,𝑔)

=

𝐶 𝐷 𝐺 𝐸

𝐶 𝐷 𝐸

𝐶 𝐸

Hom𝐶(𝑘,𝐶) Hom𝐷(𝑞,𝐷)

⇓ ̂𝛽

Hom𝐸(𝐸,𝑝)

Hom𝐶(𝑘,𝐶)
⇓𝛼̄

Hom𝐵(𝑏,ℎ)

Hom𝐴(𝑓𝑏,𝑔)

and by comparing the formulae of (9.2.3) with Lemma 8.1.16, we see that the
cell 𝛼̄ satisfies the pasting equality:

𝐶 𝐷 𝐵 𝐸 𝐶 𝐷 𝐵 𝐸

𝐶 𝐷 𝐸 𝐶 𝐵 𝐸

𝐶 𝐸 𝐶 𝐸

Hom𝐶(𝑘,𝐶) Hom𝐵(𝐵,ℎ)

⇓∘

Hom𝐵(𝑏,𝐵) Hom𝐶(𝑘,𝐶)

⇓𝛼̂

Hom𝐵(𝐵,ℎ) Hom𝐵(𝑏,𝐵)

Hom𝐶(𝑘,𝐶)
⇓𝛼̄

Hom𝐵(𝑏,ℎ)
=

Hom𝐴(𝑓,𝑔)
⇓∘

Hom𝐵(𝑏,𝐵)

Hom𝐴(𝑓𝑏,𝑔) Hom𝐴(𝑓𝑏,𝑔)

Both canonical cells named ∘ are composites, as is 𝛼̂ by exactness of 𝛼, so by
Lemma 8.3.3 or 8.3.8, 𝛼̄ is a composite as well. By exactness of 𝛽 and Lemma
8.3.3 or 8.3.8 again it now follows that 𝛼𝑞 ⋅ 𝑓𝛽 is also a composite, proving
exactness of the rectangle 𝛼𝑞 ⋅ 𝑓𝛽∶ 𝑔(𝑘𝑞) ⇒ (𝑓𝑏)𝑝.
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Exercises
Exercise 9.2.i. For any exact square

𝐷

𝐶 𝐵

𝐴

ℎ𝑘

𝛼
⇐

𝑔 𝑓

show that the square obtained by composing with any isomorphisms 𝛽∶ 𝑓′ ≅ 𝑓,
𝛾∶ 𝑔 ≅ 𝑔′, 𝛿∶ ℎ′ ≅ ℎ, and 𝜖∶ 𝑘 ≅ 𝑘′ is also exact.

Exercise 9.2.ii. Prove Lemma 9.2.8.

9.3 Pointwise Right and Left Kan Extensions

In this section, we give four definitions of pointwise right Kan extensions for
functors between ∞-categories and prove they are equivalent. Our proof reveals
that the general 2-categorical notion of right extensions (see Definition 9.1.1)
is too weak on its own. The dual theory of pointwise left Kan extensions is
previewed by Lemma 9.1.7 (see Exercise 9.3.i).

Definition 9.3.1 (stability of extensions under pasting). A right extension
diagram 𝜈∶ 𝑟𝑘 ⇒ 𝑓 in a 2-category is said to be stable under pasting with a
square 𝛼 if the pasted composite

𝐴 𝐶

𝐵

𝑘

𝑓

𝑟
⇑𝜈

𝐷

𝐴 𝐸

𝐵

ℎ𝑔

𝛼
⇐

𝑘 𝑏

𝐷 𝐴 𝐶

𝐸 𝐵

𝑔

ℎ ⇗𝛼 𝑘

𝑓

𝑏

𝑟
⇑𝜈 (9.3.2)

defines a right extension 𝑟𝑏∶ 𝐸 → 𝐶 of 𝑓𝑔∶ 𝐷 → 𝐶 along ℎ∶ 𝐷 → 𝐸.

Theorem 9.3.3 (pointwise right extensions). For a diagram

𝐴 𝐶

𝐵

𝑘

𝑓

𝑟
⇑𝜈

in the homotopy 2-category of an ∞-cosmos 𝒦 the following are equivalent:

(i) 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a right extension in 𝔥𝒦 that is stable under pasting
with exact squares.
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(ii) 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a right extension in 𝔥𝒦 that is stable under pasting
with comma squares.

(iii) 𝜈∗∶ Hom𝐵(𝐵, 𝑘)
⨰ Hom𝐶(𝐶, 𝑟) ⇒ Hom𝐶(𝐶, 𝑓) defines a right exten-

sion in 𝕄od(𝒦).
(iv) For any exact square

𝐷

𝐴 𝐸

𝐵

ℎ𝑔

𝛼
⇐

𝑘 𝑏

(𝜈𝑔⋅𝑟𝛼)∗∶ Hom𝐸(𝐸, ℎ)
⨰ Hom𝐶(𝐶, 𝑟𝑏) ⇒ Hom𝐶(𝐶, 𝑓𝑔) defines a right

extension in 𝕄od(𝒦).

When these conditions hold, we say 𝑟∶ 𝐵 → 𝐶 defines a pointwise right exten-
sion of 𝑓∶ 𝐴 → 𝐶 along 𝑘∶ 𝐴 → 𝐵.

Proof Lemma 9.2.6 proves (i)⇒(ii).
To show (ii)⇒(iii), suppose 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a right extension in 𝔥𝒦 that

is stable under pasting with comma squares and consider a cell in 𝕄od(𝒦):

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

⇓ ̄𝛽

𝐸1 𝐸𝑛

Hom𝐶(𝐶,𝑓)

Let 𝐵 𝑞 ⃗𝐸 𝑝 𝐶 denote the composite two-sided fibration 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛. By

Remark 8.3.12, module maps 𝛽∶ Hom𝐵(𝐵, 𝑘)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓)
correspond to module maps ̂𝛽 ∶ Hom𝐵(𝐵, 𝑘)

⨰ Hom𝐵(𝑞, 𝐵)
⨰ Hom𝐶(𝐶, 𝑝) ⇒

Hom𝐶(𝐶, 𝑓). By Corollary 8.4.6 and Proposition 8.4.7, such module maps stand
in bijection with module maps ̌𝛽 ∶ Hom𝐵(𝑞, 𝑘) ⇒ Hom𝐶(𝑝, 𝑓). By Lemma
8.1.16, these module maps correspond bijectively to 2-cells

Hom𝐵(𝑞, 𝑘)

𝐴 ⃗𝐸

𝐶

𝑝1 𝑝0

𝛽
⇐

𝑓 𝑝
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in the homotopy 2-category. By the hypothesis (ii),

Hom𝐵(𝑞, 𝑘) 𝐴 𝐶

⃗𝐸 𝐵

𝑝1

𝑝0 ⇗𝜙 𝑘

𝑓

𝑞

𝑟

⇑𝜈

defines a right extension in 𝔥𝒦, so 𝛽 factors uniquely through this pasted compos-
ite via a natural transformation 𝛾∶ 𝑝 ⇒ 𝑟𝑞. By Proposition 8.4.11, this defines
a cell 𝛾∗∶ Hom𝐶(𝐶, 𝑝) ⇒ Hom𝐶(𝐶, 𝑟𝑞), which by Corollary 8.4.6 gives rise
to a canonical cell ̂𝛾∶ Hom𝐵(𝑞, 𝐵)

⨰ Hom𝐶(𝐶, 𝑝) ⇒ Hom𝐶(𝐶, 𝑟). By Remark
8.3.12 again, this produces the desired unique factorization

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

⇓ ̄𝛽

𝐸1 𝐸𝑛

Hom𝐶(𝐶,𝑓)

=

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

∃!⇓𝛾̄

𝐸1 𝐸𝑛

Hom𝐵(𝐵,𝑘)

⇓𝜈∗

Hom𝐶(𝐶,𝑟)

Hom𝐶(𝐶,𝑓)

To show (iii)⇒(iv), consider a diagram (9.3.2) in which 𝛼∶ 𝑏ℎ ⇒ 𝑘𝑔 is exact
and 𝜈∗∶ Hom𝐵(𝐵, 𝑘)

⨰ Hom𝐶(𝐶, 𝑟) ⇒ Hom𝐶(𝐶, 𝑓) defines a right extension
diagram in 𝕄od(𝒦). Now by Corollary 8.4.6, a cell

̄𝛽 ∶ Hom𝐸(𝐸, ℎ)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓𝑔)

corresponds to a cell

̂𝛽 ∶ Hom𝐴(𝑔, 𝐴)
⨰ Hom𝐸(𝐸, ℎ)

⨰ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓).

By exactness of 𝛼, this corresponds to a cell

̂𝛽 ∶ Hom𝐵(𝑏, 𝑘)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓),

or equivalently, upon restricting along the composite map ∘∶ Hom𝐵(𝐵, 𝑘)
⨰

Hom𝐵(𝑏, 𝐵) ⇒ Hom𝐵(𝑏, 𝑘) to a cell

̂𝛽 ∶ Hom𝐵(𝐵, 𝑘)
⨰ Hom𝐵(𝑏, 𝐵)

⨰ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓).

Since 𝐵 Hom𝐶(𝐶,𝑟) 𝐶 is the right extension of 𝐴 Hom𝐶(𝐶,𝑓) 𝐶 along 𝐴 Hom𝐵(𝐵,𝑘) 𝐵,
this corresponds to a cell

̂𝛾∶ Hom𝐵(𝑏, 𝐵)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑟),
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which transposes via Corollary 8.4.6 to a cell

̄𝛾∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑟𝑏),

which gives the factorization required to prove that the module 𝐸 Hom𝐶(𝐶,𝑟𝑏) 𝐶
is the right extension of 𝐷 Hom𝐶(𝐶,𝑓𝑔) 𝐶 along 𝐷 Hom𝐸(𝐸,ℎ) 𝐸. A slightly more
delicate argument is required to see that this bijection is implemented by com-
posing with the map (𝜈𝑔 ⋅ 𝑟𝛼)∗∶ Hom𝐸(𝐸, ℎ)

⨰ Hom𝐶(𝐶, 𝑟𝑏) ⇒ Hom𝐶(𝐶, 𝑓𝑔)
corresponding to the pasted composite (9.3.2), but for this it suffices by the
Yoneda lemma to start with the identity cell idHom𝐶(𝐶,𝑟𝑏) and trace back up
through the bijection just described. Using Lemma 8.1.16 this is straightfor-
ward.

Finally Lemma 9.1.7 and the trivial example of Lemma 9.2.8 prove that
(iv)⇒(i).

Using the various characterizations of Theorem 9.3.3, we can establish some
basic stability properties of pointwise right extensions.

Corollary 9.3.4. The pasted composite (9.3.2) of a pointwise right extension
with an exact square is a pointwise right extension.

Proof Lemma 9.2.9, the pasted composite of two exact squares remains an
exact square, so by Theorem 9.3.3(i), the pasted composite of a pointwise right
extension remains stable under pasting with exact squares.

Corollary 9.3.5. Consider a diagram of functors and natural transformations

𝐴 𝐷

𝐵

𝐶

𝑘

𝑓

𝑟

ℎ

⇑𝜈

𝑠⇑𝜍

where (𝑟, 𝜈∶ 𝑟𝑘 ⇒ 𝑓) is a pointwise right extension of 𝑓 along 𝑘. Then
(𝑠, 𝜎∶ 𝑠ℎ ⇒ 𝑟) is a pointwise right extension of 𝑟 along ℎ if and only if
(𝑠, 𝜈 ⋅ 𝜎𝑘∶ 𝑠ℎ𝑘 ⇒ 𝑓) is a pointwise right extension of 𝑓 along ℎ𝑘.

Proof By Theorem, 9.3.3, a natural transformation in the homotopy 2-category
is a pointwise right extension if and only if its covariant embedding into the
virtual equipment of modules is a right extension. The binary module maps
𝜎∗∶ Hom𝐶(𝐶, ℎ)

⨰ Hom𝐷(𝐷, 𝑠) ⇒ Hom𝐷(𝐷, 𝑟) and (𝜈 ⋅ 𝜎𝑘)∗∶ Hom𝐶(ℎ𝑘)
⨰
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Hom𝐷(𝐷, 𝑠) ⇒ Hom𝐷(𝐷, 𝑓) correspond under the bijection of Proposition 9.1.6:

𝐴 𝐵 𝐶 𝐷 𝐴 𝐵 𝐶 𝐷

𝐴 𝐶 𝐷 𝐴 𝐵 𝐷

𝐴 𝐷 𝐴 𝐷

Hom𝐵(𝐵,𝑘) Hom𝐶(𝐶,𝑘)

⇓𝜇

Hom𝐷(𝐷,𝑠) Hom𝐵(𝐵,𝑘) Hom𝐶(𝐶,ℎ) Hom𝐷(𝐷,𝑠)

⇓𝜍∗

Hom𝐶(𝐶,ℎ𝑘)

⇓(𝜈⋅𝜍𝑘)∗

Hom𝐷(𝐷,𝑠)
↭

Hom𝐵(𝐵,𝑘) Hom𝐷(𝐷,𝑟)

⇓𝜈∗

Hom𝐷(𝐷,𝑓) Hom𝐷(𝐷,𝑓)

Thus, by that result, 𝜎∗ is a right extension if and only if (𝜈 ⋅ 𝜎𝑘)∗ is a right
extension, as claimed.

Exercises
Exercise 9.3.i. Using Lemma 9.1.7 as a hint, state and prove a dual version of
Theorem 9.3.3 defining pointwise left extensions in the homotopy 2-category of
an ∞-cosmos.

9.4 Formal Category Theory in a Virtual Equipment

One reason for our interest in the virtual equipment of modules is that it captures
their calculus within an ∞-cosmos. A stronger justification is provided by the
theorems about∞-category theory that can be proven within a virtual equipment.
In this section, we revisit adjunctions and fully faithful functors from a module-
theoretic point of view, before turning our attention to limits and colimits of
functors between ∞-categories.

Proposition 9.4.1. For any pair of functors 𝑓∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 and
natural transformation 𝜖∶ 𝑓𝑢 ⇒ id𝐴 the following are equivalent:

(i) The natural transformation 𝜖 is the counit of an adjunction 𝑓 ⊣ 𝑢.
(ii) The unary cell representing the functor ⌜𝜖 ⋅ 𝑓(−)⌝∶ Hom𝐵(𝐵, 𝑢) →

Hom𝐴(𝑓, 𝐴) defines a vertical isomorphism in the virtual equipment of
modules:

𝐴 𝐵

𝐴 𝐵

Hom𝐵(𝐵,ᵆ)

⇓

Hom𝐴(𝑓,𝐴)
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(iii) The counit defines an exact square:

𝐴

𝐴 𝐵

𝐴

𝜖
⇐

ᵆ

𝑓

(iv) The counit defines a pointwise right extension diagram that is absolute,
preserved by any functor ℎ∶ 𝐴 → 𝐶.

𝐴 𝐴

𝐵

ᵆ
𝑓

⇑𝜖 (9.4.2)

Proof The equivalence (i)⇔(ii) is proven by Proposition 4.1.1, via Lemma
8.1.17.

To say that 𝜖∶ 𝑓𝑢 ⇒ id𝐴 is exact is to say that the binary cell below-left is a
composite:

𝐴 𝐴 𝐵

𝐴 𝐵

Hom𝐴

⇓ ̂𝜖

Hom𝐵(𝐵,ᵆ)

Hom𝐴(𝑓,𝐴)

↭

𝐴 𝐴 𝐵

𝐴 𝐴 𝐵

𝐴 𝐵

⇓𝜄

Hom𝐵(𝐵,ᵆ)

Hom𝐴

⇓ ̂𝜖

Hom𝐵(𝐵,ᵆ)

Hom𝐴(𝑓,𝐴)

By Lemmas 8.3.3 and 8.3.9(i), this is the case if and only if the unary cell
above-right is a composite, and by Lemma 8.3.9(ii) this is exactly the assertion
made in (ii). Thus (ii)⇔(iii).

To prove that (ii)⇒(iv), we must show that the binary cell displayed below-left
defines a right extension diagram in the virtual equipment of modules.

𝐴 𝐵 𝐴

𝐴 𝐶

Hom𝐵(𝐵,ᵆ)

⇓ℎ𝜖∗

Hom𝐶(𝐶,ℎ𝑓)

Hom𝐶(𝐶,ℎ)

≅
𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐴(𝑓,𝐴)

⇓

Hom𝐴(𝐴,ℎ𝑓)

Hom𝐶(𝐶,ℎ)

≔

𝐴 𝐵 𝐶

𝐴 𝐴 𝐶

𝐴 𝐶

Hom𝐴(𝑓,𝐴)

𝑓

Hom𝐴(𝐴,ℎ𝑓)

⇓𝜌⇓𝜌

Hom𝐴 Hom𝐶(𝐶,ℎ)

⇓∘

Hom𝐶(𝐶,ℎ)

By (ii), this binary cell is isomorphic to a binary cell of the form displayed
above-center. Indeed, Lemma 8.1.16 and Remark 8.3.13 can be used to check
that the cell defined by the formula above-right composes with the vertical
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isomorphism ⌜𝜖 ⋅ 𝑓(−)⌝∶ Hom𝐵(𝐵, 𝑢) ≃ Hom𝐴(𝑓, 𝐴) to yield the binary cell
above-left. This is why we used the notation “𝜖” for the binary cell in Lemma
9.1.3. Thus, by Lemma 9.1.4, these binary cells are right extensions in the virtual
equipment of modules, so we see that (ii)⇒(iv).

The proof that (iv)⇒(i) can be given entirely in the homotopy 2-category and
does not require the adjective “pointwise.” Indeed, this is the op-dual of the part
of Lemma 2.3.7 left as Exercise 2.3.iii.

It follows that right extensions along right adjoints and left extensions along
left adjoints are easy to calculate:

Corollary 9.4.3. The pointwise right extension of any functor along a right
adjoint 𝑢∶ 𝐴 → 𝐵 is given by its restriction along the left adjoint 𝑓∶ 𝐵 → 𝐴,
while the pointwise left extension of any functor along a left adjoint is given by
its restriction along the right adjoint:

𝐴 𝐶 𝐵 𝐶

𝐵 𝐴

ℎ

ᵆ

𝑔

𝑓
ran𝑢ℎ≅ℎ𝑓

⇑ℎ𝜖
lan𝑓𝑔≅𝑔ᵆ

⇓𝑔𝜂

Proof To say in Proposition 9.4.1 that the counit 𝜖 of an adjunction 𝑓 ⊣ 𝑢 is
an absolute pointwise right extension means that for any functor ℎ∶ 𝐴 → 𝐶 the
diagram

𝐴 𝐴 𝐶

𝐵

ᵆ

ℎ

𝑓

⇑𝜖

is a pointwise right extension. In particular, ℎ𝑓 ≅ ranᵆℎ.

Corollary 3.5.6 describes a number of equivalent characterizations of fully
faithful functors between ∞-categories, including one characterization that was
implicitly module-theoretic: a functor 𝑘∶ 𝐴 → 𝐵 is fully faithful if and only
if ⌜id𝑘⌝∶ 𝐴𝟚 ∼ Hom𝐵(𝑘, 𝑘) is a fibered equivalence over 𝐴 × 𝐴. In the virtual
equipment of modules, this condition can be rephrased in a number of ways:

Lemma 9.4.4. A functor 𝑘∶ 𝐴 → 𝐵 is fully faithful when any of the following
equivalent conditions hold:

(i) The square is exact:

𝐴

𝐴 𝐴

𝐵𝑘 𝑘
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(ii) The module map ⌜id𝑘⌝ defines a vertical isomorphism in the virtual
equipment of modules:

𝐴 𝐴

𝐴 𝐴

Hom𝐴

⇓

Hom𝐵(𝑘,𝑘)

Proof After unpacking the definitions, the equivalence follows from the nullary
and unary composites of Lemma 8.3.9 and the composition relation Hom𝐴 ⊗
Hom𝐴 ≃ Hom𝐴 of Lemma 8.3.10.

Famously, pointwise left and right extensions along fully faithful functors are
genuine extensions, in the sense that the universal natural transformation is an
isomorphism.

Proposition 9.4.5 (extensions along fully faithful functors). If 𝑘∶ 𝐴 → 𝐵 is
fully faithful then for any pointwise right extension the natural transformation
𝜈∶ 𝑟𝑘 ⇒ 𝑓 is an isomorphism.

𝐴 𝐶

𝐵

𝑘

𝑓

𝑟
⇑𝜈

Proof Pasting the pointwise right extension in the statement with the exact
square of Lemma 9.4.4 yields a pointwise right extension diagram, whose
universal property in the homotopy 2-category can be used to construct an
inverse isomorphism to 𝜈 and prove it defines a two-sided inverse:

𝐴 𝐶 𝐴 𝐶 𝐴 𝐶

𝐴 𝐴 𝐴

𝑓 𝑓

=

𝑓

𝑟𝑘

⇑𝜈

𝑓

⇑id𝑓

𝑓

𝑟𝑘
⇑𝜈

⇑∃!

Proposition 9.4.6. A right adjoint 𝑢∶ 𝐴 → 𝐵 is fully faithful if and only if the
counit 𝜖∶ 𝑓𝑢 ⇒ id𝐴 is an isomorphism.

Proof If 𝑓 ⊣ 𝑢with counit 𝜖∶ 𝑓𝑢 ⇒ id𝐴, then by Proposition 9.4.1, the counit
𝜖∶ 𝑓𝑢 ⇒ id𝐴 is exact. If 𝑢 is fully faithful, then by Lemma 9.2.9 the composite
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rectangle below is also exact.

𝐴

𝐴 𝐴

𝐴 𝐵

𝐴

𝜖
⇐

ᵆ
ᵆ

𝑓

Unpacking Definition 9.2.2, this is to say, by Lemmas 8.3.10 and 8.3.9, that that
the image of 𝜖 under the contravariant embedding of Definition 8.4.12 induces an
equivalence of modules 𝜖∗∶ Hom𝐴 ≃ Hom𝐴(𝑓𝑢, 𝐴). By Proposition 8.4.11, this
embedding is fully faithful, so it follows that 𝜖∶ 𝑓𝑢 ⇒ id𝐴 is an isomorphism.

Conversely, assume 𝑓 ⊣ 𝑢 with invertible counit 𝜖∶ 𝑓𝑢 ≅ id𝐴. The fibered
equivalences of Exercise 3.6.ii and Corollary 4.1.3

Hom𝐴 Hom𝐴(𝑓𝑢, 𝐴) Hom𝐵(𝑢, 𝑢)∼𝜖
∗

∼⌜ᵆ(−)⋅𝜂⌝

compose to define the module map ⌜idᵆ⌝∶ Hom𝐴 ⇒ Hom𝐵(𝑢, 𝑢). Thus, by
Lemma 9.4.4, 𝑢 is fully faithful.

We now turn to limits and colimits of diagrams indexed by ∞-categories.
Recall from Definition 1.2.23 that an ∞-cosmos 𝒦 is cartesian closed if for
any 𝐽 ∈ 𝒦 there is a cosmological functor (−)𝐽∶ 𝒦 → 𝒦 equipped with a
simplicial natural isomorphism

Fun(𝑋 × 𝐽, 𝐴) ≅ Fun(𝑋, 𝐴𝐽).

It follows that elements 𝑓∶ 1 → 𝐴𝐽 in the ∞-category of 𝐽-shaped diagrams in
𝐴 correspond bijectively to functors 𝑓∶ 𝐽 → 𝐴 between ∞-categories. In such
contexts, Definition 2.3.8 defines limits and colimits of an ∞-category indexed
diagram 𝑓∶ 𝐽 → 𝐴 to be absolute right and left liftings, respectively:

𝐴 𝐴

1 𝐴𝐽 1 𝐴𝐽
⇓𝜖

Δ
⇑𝜂

Δ
lim𝑓

𝑓

colim𝑓

𝑓

We now argue that such limits and colimits can also be expressed as pointwise
Kan extensions, extending the previously developed theory to ∞-cosmoi that
are not necessarily cartesian closed.

Definition 9.4.7. A limit of a diagram of ∞-categories 𝑓∶ 𝐽 → 𝐴 is given
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by a pointwise right extension as below-left, while a colimit of a diagram of
∞-categories 𝑓∶ 𝐽 → 𝐴 is given by a pointwise left extension as below-right.

𝐽 𝐴 𝐽 𝐴

1 1

𝑓

!

𝑓

!
lim𝑓

⇑𝜖

colim𝑓

⇓𝜂

As in Definition 2.3.8, we refer to the natural transformations 𝜖 and 𝜂 as the
limit cone and colimit cone, respectively. Our first task is to reconcile these
definitions:

Proposition 9.4.8. In a cartesian closed ∞-cosmos any limit as encoded by
the absolute right lifting diagram below-right transposes to define a pointwise
right extension diagram as below-left:

𝐽 𝐴 𝐴

1 1 𝐴𝐽

𝑓

! ↭
⇓𝜖

Δ
lim𝑓

⇑𝜖 lim𝑓

𝑓

Conversely, any pointwise right extension diagram of this form transposes to
define a limit in 𝐴.

Proof By Lemma 9.2.1, the universal property of an absolute right lifting
diagram as below-left transposes to the universal property of a right extension
diagram that is stable under pasting with pullback squares:

𝐴 𝐽 𝐴 𝑋 × 𝐽 𝐽 𝐴

1 𝐴𝐽 1 𝑋 1
⇓𝜖

Δ ↭ !

𝑓 𝜋

𝜋
⌟

!

𝑓

lim𝑓

𝑓

lim𝑓

⇑𝜖

!
lim𝑓

⇑𝜖

Since comma squares over cospans whose codomain is the terminal ∞-category
reduce to pullbacks, we conclude from Theorem 9.3.3(ii) that 𝜖∶ Δ lim𝑓 ⇒ 𝑓
is an absolute right lifting diagram if and only if 𝜖∶ lim𝑓! ⇒ 𝑓 is a pointwise
right extension.

In classical category theory, there is a well-known formula that calculates the
values of a pointwise right Kan extension “pointwise” as limits. A dual colimit
formula calculates pointwise left Kan extensions. These can now be recovered,
essentially as tautologies.
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Proposition 9.4.9. For any pointwise right extension as below-left and element
𝑏∶ 1 → 𝐵, the element 𝑟𝑏∶ 1 → 𝐶 is the limit of the diagram below-right:

𝐴 𝐶

𝐵

𝑘

𝑓

𝑟
⇑𝜈 Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

𝑝1 𝑓

while for any pointwise left extension as below-left and element 𝑏∶ 1 → 𝐵, the
element ℓ𝑏∶ 1 → 𝐶 is the colimit of the diagram below-right:

𝐴 𝐶

𝐵

𝑘

𝑓

ℓ
⇓𝜆 Hom𝐵(𝑘, 𝑏) 𝐴 𝐶

𝑝0 𝑓

Proof By Theorem 9.3.3(ii), the composite

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

1 𝐵

𝑝1

! ⇗𝜙 𝑘

𝑓

𝑏

𝑟
⇑𝜈

is a pointwise right extension. By Definition 9.4.7 this can be interpreted as
saying that 𝑟𝑏∶ 1 → 𝐵 defines the limit of the restriction of the diagram 𝑓∶ 𝐴 →
𝐶 along 𝑝1∶ Hom𝐵(𝑏, 𝑘) ↠ 𝐴.

In Definition 2.2.1, initial and terminal elements in 𝐴 are defined respectively
as left or right adjoints to the unique functor !∶ 𝐴 → 1

1 𝐴
𝑖
⊥

𝑡
⊥
!

or equivalently, by Example 2.3.10, as colimits or limits for the empty diagram
in 𝐴∅ ≅ 1. As observed in Example 2.3.11, an initial element may also be
characterized as a limit and a terminal element may be characterized as a colimit
of the identity diagram id𝐴∶ 𝐴 → 𝐴, as we now show for ∞-cosmoi that are
not necessarily cartesian closed:

Proposition 9.4.10. For an ∞-category 𝐴:

(i) An element 𝑡∶ 1 → 𝐴 is terminal if and only if it defines a colimit for the
identity functor id𝐴∶ 𝐴 → 𝐴 in which case the unit for the adjunction
! ⊣ 𝑡 defines the colimit cone.
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(ii) An element 𝑖∶ 1 → 𝐴 is initial if and only if it defines a limit for the
identity functor id𝐴∶ 𝐴 → 𝐴 in which case the counit for 𝑖 ⊣ ! defines
the limit cone.

Proof We prove (ii). By Definition 2.2.1, an element 𝑖∶ 1 → 𝐴 is initial if
and only if it defines a right adjoint to the unique functor !∶ 𝐴 → 1. If this
adjunction exists, then by Proposition 9.4.1, the counit defines a pointwise right
extension diagram

𝐴 𝐴

1

!
𝑖

⇑𝜖

which by Definition 9.4.7 expresses 𝑖 as the limit of the diagram id𝐴∶ 𝐴 → 𝐴.
Conversely, we must show that a pointwise right extension diagram (𝑖, 𝜖∶ 𝑖! ⇒

id𝐴) gives rise to an adjunction 𝑖 ⊣ ! with counit 𝜖. By Lemma 2.2.2, it suffices
to show that 𝜖𝑖 = id𝑖. By naturality of whiskering (see Lemma B.1.3), the
horizontal composite of 𝜖 with itself gives rise to an equation 𝑖!𝜖 ⋅ 𝜖 = 𝜖 ⋅ 𝜖𝑖!.
Since the ∞-category 1 is 2-terminal, 𝑖!𝜖 = id𝑖!, so this reduces to the pasting
equation:

𝐴 𝐴 𝐴 𝐴

1 1

! = !
𝑖

⇑𝜖

𝑖

𝑖
⇑𝜖

⇑𝜖𝑖

By the uniqueness statement in the universal property of right extensions, it
follows that 𝜖𝑖 = id𝑖 as desired.

Recall from Definition 2.4.5 that a functor 𝑘∶ 𝐼 → 𝐽 is final if and only if for
any ∞-category 𝐴, the square

𝐴 𝐴

𝐴𝐽 𝐴𝐼
Δ Δ

𝐴𝑘

preserves and reflects all absolute left lifting diagrams. Dually a functor 𝑘∶ 𝐼 →
𝐽 is initial if this square preserves and reflects all absolute right lifting diagrams.
We can now give a more concise formulation of these notions.

Definition 9.4.11. A functor 𝑘∶ 𝐼 → 𝐽 is final if and only if the square below-
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left is exact and initial if and only if the square below-right is exact.

𝐼 𝐼

1 𝐽 𝐽 1

1 1

! 𝑘 𝑘 !

! !

Note that the functor !∶ 𝐽 → 1 is represented on the right and on the left by the
modules 𝐽 𝐽 1 and 1 𝐽 𝐽. So we see that 𝑘∶ 𝐼 → 𝐽 is final if and only if the
map of spans below-left is a composite in the virtual equipment of modules

Hom𝐽(𝐽, 𝑘) Hom𝐽(𝑘, 𝐽)

1 𝐽 𝐽 1

𝐽 𝐽

𝑝0

! 𝑝0

𝑝1

!𝑝1

! !

while 𝑘∶ 𝐼 → 𝐽 is initial if and only if the map of spans above-right is a
composite.

Remark 9.4.12. As discussed in Digression 9.2.5, exact squares in an ∞-cos-
mos of (∞, 1)-categories are automatically strongly exact, in which case the
universal property satisfied by final functors can be enriched. Since modules
from 1 to 𝐽 reduce to discrete cartesian fibrations over 𝐽, in such contexts finality
of 𝑘∶ 𝐼 → 𝐽 implies that for every discrete cartesian fibration 𝑝∶ 𝐸 ↠ 𝐽, the
map

Fun𝐽(𝐽, 𝐸) Fun𝐽(Hom𝐽(𝐽, 𝑘), 𝐸) Fun𝐽(𝐼, 𝐸)∼−∘𝑝0

∼
−∘𝑘

∼−∘⌜id𝑘⌝ (9.4.13)

is an equivalence of Kan complexes, the first equivalence by strong exactness
and the second by the Yoneda lemma of Corollary 5.7.19. In the ∞-cosmos
of quasi-categories, the condition (9.4.13) characterizes final functors between
quasi-categories, a definition that Lurie attributes to Joyal [78, 4.1.1.1].

As just argued, in an ∞-cosmos of (∞, 1)-categories, our notion of final
functor implies this characterization, and we now argue the converse holds
as well. Corollary 12.3.8 proves that the ∞-cosmoi of (∞, 1)-categories are
strongly closed, meaning that right extensions and right liftings of modules
always exist and satisfy a universal property expressed as an equivalence of Kan
complexes, not merely a bijection of cells in the virtual equipment. It follows, by
the strong analog of Exercise 9.1.iii, that (9.4.13) defines an equivalence for all
discrete cartesian fibrations over 𝐽 if and only if the square of Definition 9.4.11
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is strongly exact. Thus, in the ∞-cosmos of quasi-categories, our notion of final
functor is equivalent to the standard definition.

We now show that limits are preserved and reflected by reindexing along
initial functors.

Proposition 9.4.14. If 𝑘∶ 𝐼 → 𝐽 is initial and 𝑓∶ 𝐽 → 𝐴 is any diagram, then
a limit of 𝑓 also defines a limit of 𝑓𝑘∶ 𝐼 → 𝐴 and conversely if the limit of
𝑓𝑘∶ 𝐼 → 𝐴 exists, then it also defines a limit of 𝑓∶ 𝐽 → 𝐴.

Proof By Definition 9.4.7, a limit of 𝑓 defines a pointwise right extension as
below left, which by Corollary 9.3.4 and Definition 9.4.11 gives rise to another
pointwise right extension below-right.

𝐽 𝐴 𝐼 𝐽 𝐴

1 1 1

𝑓

!

𝑘

!

𝑓

!
ℓ

⇑𝜈

ℓ

⇑𝜈

By Definition 9.4.7 again, this tells us that ℓ is the limit of 𝑓𝑘.
For the converse, suppose we are given a pointwise right extension diagram

𝐼 𝐴

1

𝑓𝑘

!
ℓ

⇑𝜇

By Theorem 9.3.3(iii), this means that for any compatible sequence of modules
𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 from 1 to 𝐴, composing with 𝜇∶ Hom!(1, !)
⨰ Hom𝐴(𝐴, ℓ) ⇒

Hom𝐴(𝐴, 𝑓𝑘) defines a bijection between cells 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐴(𝐴, ℓ)

and the cells below-left:

𝐼 1 𝐴 𝐽 𝐼 1 𝐴

𝐼 𝐴 𝐽 𝐴

Hom1(1,!)

⇓

𝐸⃗

↭

Hom𝐽(𝑘,𝐽) Hom1(1,!)

⇓

𝐸⃗

Hom𝐴(𝐴,𝑓𝑘) Hom𝐴(𝐴,𝑓)

By Corollary 8.4.6, the cells above-left stand in bijection with the cells above-
right.

To say that 𝑘∶ 𝐼 → 𝐽 is initial means, by Definition 9.4.11, that the map
Hom𝐽(𝑘, 𝐽)

⨰ Hom1(1, !) ⇒ Hom1(1, !) of modules from 𝐽 to 1 induced by the
identity is a composite. Hence, the cells above-right stand in bijection with cells
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of the form:

𝐽 1 𝐴

𝐽 𝐴

Hom1(1,!)

⇓

𝐸⃗

Hom𝐴(𝐴,𝑓)

The composite bijection asserts that the cell 𝜈∶ Hom1(1, !)
⨰ Hom𝐴(𝐴, ℓ) ⇒

Hom𝐴(𝐴, 𝑓) corresponding to the module id∶ Hom𝐴(𝐴, ℓ) ⇒ Hom𝐴(𝐴, ℓ) dis-
plays 1 Hom𝐴(𝐴,ℓ) 𝐴 as the right extension of 𝐽 Hom𝐴(𝐴,𝑓) 𝐴 along 𝐽 Hom1(1,!) 1.
Unpacking the bijections that defined 𝜈, we see that 𝜈𝑘 = 𝜇. Thus 𝜈∶ ℓ! ⇒ 𝑓 is
a pointwise right extension and by Proposition 9.4.8 we conclude that ℓ∶ 1 → 𝐴
defines a limit of 𝑓∶ 𝐽 → 𝐴 as claimed.

It remains to extend Theorem 2.4.2 – that right adjoints preserve limits and
left adjoints preserve colimits – to diagrams indexed by ∞-categories in general
∞-cosmoi. In Theorem 9.5.7, we prove a generalization of this result that covers
limits and colimits weighted by a module, in a sense we now introduce.

Exercises
Exercise 9.4.i. Show that the unit of an adjunction 𝑓 ⊣ 𝑢 defines an exact
square:

𝐵

𝐴 𝐵

𝐵

𝜂
⇐

𝑓

ᵆ

Exercise 9.4.ii. Show that any square 𝛼 involving parallel adjunctions 𝑓 ⊣ 𝑢
and 𝑘 ⊣ 𝑟 as below-left whose mate defines an isomorphism is exact.

𝐷 𝐷

𝐶 𝐵 ↭ 𝐶 𝐵

𝐴 𝐴

ℎ𝑘

𝛼
⇐

ℎ

≅⇓𝛽

𝑔 𝑓 𝑔

𝑟

ᵆ

Exercise 9.4.iii. Show that if 𝑘∶ 𝐼 → 𝐽 is a right adjoint then the square

𝐼

1 𝐽

1

! 𝑘

!
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is exact, reproving Proposition 2.4.6.

9.5 Weighted Limits and Colimits in ∞-Categories

In this section we generalize the limits and colimits of diagrams between ∞-
categories encoded by Definition 9.4.7 to limits and colimits weighted by a
module. The notions of weighted limit and colimit subsume Definition 9.4.7
(see Exercise 9.5.i) and are quite natural from the point of view of the virtual
equipment of modules. This can be understood as the ∞-categorical version
of the theory introduced in §A.6 in the context of enriched categories, though
from the outset we allow our weights to be profunctors, as in Exercise A.6.iv.

Definition 9.5.1. Given a module 𝐴 𝑊 𝐵 and a functor 𝑓∶ 𝐴 → 𝐶, a functor
lim𝑊 𝑓∶ 𝐵 → 𝐶 defines the 𝑊-weighted limit of 𝑓 if it covariantly represents
the right extension of Hom𝐶(𝐶, 𝑓) along𝑊. Dually, given 𝐴 𝑊 𝐵 and a functor
𝑔∶ 𝐵 → 𝐶, a functor colim𝑊 𝑔∶ 𝐴 → 𝐶 defines the 𝑊-weighed colimit of 𝑔 if
it contravariantly represents the right lifting of Hom𝐶(𝑔, 𝐶) through 𝑊.

𝐴 𝐵 𝐶 𝐶 𝐴 𝐵

𝐴 𝐶 𝐶 𝐵

𝑊

⇓𝜆

Hom𝐶(𝐶,lim𝑊 𝑓) Hom𝐶(colim𝑊 𝑔,𝐶)

⇓𝛾

𝑊

Hom𝐶(𝐶,𝑓) Hom𝐶(𝑔,𝐶)

By comparing Definition 9.5.1 with Theorem 9.3.3(iii) we see that pointwise
right and left extensions can be understood as special cases of weighted limits
and colimits (see also Example A.6.15).

Lemma 9.5.2. The pointwise right extension of 𝑓∶ 𝐴 → 𝐶 along 𝑘∶ 𝐴 → 𝐵 is
the limit of 𝑓 weighted by 𝐴 Hom𝐵(𝐵,𝑘) 𝐵, while the pointwise left extension of
𝑓 along 𝑘 is the colimit of 𝑓 weighted by 𝐵 Hom𝐵(𝑘,𝐵) 𝐴.

𝐴 𝐶 𝐴 𝐶

𝐵 𝐵

𝑓

𝑘

𝑓

𝑘
ran𝑘𝑓≅limHom𝐵(𝐵,𝑘)

𝑓

⇑𝜈

lan𝑘𝑓≅colimHom𝐵(𝑘,𝐵)
𝑓

⇓𝜆

Proof By Theorem 9.3.3(iii) a pointwise right extension defines a right ex-
tension of modules while a pointwise left extension defines a right lifting of
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modules:

𝐴 𝐵 𝐶 𝐶 𝐵 𝐴

𝐴 𝐶 𝐶 𝐴

Hom𝐵(𝐵,𝑘)

⇓𝜈∗

Hom𝐶(𝐶,ran𝑘𝑓) Hom𝐶(lan𝑘𝑓,𝐶)

⇓𝜆∗

Hom𝐵(𝑘,𝐵)

Hom𝐶(𝐶,𝑓) Hom𝐶(𝑓,𝐶)

By Definition 9.5.1, thus ran𝑘𝑓 ≅ limHom𝐵(𝐵,𝑘) 𝑓 and lan𝑘𝑓 ≅ colimHom𝐵(𝑘,𝐵) 𝑓
as claimed.

In enriched category theory, weighted limits or colimits with representable
weights are computed by evaluating at the representing object (see Definition
A.6.1). By analogy:

Lemma 9.5.3. For any functor 𝑓∶ 𝐴 → 𝐶 and generalized element 𝑎∶ 𝑋 → 𝐴,
the restriction 𝑓𝑎∶ 𝑋 → 𝐶 is the limit of 𝑓 weighted by 𝐴 Hom𝐴(𝑎,𝐴) 𝑋 and
also the colimit of 𝑓 weighted by 𝑋 Hom𝐴(𝐴,𝑎) 𝐴.

Proof By Lemma 9.1.4, the right extension of the module𝐴 Hom𝐶(𝐶,𝑓) 𝐶 along
𝐴 Hom𝐴(𝑎,𝐴) 𝑋 is given by 𝑋 Hom𝐶(𝐶,𝑓𝑎) 𝐶, while the right lifting of the module
𝐶 Hom𝐶(𝑓,𝐶) 𝐴 through 𝑋 Hom𝐴(𝐴,𝑎) 𝐴 is given by 𝐶 Hom𝐶(𝑓𝑎,𝐶) 𝑋.

𝐴 𝑋 𝐶 𝐴 𝑋 𝐴

𝐴 𝐶 𝐶 𝐴

Hom𝐴(𝑎,𝐴) Hom𝐶(𝐶,𝑓𝑎)

⇓𝜌

Hom𝐶(𝑓𝑎,𝐶) Hom𝐴(𝐴,𝑎)

⇓𝜌

Hom𝐶(𝐶,𝑓) Hom𝐶(𝑓,𝐶)

In the terminology introduced in Definition 9.5.1, this says that the composite
functor 𝑓𝑎∶ 𝑋 → 𝐶 is the limit of 𝑓 weighted by the contravariant module
representing 𝑎 and also the colimit of 𝑓 weighted by the covariant module
representing 𝑎.

By Proposition 9.1.6 and its dual we have immediately:

Proposition 9.5.4. For any functors 𝑓∶ 𝐴 → 𝐸 and 𝑔∶ 𝐶 → 𝐸 and weights
𝐴 𝑊 𝐵 and 𝐵 𝑉 𝐶, the functors lim𝑊⊗𝑉 𝑓 and lim𝑉(lim𝑊 𝑓) are isomorphic
and the functors colim𝑊⊗𝑉 𝑔 and colim𝑊(colim𝑉 𝑔) are isomorphic whenever
the composite weight and these weighted limits and colimits exist.

We derive various formulae for computing weighted limits and colimits from
this result. The first of these determines the values of a weighted limit or colimit
functor at a generalized element of its domain.
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Lemma 9.5.5. If 𝑓∶ 𝐴 → 𝐶 admits a limit lim𝑊 𝑓∶ 𝐵 → 𝐶 weighted by
𝐴 𝑊 𝐵 then for any generalized element 𝑏∶ 𝑋 → 𝐵, the functor lim𝑊 𝑓 ∘
𝑏∶ 𝑋 → 𝐶 is isomorphic to the limit of 𝑓 weighted by 𝐴 𝑊(𝑏,1) 𝑋. Dually,
if 𝑔∶ 𝐵 → 𝐶 admits a colimit colim𝑊 𝑔∶ 𝐴 → 𝐶 weighted by 𝑊 then for
any generalized element 𝑎∶ 𝑌 → 𝐴, the functor colim𝑊 𝑔 ∘ 𝐴∶ 𝑌 → 𝐶 is
isomorphic to the colimit of 𝑔 weighted by 𝑌 𝑊(1,𝑎) 𝐵.

Proof Recall from Proposition 8.4.7 that 𝑊(𝑏, 1) ≅ 𝑊 ⊗ Hom𝐵(𝑏, 𝐵). Thus,
by Proposition 9.5.4, the 𝑊(𝑏, 1)-weighted limit of 𝑓, if it exists, is the functor
that right represents the right extension of the module Hom𝐶(𝐶, lim𝑊 𝑓) along
the module Hom𝐵(𝑏, 𝐵). By Lemma 9.5.3, the right extension of the module
Hom𝐶(𝐶, lim𝑊 𝑓) along Hom𝐵(𝑏, 𝐵) is the module Hom𝐶(𝐶, lim𝑊 𝑓 ∘ 𝑏). By
Definition 9.5.1, it follows that lim𝑊 𝑓∘𝑏∶ 𝑋 → 𝐶 defines the𝑊(𝑏, 1)-weighted
limit of 𝑓∶ 𝐴 → 𝐶, as claimed.

A second useful computational result reduces general weighted limits or
weighted colimits to right or left extensions in the homotopy 2-category.

Lemma 9.5.6. Consider a weight 𝐴 𝑊 𝐵 encoded by the two-sided isofibration
𝐴 𝑞 𝑊 𝑝 𝐵.

(i) For any functor 𝑓∶ 𝐴 → 𝐶 the weighted limit lim𝑊 𝑓∶ 𝐵 → 𝐶 is given
by the pointwise right extension

𝑊 𝐴 𝐶

𝐵

𝑞

𝑝

𝑓

ran𝑝(𝑓𝑞)≅lim𝑊 𝑓
⇑

(ii) For any functor 𝑔∶ 𝐵 → 𝐶 the weighted colimit colim𝑊 𝑔∶ 𝐴 → 𝐶 is
given by the pointwise left extension

𝑊 𝐵 𝐶

𝐴

𝑝

𝑞

𝑔

lan𝑞(𝑓𝑝)≅colim𝑊 𝑓
⇓

In particular, limits weighted by modules from 𝐴 to 1 and colimits weighted by
modules from 1 to 𝐵 reduce to ordinary limits and colimits.

Proof Recall from Proposition 8.3.11 that any module 𝐴 𝑞 𝑊 𝑝 𝐵 factors
as a composite Hom𝐴(𝑞, 𝐴) ⊗ Hom𝐵(𝐵, 𝑝) ≃ 𝑊. Thus by Proposition 9.5.4,
Lemma 9.5.5, and Lemma 9.5.2

lim𝑊 𝑓 ≅ limHom𝐵(𝐵,𝑝)(limHom𝐴(𝑞,𝐴) 𝑓) ≅ limHom𝐵(𝐵,𝑝)(𝑓𝑞) ≅ ran𝑝(𝑓𝑞).
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In a cartesian closed∞-cosmos, Theorem 2.4.2 proves right adjoints preserve
limits and left adjoints preserve colimits of ∞-category indexed diagrams. We
can now extend this result to weighted limits and colimits, while dropping the
hypothesis that the ambient ∞-cosmos is cartesian closed.

Theorem 9.5.7. Right adjoints preserve weighted limits and left adjoints pre-
serve weighted colimits.

Proof Consider a weight 𝐽 𝑊 𝐾, a diagram 𝑑∶ 𝐽 → 𝐴, and an adjunction
with right adjoint 𝑢∶ 𝐴 → 𝐵 and left adjoint 𝑓∶ 𝐵 → 𝐴. The weighted limit
lim𝑊 𝑑∶ 𝐾 → 𝐴 defines a right extension of modules

𝐽 𝐾 𝐴

𝐽 𝐴

𝑊

⇓𝜆

Hom𝐴(𝐴,lim𝑊 𝑑)

Hom𝐴(𝐴,𝑑)

Our task is to demonstrate that the cell 𝑢𝜆 defined by the unique factorization
of the cell below-left through the composite below-right

𝐽 𝐾 𝐴 𝐵 𝐽 𝐾 𝐴 𝐵

𝐽 𝐴 𝐵 𝐽 𝐾 𝐵

𝐽 𝐵 𝐽 𝐵

𝑊

⇓𝜆

Hom𝐴(𝐴,lim𝑊 𝑑) Hom𝐵(𝐵,ᵆ) 𝑊 Hom𝐴(𝐴,lim𝑊 𝑑)

⇓∘

Hom𝐵(𝐵,ᵆ)

Hom𝐴(𝐴,𝑑)

⇓∘

Hom𝐵(𝐵,ᵆ)
=

𝑊 Hom𝐵(𝐵,ᵆ lim𝑊 𝑑)

∃!⇓ᵆ𝜆

Hom𝐵(𝐵,ᵆ𝑑) Hom𝐵(𝐵,ᵆ𝑑)

is again a right extension of modules. To that end consider a cell

𝐽 𝐾 𝐵

𝐽 𝐵

𝑊

⇓

𝐸⃗

Hom𝐵(𝐵,ᵆ𝑑)

By Corollary 4.1.3, there is an equivalence Hom𝐵(𝐵, 𝑢𝑑) ≃ Hom𝐴(𝑓, 𝑑) and
hence by Proposition 8.2.1 there is a restriction cell

𝐽 𝐵

𝐽 𝐴

Hom𝐵(𝐵,ᵆ𝑑)

⇓𝜌 𝑓

Hom𝐴(𝐴,𝑑)

so that composition with 𝜌 induces a bijection between the cells 𝑊 ⨰ ⃗𝐸 ⇒
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Hom𝐵(𝐵, 𝑢𝑑) and cells of the form displayed below-left:

𝐽 𝐾 𝐵 𝐽 𝐾 𝐵 𝐴

𝐽 𝐴 𝐽 𝐴

𝑊

⇓

𝐸⃗

𝑓 ↭

𝑊

⇓

𝐸⃗ Hom𝐴(𝐴,𝑓)

Hom𝐴(𝐴,𝑑) Hom𝐴(𝐴,𝑑)

By Theorem 8.4.4 these cells are in natural bijection with cells of the form dis-
played above-right. Since Hom𝐴(𝐴, lim𝑊 𝑑) is a right extension of Hom𝐴(𝐴, 𝑑)
along 𝑊, such cells are in bijection with cells of the form below-left

𝐾 𝐵 𝐴 𝐾 𝐵

𝐾 𝐴 𝐾 𝐴

⇓

𝐸⃗ Hom𝐴(𝐴,𝑓)

↭ ⇓

𝐸⃗

𝑓

Hom𝐴(𝐴,lim𝑊 𝑑) Hom𝐴(𝐴,lim𝑊 𝑑)

and by Theorem 8.4.4 again these cells are in natural bijection with cells of the
form displayed above-right. By Proposition 8.2.1, such cells stand in bijection
with the cells defined by factoring through the restriction Hom𝐴(𝑓, lim𝑊 𝑑) of
Hom𝐴(𝐴, lim𝑊 𝑑) along 𝑓∶ 𝐵 → 𝐴. By Corollary 4.1.3, there is an equivalence
of modules Hom𝐴(𝑓, lim𝑊 𝑑) ≃ Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑) so via this restriction the
cells are in bijection to cells of the form

𝐾 𝐵

𝐾 𝐵

𝐸⃗

⇓

Hom𝐵(𝐵,ᵆ lim𝑊 𝑑)

When we implement this bijection starting from the identity cell at the mod-
ule Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑) and reverse this composite bijection we obtain the cell
𝑢𝜆∶ 𝑊 ⨰ Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑) ⇒ Hom𝐵(𝐵, 𝑢𝑑), so this proves that 𝑢𝜆 dis-
plays Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑) as the right extension of Hom𝐵(𝐵, 𝑢𝑑) along 𝑊. Thus
𝑢 lim𝑊 𝑑 is the 𝑊-weighted limit of 𝑢𝑑 as claimed.

Theorem 9.5.7 should be compared with Proposition A.6.20, which observes
that the right adjoints of enriched category theory preserve weighted limits, as
defined in §A.6. In∞-cosmoi of (∞, 1)-categories, we can think of the results of
this section as developing an analogous theory of weighted limits and colimits for
categories weakly enriched over∞-groupoids. In particular, adjunctions between
(∞, 1)-categories are automatically enriched over ∞-groupoids, as alluded to
in Remark 4.1.4, so they should be expected to preserve limits weighted by
modules, whose fibers are ∞-groupoids.
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Exercises
Exercise 9.5.i. Determine weights 𝑊lim and 𝑊colim so that the 𝑊lim-weighted
limit of a diagram 𝑓 is the ordinary limit of 𝑓, as defined in 9.4.7, and the
𝑊colim-weighted colimit is the ordinary colimit.

Exercise 9.5.ii. Define the tensor and cotensor of an element 𝑎∶ 1 → 𝐴 of
an ∞-category by a discrete ∞-category 𝑆 as a weighted colimit and weighted
limit, respectively, and compare this construction with Definition 4.3.6.
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The rapidly proliferating literature on (∞, 1)-categories begs the following
question: if a theorem has been proven for one model of (∞, 1)-categories, does
it apply to them all?

To discuss this concern, it is useful to distinguish between “synthetically
proven” theorems and “analytically proven” theorems about (∞, 1)-categories.
Synthetically proven theorems include the myriad results found in Parts I and
II of this text about the objects in an arbitrary ∞-cosmos. While these results
can of course be specialized to any particular ∞-cosmos of (∞, 1)-categories,
their statements and proofs are entirely agnostic to any particular model that
may ultimately be used. Such results are “model independent” in a strong sense.

The situation is more delicate for analytically proven theorems, whose state-
ments and proofs might take advantage of the features of a particular model.
For instance, Barwick, Glasman, and Nardin prove that for any cartesian fi-
bration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories, there is a cocartesian fibration
𝑝∨∶ 𝐸∨ ↠ 𝐵op so that the fibers 𝐸𝑏 ≃ 𝐸∨𝑏 are equivalent [7].3 This result would
be useful to have in all models.

A minor obstacle is presented by the statement, which references the opposite
(∞, 1)-category. While an opposite-category involution is not axiomatized as
part of the structure of an ∞-cosmos, in practice a construction along these
lines is easy to give or can be transferred from another model (see §12.1). Once
opposite (∞, 1)-categories are understood, a larger challenge is presented by the
proof, which appeals to the twisted arrow quasi-category construction [28, §5.6].
Certainly one could transfer that particular quasi-category to another model, but
the analytic aspects of the proof, involving explicit horns and simplices in that
quasi-category, are no longer so easy to express.

The larger question is not just about the formal theory of (∞, 1)-categories
but also concerns concrete examples. The prototypical (∞, 1)-category is the
(∞, 1)-category of spaces, but how can it be defined? One strategy is give a
clever characterization of its universal property so that it can be characterized
in any model: for instance, the (∞, 1)-category of spaces is freely generated by
the point under colimits [78, 5.1.5.6]. But even so, it is necessary to prove that
there exists an (∞, 1)-category with this property, which involves an explicit
construction in a particular model.

To address these sorts of questions, we begin in Chapter 10 with the formal
study of the best behaved class of change-of-model functors, namely the cosmo-
logical biequivalences (see Definition 1.3.8). Not all∞-cosmoi are biequivalent,
but there typically exist biequivalences connecting ∞-cosmoi whose objects are
3 In fact, they prove that both fibrations classify the same contravariant 𝐵-indexed functor
𝑏 ↦ 𝐸𝑏 valued in the (∞, 1)-category of (∞, 1)-categories, but to simplify this discussion, we
focus on the first part of the statement.
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infinite-dimensional categories of the same type, supplied by the experts who
have developed the various models (see Appendix E). In Proposition 10.3.6, we
prove that cosmological biequivalences preserve, reflect, and create a lengthy list
of ∞-categorical structures. Cosmological biequivalences also induce various
bijections: between ∞-categories up to equivalence, between ∞-functors up to
isomorphism modulo these equivalences, between modules up to fibered equiv-
alence, and between natural transformations with specified boundary. These
results can be applied to transfer an explicit adjoint to a given functor or a
colimit of a given diagram between models, as we illustrate in Chapter 11. More
systematically, any biequivalence of∞-cosmoi induces a biequivalence between
their virtual equipments of modules.

We consider this result, recorded as Theorem 11.1.6, as the basis for the model
independence of ∞-category, given how much of the theory of ∞-categories
can be expressed in a virtual equipment leveraging the various embeddings
of the homotopy 2-category. For instance, it subsumes the model invariance
results recorded in Proposition 10.3.6. More profoundly, the virtual equipment
of modules forms the basis for the formal language for model independent ∞-
category theory that is introduced in §11.3. The study of the model independence
of ∞-category theory concludes with Corollary 11.3.10, which proves that
formulae written in this formal language are invariant under biequivalence of∞-
cosmoi precisely because such a biequivalence induces a biequivalence between
the virtual equipments of modules.

The key takeaway is that the conclusions of both synthetically and analyti-
cally proven theorems about ∞-categories can be transferred to biequivalent
∞-cosmoi. In Chapter 12, we specialize to ∞-cosmoi of (∞, 1)-categories (see
Example 1.2.24 and Definition 1.3.10) to illustrate applications of this transfer
principle to (∞, 1)-category theory: introducing opposite∞-categories and their
∞-groupoid cores, establishing the pointwise nature of universal properties, and
proving an existence theorem for pointwise right and left Kan extensions.
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Change-of-Model Functors

In this chapter, we study a certain class of cosmological functors between ∞-
cosmoi that do not merely preserve ∞-categorical structure but also reflect and
create it. We refer to these functors as cosmological biequivalences because
the 2-functors they induce between homotopy 2-categories are biequivalences:
surjective on objects up to equivalence and defining a local equivalence of
hom-categories. Informally, we refer to cosmological biequivalences as “change-
of-model functors.” For example, the four ∞-cosmoi of (∞, 1)-categories intro-
duced in Example 1.2.24 are connected by the following biequivalences briefly
described in Example 1.3.9 and revisited in §E.2:

𝒞𝒮𝒮 𝒮𝑒𝑔𝑎𝑙

𝒬𝒞𝑎𝑡

1-𝒞𝑜𝑚𝑝

(−)0
disc

(−)0

♮

nervenerve

(−)0

(10.0.1)

In §10.1, we collect together a number of results about cosmological functors
that are scattered throughout the text. In §10.2, we reintroduce the special
class of biequivalences and discuss general examples. In particular, we discover
that the ∞-cosmology of Chapter 6 is biequivalence invariant: for instance,
a cosmological biequivalence 𝒦 ∼ ℒ induces a cosmological biequivalence
𝒞𝑎𝑟𝑡(𝒦) ∼ 𝒞𝑎𝑟𝑡(ℒ).

Since our biequivalences between ∞-cosmoi are required to be cosmological
functors, resembling enriched right Quillen adjoints, the relation “admits a
biequivalence to” is not symmetric. Thus, when we say that two ∞-cosmoi
“are biequivalent” we mean that there exists a finite zigzag of biequivalences
connecting them, in other words, that they lie in the same equivalence class

383
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under the symmetric transitive closure of the relation defined by the presence of
a cosmological biequivalence. In particular, under this definition, an ∞-cosmos
of (∞, 1)-categories is an ∞-cosmos that is connected by a finite zigzag of
cosmological biequivalences to any of the ∞-cosmoi in (10.0.1). In this special
case, a simpler characterization is established in Proposition 10.2.1, which
proves that an ∞-cosmos 𝒦 is an ∞-cosmos of (∞, 1)-categories just when
the underlying quasi-category functor (−)0 ≔ Fun(1, −)∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 is a
cosmological biequivalence – retroactively justifying Definition 1.3.10.

In §10.3, we establish the basic 2-categorical properties of biequivalences,
which provides an essential ingredient in the proof of the model independence
results in Chapter 11. Finally, in §10.4, we explore the properties of formally
defined “inverses” to cosmological biequivalences. These are not guaranteed to
be cosmological functors, nor even simplicial functors in the customary strict
sense. The situation is analogous to 2-category theory: a 2-functor that defines
a biequivalence admits an inverse biequivalence but this may only be a pseud-
ofunctor, a notion recalled in Definition 10.4.1. Accordingly, the inverse to a
cosmological biequivalence defines a “quasi-categorically enriched pseudofunct-
or” or quasi-pseudofunctor for short that is not cosmological but does define a
biequivalence and so that the composite endofunctors are quasi-pseudonaturally
equivalent to the identity functors on each ∞-cosmos. These structures reap-
pear in Chapter 12 as tools to transport analytically defined structures between
biequivalent ∞-cosmoi.

10.1 Cosmological Functors Revisited

Recall from Definition 1.3.1 that a cosmological functor is a simplicial functor
𝐹∶ 𝒦 → ℒ between ∞-cosmoi that preserves

• the specified classes of isofibrations and
• all of the cosmological limits.

Lemma 1.3.2 demonstrates that cosmological functors also preserve the equiva-
lences and the trivial fibrations. By Proposition 6.2.8(i), cosmological functors
also preserve all flexible weighted limits.

Examples of cosmological functors abound – for instance, see Proposition
1.3.4 and the cosmological embeddings of replete sub ∞-cosmoi constructed
in §6.3. There are also cosmological functors connecting the ∞-cosmoi of
fibrant diagrams indexed by an inverse category (see Exercise 6.1.iii), such as
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the domain, codomain, and identity functors

𝒦 𝒦
dom

cod

id

which are shown to be cosmological in Proposition 6.1.1.
Cosmological functors frequently restrict to define further cosmological func-

tors between parallel replete sub ∞-cosmoi:

Lemma 10.1.1. Suppose that𝒦′ 𝒦 and ℒ′ ℒ are cosmological embeddings
of replete sub ∞-cosmoi. If 𝐹∶ 𝒦 → ℒ is a cosmological functor that carries
objects and 0-arrows of 𝒦′ to objects and 0-arrows of ℒ′ then the restricted
functor is cosmological:

𝒦′ ℒ′

𝒦 ℒ

𝐹

𝐹

Proof Recall that the repleteness of Definition 6.3.1 includes the requirement
that the inclusions 𝒦′ 𝒦 and ℒ′ ℒ are full on positive dimensional arrows.
So if the simplicial functor 𝐹 carries objects and 0-arrows of 𝒦′ to objects and
0-arrows of ℒ′ then it restricts to define a simplicial functor 𝐹′∶ 𝒦′ → ℒ′.
As cosmological embeddings create isofibrations and the cosmological limit
notions, the restricted functor is cosmological.

For example, by Proposition 5.2.4 and Exercise 5.3.i, pullback 𝑓∗∶ 𝒦/𝐵 →
𝒦/𝐴 preserves cartesian fibrations and cartesian functors. Thus, pullback along
any functor 𝑓∶ 𝐴 → 𝐵 in 𝒦 restricts to define a cosmological functor (see
Proposition 7.2.4):

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒞𝑎𝑟𝑡(𝒦)/𝐴

𝒦/𝐵 𝒦/𝐴

𝑓∗

𝑓∗

Our aim in this section is to show that cosmological functors preserve all of the
∞-categorical structures we have introduced – with a single notable exception
discussed in Warning 10.1.5. In many cases this is not evident from the original
2-categorical definitions (e.g., of cartesian fibrations in Definition 5.2.1) but
can be deduced quite easily from the accompanying “internal characterization”
of each categorical notion (such as given in Theorem 5.2.8(ii)).

Importantly:
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Proposition 10.1.2. Cosmological functors preserve comma ∞-categories: if
𝐹∶ 𝒦 → ℒ is a cosmological functor and the diagram below-left is a comma
cone in 𝒦, then the diagram below-right is a comma cone in ℒ.

𝐸 𝐹𝐸

𝐶 𝐵
𝐹
⇝ 𝐹𝐶 𝐹𝐵

𝐴 𝐹𝐴

𝑒1 𝑒0

𝜖
⇐

𝐹𝑒1 𝐹𝑒0

𝐹𝜖
⇐

𝑔 𝑓 𝐹𝑔 𝐹𝑓

(10.1.3)

Proof The simplicial pullback (3.4.2) that constructs the comma cone is pre-
served by any cosmological functor. By Proposition 3.4.11, any comma cone as
above left arises from a fibered equivalence ⌜𝜖⌝∶ 𝐸 ≃𝐶×𝐵 Hom𝐴(𝑓, 𝑔) where
𝜖 = 𝜙⌜𝜖⌝, and any fibered equivalence of this form defines a comma cone. Since
𝐹 defines a cosmological functor 𝐹∶ 𝒦/𝐶×𝐵 → ℒ/𝐹𝐶×𝐹𝐵, 𝐹⌜𝜖⌝∶ 𝐹𝐸 ≃𝐹𝐶×𝐹𝐵
𝐹(Hom𝐴(𝑓, 𝑔)) ≅ Hom𝐹𝐴(𝐹𝑓, 𝐹𝑔), and we conclude that the right-hand data
again defines a comma cone.

Using Proposition 10.1.2, we can quickly establish the following preservation
properties of cosmological functors. For ease of reference, this list includes the
preservation properties established elsewhere.

Proposition 10.1.4. Cosmological functors preserve:

(i) Equivalences between ∞-categories.
(ii) Invertible natural transformations and mates.
(iii) Adjunctions between ∞-categories, including right adjoint right inverse

adjunctions and left adjoint right inverse adjunctions.
(iv) Fibered adjunctions and equivalences.
(v) Isofibrations, trivial fibrations and discrete ∞-categories.
(vi) Flexible weighted limits.
(vii) Comma spans and comma cones.
(viii) Absolute right and left lifting diagrams.
(ix) Limits or colimits of diagrams indexed by a simplicial set and co/limit-

preserving functors.
(x) Stable ∞-categories and exact functors.
(xi) Cartesian and cocartesian fibrations and cartesian functors between

them.
(xii) Discrete cartesian fibrations and discrete cocartesian fibrations.
(xiii) Two-sided fibrations and cartesian functors between them.
(xiv) Modules and represented modules.
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Proof By Lemma 1.4.4, a cosmological functor induces a 2-functor between
homotopy 2-categories, and an arbitrary 2-functor preserves the structures of
(i), (ii), and (iii) (see e.g., Lemma 2.1.3). As cosmological functors induce
cosmological functors between sliced ∞-cosmoi, (iv) can be understood as a
special case of (i) and (iii).

The preservation of trivial fibrations is established in Lemma 1.3.2 and the
preservation of discrete ∞-categories follows (see Remark 1.3.3). Proposition
6.2.8(i) proves that cosmological functors preserve all flexible weighted limits
as stated in (vi). Proposition 10.1.2 proves that cosmological functors preserve
comma spans in the ∞-cosmos and comma cones in the homotopy 2-category
as stated in (vii).

The preservation property (viii), first observed in Corollary 3.5.7, follows
from Theorem 3.5.3, which characterizes absolute lifting diagrams as fibered
equivalences of comma ∞-categories, Proposition 10.1.2, which says that cos-
mological functors preserve commas, and the fact that cosmological functors
preserve equivalences. Now (ix) follows from this by Definition 2.3.8 and the
fact that cosmological functors preserve simplicial tensors, with the statement
about co/limit preserving functors following from (ii). By Theorem 4.4.12(iii),
(x) can be understood as a special case of (ix).

The preservation properties (xi) and (xii) also follow from Proposition 10.1.2
and the fact that cosmological functors preserve right or left adjoint right inverse
adjunctions, mates, and trivial fibrations via the characterizations of Theorem
5.2.8(ii), Theorem 5.3.4(ii), and Proposition 5.5.8. More details are given in the
proof of Corollary 5.3.5, which also observes that cartesian natural transforma-
tions are preserved by cosmological functors.

Directly from the internal characterization of Theorem 7.1.4 and the preser-
vation of adjunctions and invertible natural transformations, cartesian functors
preserve two-sided fibrations and cartesian functors between them, as observed
in Corollary 7.1.8. This establishes (xiii). By Proposition 1.3.4(vi), a cosmo-
logical functor induces a direct image cosmological functor between sliced
∞-cosmoi, which then preserves discrete objects by (v). Thus, modules are also
preserved. By specializing Proposition 10.1.2 to cospans involving identities,
it becomes clear that left and right representable commas are preserved. Since
a module is representable if and only if it is fibered equivalent to one of these,
representable modules are preserved as well, completing the proof of (xiv).

Warning 10.1.5. Conspicuously missing from the list of ∞-categorical struc-
tures that are preserved by cosmological functors are composites in the virtual
equipment of modules and then a variety of further structures that were defined
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in reference to this notion: exact squares, pointwise right and left extensions,
and (weighted) limits and colimits of ∞-category indexed diagrams.

There are a number of factors that contribute to the failure of composites and
strong composites to be preserved by cosmological functors in general. One
immediate issue is presented by the universal properties given in Definitions
8.3.1 and 8.3.5, which each involve universal quantifiers. As cosmological
functors need not be essentially surjective, a universal quantifier in the domain
need not scope over the codomain.

In other contexts, universal quantifiers are done away with by means of an
“internal characterization” of the ∞-categorical notion, but no such charac-
terization is given in this case. At issue is the fact that the composite module
should be understood as defined using a “pullback stable fiberwise coinverter,”
reflecting the two-sided fibration formed by the composite of the spans into
discrete two-sided fibrations. We have not presented such a construction because
our axiomatic notion of ∞-cosmos does not include colimits, but even if it did –
and Digression E.1.8 reveals that homotopy colimits of ∞-categories are often
present in examples – cosmological functors, being “right-adjoint like” would
not preserve them.

That said, any strong composites that are obtained by applying Lemma 8.3.7
are preserved by cosmological functors, since fibered adjunctions are preserved.
This includes all of the formally defined composites established in §8.3 and
§8.4. Similar remarks apply to exact squares. Because generic composites are
not preserved by cosmological functors, generic exact squares need not be
preserved either. But the formally defined exact squares established in §9.2
are preserved by cosmological functors. For instance, Lemma 9.2.6 proves that
comma squares are exact squares in any∞-cosmos. Since cosmological functors
preserve comma square, this class of exact squares is then preserved.

As we shall discover, cosmological biequivalences do preserve all of these
∞-categorical notions, as well as reflect and create them. It is to this subject
that we now turn.

Exercises
Exercise 10.1.i. Argue that any cosmological functor 𝐹∶ 𝒦 → ℒ induces a
cosmological functor 𝐹∶ 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 → 𝐹𝐴\ℱ𝑖𝑏(ℒ)/𝐹𝐵 for each pair of ∞-
categories 𝐴 and 𝐵 in 𝒦.

Exercise 10.1.ii. Exercise 6.3.iv shows that cosmological embeddings reflect
discrete ∞-categories in addition to preserving them. What other ∞-categorical
properties are reflected or created by cosmological embeddings?
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10.2 Cosmological Biequivalences

Special cosmological functors, the biequivalences, reflect and create the ∞-cat-
egory theory developed in this text as well as preserve it. Recall from Definition
1.3.8 that a cosmological biequivalence is a cosmological functor 𝐹∶ 𝒦 → ℒ
that is

• surjective on objects up to equivalence: for all 𝐶 ∈ ℒ there exists 𝐴 ∈ 𝒦 so
that 𝐹𝐴 ≃ 𝐶; and

• a local equivalence of quasi-categories: for every pair 𝐴, 𝐵 ∈ 𝒦, the map

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵)∼

is an equivalence of quasi-categories.

In this section, we pursue further examples of cosmological biequivalences. In
the next section, we explore their role as change-of-model functors.

For example, the functors (10.0.1) are all biequivalences (see Example 1.3.9
and §E.2). Except for the functor ♮∶ 𝒬𝒞𝑎𝑡 → 1-𝒞𝑜𝑚𝑝, each arises from a
simplicially enriched right Quillen equivalence between model categories en-
riched over the Joyal model structure with all objects cofibrant. Corollary E.1.2
demonstrates that any functor of this form encodes a cosmological biequivalence.

Two ∞-cosmoi are biequivalent if there exists a finite zigzag of biequiva-
lences connecting them. Recall that any ∞-cosmos has an underlying quasi-
category functor

𝒦 𝒬𝒞𝑎𝑡
(−)0≔Fun(1,−)

defined by mapping out of the terminal ∞-category. We now show that the
underlying quasi-category functor of any ∞-cosmos that is biequivalent to
𝒬𝒞𝑎𝑡 is a cosmological biequivalence. This justifies the characterization of an
∞-cosmos of (∞, 1)-categories given in Definition 1.3.10.

Proposition 10.2.1. If an ∞-cosmos 𝒦 is biequivalent to 𝒬𝒞𝑎𝑡, then the un-
derlying quasi-category functor (−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 is a cosmological biequiva-
lence.

Proof We will show that in the presence of cosmological biequivalences

𝒦 ℒ 𝒬𝒞𝑎𝑡∼𝐺 ∼𝐹

the underlying quasi-category functor (−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡 is a cosmological
biequivalence. Note this formulation includes the special cases where one of
the functors 𝐹 or 𝐺 is an identity. By induction, the same conclusion holds for
any ∞-cosmos connected by a finite zigzag of biequivalences to 𝒬𝒞𝑎𝑡.
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As 𝐹 is a biequivalence, for each quasi-category𝑄, there exists an∞-category
𝐵 ∈ ℒ so that 𝐹𝐵 ≃ 𝑄. Because 𝐹 and 𝐺 are both local equivalences preserving
the terminal ∞-category 1 – for which we adopt the same notation in each of
𝒦, ℒ, and 𝒬𝒞𝑎𝑡 – there is then a zigzag of equivalences of quasi-categories

(𝐺𝐵)0 = Fun(1, 𝐺𝐵) Fun(1, 𝐵) Fun(1, 𝐹𝐵) ≅ 𝐹𝐵 ≃ 𝑄.∼ ∼

This proves that there exists an ∞-category 𝐺𝐵 ∈ 𝒦 whose underlying quasi-
category is equivalent to 𝑄.

To show that the underlying quasi-category functor (−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡 is
a local equivalence, consider a pair of ∞-categories 𝐴, 𝐵 ∈ 𝒦. By essen-
tial surjectivity of 𝐺, there exist ∞-categories 𝑋, 𝑌 ∈ ℒ so that 𝐺𝑋 ≃ 𝐴
and 𝐵 ≃ 𝐺𝑌. By pre- and postcomposing with these equivalences, Corollary
1.4.8 implies that Fun(𝐴, 𝐵) → Fun(𝐴0, 𝐵0) is equivalent to Fun(𝐺𝑋,𝐺𝑌) →
Fun((𝐺𝑋)0, (𝐺𝑌)0), so it suffices to prove that the latter map is an equivalence
of quasi-categories.

By simplicial functoriality (see Definition A.2.6), the actions on functor
spaces of 𝐹 and 𝐺 commutes with the composition map

Fun(𝑋, 𝑌) × Fun(1, 𝑋) Fun(1, 𝑌)∘

which transposes to define the action on functor spaces of the underlying quasi-
category functor. Thus, there is a commutative diagram whose vertical maps
are equivalences

Fun(𝐺𝑋,𝐺𝑌) Fun(Fun(1, 𝐺𝑋), Fun(1, 𝐺𝑌))

Fun(Fun(1, 𝑋),Fun(1, 𝐺𝑌))

Fun(𝑋, 𝑌) Fun(Fun(1, 𝑋), Fun(1, 𝑌))

Fun(Fun(1, 𝑋),Fun(1, 𝐹𝑌))

Fun(𝐹𝑋, 𝐹𝑌) Fun(Fun(1, 𝐹𝑋),Fun(1, 𝐹𝑌))

∘

∼

∼

∘

∼

∼
∼

≃∘

∼

Any quasi-category is isomorphic to its underlying quasi-category, so the bottom
horizontal map is an isomorphism. By the 2-of-3 property, it follows that the
top horizontal map is an equivalence, which is what we wanted to show.

Recall from Proposition 1.3.4(vi) that a cosmological functor 𝐹∶ 𝒦 → ℒ
induces a cosmological functor 𝐹∶ 𝒦/𝐵 → ℒ/𝐹𝐵 for any 𝐵 ∈ 𝒦.

Proposition 10.2.2. If 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence, then
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for any 𝐵 ∈ 𝒦 the induced functor 𝐹∶ 𝒦/𝐵
∼ ℒ/𝐹𝐵 is also a cosmological

biequivalence.

Proof We first argue that the 𝐹 defines a local equivalence of functor spaces,
as defined in Proposition 1.2.22(ii). Given a pair of isofibration 𝑝∶ 𝐸 ↠ 𝐵 and
𝑝′∶ 𝐸′ ↠ 𝐵 in 𝒦, the induced map on fibered functor spaces is defined by the
pullback

Fun𝐵(𝑝, 𝑝′) Fun(𝐸, 𝐸′)

Fun𝐹𝐵(𝐹𝑝, 𝐹𝑝′) Fun(𝐹𝐸, 𝐹𝐸′)

1 Fun(𝐸, 𝐵)

1 Fun(𝐹𝐸, 𝐹𝐵)

∼⌟ ∼

⌟

∼

As the maps between the cospans in 𝒬𝒞𝑎𝑡 are equivalences, by Proposition
3.3.4 so is the induced map between the pullbacks.

For surjectivity up to equivalence, consider an isofibration 𝑞∶ 𝐿 ↠ 𝐹𝐵 in
ℒ. As 𝐹 is surjective on objects up to equivalence, there exists some 𝐴 ∈ 𝒦
together with an equivalence 𝑖∶ 𝐹𝐴 ∼ 𝐿 ∈ ℒ. As 𝐹 defines a local equivalence
of mapping quasi-categories, there is moreover a functor 𝑓∶ 𝐴 → 𝐵 in ℒ so
that 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 is naturally isomorphic to 𝑞𝑖 (see Exercise 10.2.i). The
map 𝑓 need not be an isofibration, but Lemma 1.2.19 allows us to factor 𝑓 as
𝐴 ∼ 𝐾 𝑝 𝐵. Choosing an equivalence inverse 𝑗∶ 𝐾 ∼ 𝐴, this data defines a
diagram in 𝔥ℒ that commutes up to isomorphism:

𝐹𝐾 𝐹𝐴 𝐿

𝐹𝐵
𝐹𝑝

∼𝐹𝑗

𝐹𝑓

∼𝑖

𝑞
≅ ≅

Proposition 1.4.9 tells us that isofibrations in∞-cosmoi define isofibrations in
the homotopy 2-category. In particular, we may lift the displayed isomorphism
along the isofibration 𝑞∶ 𝐿 ↠ 𝐹𝐵 to define a commutative triangle:

𝐹𝐾 𝐹𝐴 𝐿 𝐹𝐾 𝐿

𝐹𝐵 𝐹𝐵
𝐹𝑝

∼𝐹𝑗

𝐹𝑓

∼𝑖

𝑞 𝐹𝑝

∼𝑖⋅𝐹𝑗

≅
∼
𝑒

𝑞
≅ ≅

=

By Exercise 1.4.iii, since 𝑒 is isomorphic to an equivalence 𝑖 ⋅ 𝐹𝑗, it must also
define an equivalence. Thus, by Proposition 1.2.22(vii), we have shown that the
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isofibration 𝑝∶ 𝐾 ↠ 𝐵 maps under 𝐹 to an isofibration that is equivalent to our
chosen 𝑞∶ 𝐿 ↠ 𝐹𝐵.

A similar argument proves that a cosmological biequivalence induces a bi-
equivalence between the corresponding∞-cosmoi of isofibrations of Proposition
6.1.1.

Proposition 10.2.3. If 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence then the
induced functor 𝐹∶ 𝒦 ∼ ℒ is a biequivalence.

Proof Exercise 10.2.ii.

We establish another family of biequivalences of sliced ∞-cosmoi:

Proposition 10.2.4. If 𝑓∶ 𝐴 ∼ 𝐵 is an equivalence in 𝒦, then the pullback
functor 𝑓∗∶ 𝒦/𝐵

∼ 𝒦/𝐴 is a cosmological biequivalence.

Proof To see that 𝑓∗∶ 𝒦/𝐵 → 𝒦/𝐴 is essentially surjective, consider an object
𝑟∶ 𝐷 ↠ 𝐴 and use Lemma 1.2.19 to factor the composite map 𝑓𝑟∶ 𝐷 → 𝐵 as
an equivalence followed by an isofibration, and pull the result back along 𝑓.

𝐷

𝑃 𝐸

𝐴 𝐵

∼

𝑟
∼

𝑞
⌟

𝑝

∼
𝑓

By Proposition 3.3.3, the pullback of 𝑓 is an equivalence, so by the 2-of-3
property, 𝑟 is equivalent to the isofibration 𝑞∶ 𝑃 ↠ 𝐴, which is in the image of
𝑓∗∶ 𝒦/𝐵 → 𝒦/𝐴.

To show that this simplicial functor is a local equivalence, consider a pair of
isofibrations 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞∶ 𝐹 ↠ 𝐵. We will show that the quasi-category
of functors over 𝐵 is equivalent to the quasi-category of functors over 𝐴 between
their pullbacks

𝑓∗𝐸 𝐸

𝑓∗𝐹 𝐹

𝐴 𝐵

𝑟

⌟

∼ℎ

𝑝𝑠 ⌟

∼𝑘

𝑞

∼
𝑓

To define the comparison map Fun𝐵(𝐸, 𝐹) → Fun𝐴(𝑓∗𝐸, 𝑓∗𝐹) consider the
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following commutative prism

Fun𝐵(𝐸, 𝐹) Fun(𝐸, 𝐹)

Fun𝐴(𝑓∗𝐸, 𝑓∗𝐹) Fun(𝑓∗𝐸, 𝑓∗𝐹) Fun(𝑓∗𝐸, 𝐹)

𝟙 Fun(𝐸, 𝐵)

𝟙 Fun(𝑓∗𝐸,𝐴) Fun(𝑓∗𝐸, 𝐵)

∼ ⌟
𝑞∗

∼ℎ∗

⌟ ⌟

∼𝑘∗

𝑝

∼
ℎ∗

𝑟

𝑠∗

∼
𝑓∗

𝑞∗

The front-right square is a pullback by the simplicial universal property of
𝑓∗𝐹, while the front-left square and back face are the pullbacks that define
Fun𝐴(𝑓∗𝐸, 𝑓∗𝐹) and Fun𝐵(𝐸, 𝐹). The universal property of the composite front
pullback rectangle induces the map Fun𝐵(𝐸, 𝐹) → Fun𝐴(𝑓∗𝐸, 𝑓∗𝐹). As this
functor is the pullback of the equivalences ℎ∗ of Corollary 1.4.8, by Proposition
3.3.4 the induced map defines an equivalence of quasi-categories.

Further induced cosmological biequivalences arise by application of the
following lemma, which revisits the setting of Proposition 6.3.3, a result used
to construct cosmologically embedded ∞-cosmoi. We leave its applications to
the exercises and return to this topic in Corollary 10.3.7.

Lemma 10.2.5. Consider a pullback diagram of ∞-cosmoi and cosmological
functors in which 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence and ℒ′ ℒ and
𝒦′ 𝒦 are cosmological embeddings.1

𝒦′ ℒ′

𝒦 ℒ

𝐹
⌟

∼
𝐹

Then 𝐹∶ 𝒦′ ∼ ℒ′ is a cosmological biequivalence.

Proof The essential point is the repleteness of the cosmological embedding
ℒ′ ℒ enumerated in Definition 6.3.1 and explored in Exercise 6.3.i. To see
that 𝐹∶ 𝒦′ → ℒ′ is essentially surjective, consider an ∞-category 𝐿 ∈ ℒ′.
By essential surjectivity of the cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ there
exists an ∞-category 𝐾 ∈ 𝒦 so that 𝐹𝐾 ≃ 𝐿 in ℒ. By repleteness of ℒ′ ℒ,
the equivalence 𝐹𝐾 ≃ 𝐿 also lies in ℒ′ and hence 𝐾 lies in the pullback 𝒦′ and
maps via 𝐹 to an object equivalent to 𝐿 in ℒ′.
1 If the ∞-cosmos structure on 𝒦′ is created by this pullback, then 𝒦′ 𝒦 is automatically a

cosmological embedding and the functor 𝒦′ → ℒ′ is automatically cosmological (see
Proposition 6.3.3).
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For the local equivalence, the induced mappings on functor spaces associated
to a pair of ∞-categories 𝐴 and 𝐵 in 𝒦′ form a pullback of quasi-categories

Fun𝒦′(𝐴, 𝐵) Funℒ′(𝐹𝐴, 𝐹𝐵)

Fun𝒦(𝐴, 𝐵) Funℒ(𝐹𝐴, 𝐹𝐵)

⌟
𝐹

∼
𝐹

By Exercise 6.3.i, the vertical functors are isofibrations between quasi-cate-
gories. Thus, by Proposition 3.3.3, the local equivalence of 𝐹∶ 𝒦 → ℒ pulls
back to define a local equivalence for 𝐹∶ 𝒦′ → ℒ′. So we conclude that the
restricted functor remains a cosmological biequivalence.

Exercises
Exercise 10.2.i (10.3.1). Demonstrate that an equivalence of quasi-categories
𝑓∶ 𝐾 ∼ 𝐿 induces a bijection on isomorphism classes of vertices, i.e., a bijection
on isomorphism classes of objects in the homotopy categories of 𝐾 and 𝐿.
Conclude that for any cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ and any pair of
∞-categories 𝐴, 𝐵 ∈ 𝒦

(i) For any functor 𝑓′∶ 𝐹𝐴 → 𝐹𝐵 there exists a functor 𝑓∶ 𝐴 → 𝐵 and a
natural isomorphism 𝐹𝑓 ≅ 𝑓′ in ℒ.

(ii) If 𝑓, 𝑔∶ 𝐴 → 𝐵 are functors so that 𝐹𝑓 ≅ 𝐹𝑔 in ℒ then 𝑓 ≅ 𝑔 in 𝒦.

Exercise 10.2.ii. Prove Proposition 10.2.3.

Exercise 10.2.iii. If 𝐹∶ 𝒦 ∼ ℒ is a biequivalence and 𝐴 ∈ 𝒦 and 𝐵 ∈ ℒ are
so that 𝐹𝐴 ≃ 𝐵 prove that the slice ∞-cosmoi 𝒦/𝐴 and ℒ/𝐵 are biequivalent.

Exercise 10.2.iv (10.3.7). Explore the applicability of Lemma 10.2.5 to the task
of verifying that the ∞-cosmoi constructed in §6.3 are biequivalence invariant.

10.3 Cosmological Biequivalences as Change-of-Model
Functors

We refer to biequivalences between ∞-cosmoi as change-of-model functors.
In this section, we enumerate their basic properties. First, we observe that
cosmological biequivalences descend to biequivalences between homotopy
2-categories, hence the name:

Proposition 10.3.1. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ induces a
biequivalence 𝐹∶ 𝔥𝒦 ∼ 𝔥ℒ of homotopy 2-categories: i.e., the 2-functor is
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(i) surjective on objects up to equivalence and
(ii) defines a local equivalence of categories hFun(𝐴, 𝐵) ∼ hFun(𝐹𝐴, 𝐹𝐵)

for all 𝐴, 𝐵 ∈ 𝒦.

Note that the local equivalences of (ii) necessarily have the properties enu-
merated in Exercise 10.2.i.

Proof By Theorem 1.4.7, ∞-cosmos-level equivalences coincide with 2-cate-
gorical equivalences, proving (i), and by Lemma 1.2.15 the homotopy category
functor h∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 carries equivalences of quasi-categories to equiva-
lences of categories, proving (ii).

In particular, it follows that the homotopy category of an ∞-category is
invariant under change of model (see Exercise 10.3.i). More generally, any bi-
equivalence between 2-categories induces a variety of local and global bijections,
as enumerated below:

Corollary 10.3.2. Consider any cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ.

(i) The biequivalence 𝐹 preserves, reflects, and creates equivalences be-
tween ∞-categories and defines a bijection between equivalence classes
of objects.

(ii) The biequivalence 𝐹 induces local bijections between natuarl isomorph-
ism classes of functors extending the bijections of (i): choosing any pairs
of objects 𝐴, 𝐵 ∈ 𝒦 and 𝐴′, 𝐵′ ∈ ℒ and equivalences 𝑎∶ 𝐴′ ∼ 𝐹𝐴 and
𝑏∶ 𝐹𝐵 ∼ 𝐵′, the map

hFun(𝐴, 𝐵) ∼ hFun(𝐹𝐴, 𝐹𝐵) ∼ hFun(𝐴′, 𝐵′) (10.3.3)

defines a bijection between isomorphism classes of functors 𝐴 → 𝐵 in
𝒦 and isomorphism classes of functors 𝐴′ → 𝐵′ in ℒ.

(iii) The biequivalence 𝐹 defines local bijections between natural transfor-
mations with specified boundary extending the bijections of (i) and (ii):
choosing any pairs of objects 𝐴, 𝐵 ∈ 𝒦 and 𝐴′, 𝐵′ ∈ ℒ, specified equiv-
alences 𝑎∶ 𝐴′ ≃ 𝐹𝐴 and 𝑏∶ 𝐹𝐵 ≃ 𝐵′, functors 𝑓, 𝑔∶ 𝐴 → 𝐵 and
𝑓′, 𝑔′∶ 𝐴′ → 𝐵′, and natural isomorphisms

𝐹𝐴 𝐹𝐵 𝐹𝐴 𝐹𝐵

𝐴′ 𝐵′ 𝐴′ 𝐵′

𝐹𝑓

≅𝛼 ∼ 𝑏

𝐹𝑔

≅𝛽 ∼ 𝑏

∼𝑎

𝑓′ 𝑔′

∼𝑎

the map (10.3.3) induces a bijection between natural transformations
𝑓 ⇒ 𝑔 in 𝒦 and natural transformations 𝑓′ ⇒ 𝑔′ in ℒ.
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Proof Lemma 1.3.12 proves that cosmological biequivalences preserve, reflect,
and create equivalences via a fundamentally 2-categorical argument that the
reader is invited to revisit. This, together with essential surjectivity of cosmolog-
ical biequivalences implies that such functors induce a bijection on equivalence
classes of objects. This proves (i).

For (ii), by Corollary 1.4.8, the chosen equivalences 𝐹𝐴 ≃ 𝐴′ and 𝐹𝐵 ≃ 𝐵′

induce an equivalence of quasi-categories

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵) Fun(𝐴′, 𝐵′)∼ ∼

which descends to the equivalence of homotopy categories (10.3.3). Since equiv-
alences of quasi-categories induce bijections between isomorphism classes of
vertices, this yields in particular a bijection between isomorphism classes of
functors.

For (iii), the equivalence (10.3.3) is full and faithful, inducing a bijection
between natural transformations 𝑓 ⇒ 𝑔 and 𝑏 ⋅ 𝐹𝑓 ⋅ 𝑎 ⇒ 𝑏 ⋅ 𝐹𝑔 ⋅ 𝑎. This
bijection can be transported along any chosen isomorphisms 𝛼 and 𝛽 to yield a
bijection between natural transformations 𝑓 ⇒ 𝑔 in hFun(𝐴, 𝐵) in𝒦 and natural
transformations 𝑓′ ⇒ 𝑔′ in hFun(𝐴′, 𝐵′) in ℒ.

As an application of Corollary 10.3.2, we now fulfill a promise made in §2.3,
establishing an equivalence between the internal hom 𝐵𝐴 between∞-categories
𝐴 and 𝐵 in an ∞-cosmos of (∞, 1)-categories and the simplicial cotensor 𝐵𝐴0

of 𝐵 with the underlying quasi-category of 𝐴.

Observation 10.3.4. Even if an ∞-cosmos of (∞, 1)-categories 𝒦 is not carte-
sian closed, its homotopy 2-category 𝔥𝒦 is cartesian closed in the bicategorical
sense, replacing the natural isomorphisms of Proposition 1.4.5(ii) with natural
equivalences. On account of the biequivalence (−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 of Propo-
sition 10.2.1, we define 𝐵𝐴 ∈ 𝒦 to be any ∞-category whose underlying
quasi-category is equivalent to 𝐵𝐴0

0 . By composing equivalences

Fun(𝑋, 𝐵𝐴) Fun(𝑋0, 𝐵
𝐴0
0 )

Fun(𝑋 × 𝐴, 𝐵) Fun(𝑋0 × 𝐴0, 𝐵0)

∼

∼ ≅ ≃

∼

we see that Fun(𝑋, 𝐵𝐴) ≃ Fun(𝑋 × 𝐴, 𝐵) for any 𝑋. In the terminology of Defi-
nition 10.4.13, the map Fun(𝑋, 𝐵𝐴) ∼ Fun(𝑋 × 𝐴, 𝐵) is a quasi-pseudonatural
equivalence. Note that if 𝒦 is cartesian closed, this universal property demon-
strates that the weak exponentials are equivalent to the strictly defined ones.

For this reason, the statement of Proposition 10.3.5 does not require that the
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ambient ∞-cosmos is cartesian closed; the exponentials can be inferred to exist
a posteriori.

Proposition 10.3.5. In an ∞-cosmos of (∞, 1)-categories, for any ∞-catego-
ries 𝐴 and 𝐵, the exponential 𝐵𝐴 is equivalent to the cotensor 𝐵𝐴0 of 𝐵 with the
underlying quasi-category of 𝐴.

Proof By Corollary 10.3.2, cosmological biequivalences reflect equivalences
of ∞-categories. Thus, to prove 𝐵𝐴 ≃ 𝐵𝐴0, it suffices by Proposition 10.2.1
and Corollary 10.3.2 to prove that 𝐵𝐴 and 𝐵𝐴0 have equivalent underlying
quasi-categories. The defining universal properties of the exponential and coten-
sor provide equivalences, which compose with the local equivalence of the
underlying quasi-category functor to provide the desired equivalence:

Fun(1, 𝐵𝐴) ≃ Fun(𝐴, 𝐵) Fun(𝐴0, 𝐵0) ≅ Fun(1, 𝐵𝐴0)∼

We now prove that biequivalences reflect and create, as well as preserve, the
∞-categorical structures considered in Proposition 10.1.4.

Proposition 10.3.6. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ

(i) Preserves, reflects, and creates equivalences.
(ii) Preserves and reflects the invertibility of natural transformations and

creates natural isomorphisms between given functors.
(iii) Preserves, reflects, and creates adjunctions between ∞-categories, in-

cluding right adjoint right inverse adjunctions and left adjoint right
inverse adjunctions.

(iv) Preserves, reflects, and creates fibered adjunctions and equivalences.
(v) Preserves and reflects discreteness.
(vi) Preserves and reflects comma ∞-categories: a cell defines a comma

cone in 𝒦 if and only if its image is a comma cone in ℒ.
(vii) Preserves, reflects, and creates absolute right and left lifting diagrams

over a given cospan.
(viii) Preserves and reflects limits or colimits of diagrams indexed by a sim-

plicial set and creates the property of an ∞-category admitting a limit
or colimit of a given diagram.

(ix) Preserves and reflects the stability of an ∞-category and the exactness
of functors between such.

(x) Preserves and reflects cartesian and cocartesian fibrations and cartesian
functors between them.

(xi) Preserves and reflects discrete cartesian fibrations and discrete cocarte-
sian fibrations.
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(xii) Preserves and reflects two-sided fibrations and cartesian functors be-
tween them.

(xiii) Preserves and reflects modules and represented modules and induces
a bijection on equivalence classes of modules between a fixed pair of
∞-categories.

Proof The preservation results are proven in Proposition 10.1.4 under the
weaker hypothesis that 𝐹 is a mere cosmological functor. So it remains only to
address reflection of properties and creation of ∞-categorical structures.

Properties (i), (ii), and (iii) hold for any biequivalence between 2-categories,
such as 𝐹∶ 𝔥𝒦 ∼ 𝔥ℒ. The aspects that have not already been discussed are left
to Exercise 10.3.ii as a useful exercise to familiarize oneself with the 2-categori-
cal notion of biequivalence. By Proposition 10.2.2, (iv) is a special case of (i)
and (iii).

Property (v) follows from (ii): if 𝐹𝐸 is discrete, then the image under 𝐹 of
any 2-cell in 𝒦 with codomain 𝐸 is invertible, which implies that that 2-cell is
invertible in 𝐸.

Since both𝒦 andℒ admit comma∞-categories and Proposition 3.4.11 shows
that comma spans are characterized by a fibered equivalence class of two-sided
isofibrations, (vi) follows from (iv).

The reflection properties of (vii) and (viii) follow from Theorem 3.5.3 and
the creation properties follow from Theorem 3.5.12 and (vi). Then (ix) can be
argued from any of the equivalent characterizations in Theorem 4.4.12 using
(ii) and (viii).

Proposition (x) follows from (iii) and (ii) via Theorem 5.2.8, and (xi) follows
by applying (i) to the morphism considered in Proposition 5.5.8. Property (xii)
follows similarly from Theorem 7.1.4(iii) and (iii) and (ii). Preservation and
reflection of modules now follows from this and (v) and the bijection between
equivalence classes follows from (iv).2 The representability statement of (xiii)
combines (iv) with (vi), as elaborated upon in Proposition 11.1.5.

Corollary 10.3.7. If 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence then the
following induced cosmological functors are all biequivalences:

(i) 𝐹∶ 𝒟𝑖𝑠𝑐(𝒦) ∼ 𝒟𝑖𝑠𝑐(ℒ)
(ii) 𝐹∶ 𝒦⊤,𝐽

∼ ℒ⊤,𝐽 and 𝐹∶ 𝒦⊥,𝐽
∼ ℒ⊥,𝐽

(iii) 𝐹∶ ℛ𝑎𝑟𝑖(𝒦)/𝐵 ∼ ℛ𝑎𝑟𝑖(ℒ)/𝐹𝐵 and 𝐹∶ ℒ𝑎𝑟𝑖(𝒦)/𝐵 ∼ ℒ𝑎𝑟𝑖(ℒ)/𝐹𝐵
(iv) 𝐹∶ ℛ𝑎𝑟𝑖(𝒦) ∼ ℛ𝑎𝑟𝑖(ℒ) and 𝐹∶ ℒ𝑎𝑟𝑖(𝒦) ∼ ℒ𝑎𝑟𝑖(ℒ)
(v) 𝐹∶ 𝒞𝑎𝑟𝑡(𝒦)/𝐵 ∼ 𝒞𝑎𝑟𝑡(ℒ)/𝐹𝐵 and 𝐹∶ 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 ∼ 𝑐𝑜𝒞𝑎𝑟𝑡(ℒ)/𝐹𝐵
(vi) 𝐹∶ 𝒞𝑎𝑟𝑡(𝒦) ∼ 𝒞𝑎𝑟𝑡(ℒ) and 𝐹∶ 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦) ∼ 𝑐𝑜𝒞𝑎𝑟𝑡(ℒ)

2 A more precise statement appears as Proposition 11.1.4.
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(vii) 𝐹∶ 𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦) ∼ 𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(ℒ) and 𝐹∶ 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦) ∼ 𝒟𝑖𝑠𝑐
𝑐𝑜𝒞𝑎𝑟𝑡(ℒ)

(viii) 𝐹∶ 𝒮𝑡𝑎𝑏(𝒦) ∼ 𝒮𝑡𝑎𝑏(ℒ)
(ix) 𝐹∶ 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ∼

𝐹𝐴\ℱ𝑖𝑏(ℒ)/𝐹𝐵
(x) 𝐹∶ 𝐴\ℳ𝑜𝑑(𝒦)/𝐵 ∼

𝐹𝐴\ℳ𝑜𝑑(ℒ)/𝐹𝐵

Proof In each case we start with a cosmological biequivalence – for instance
𝒦/𝐵

∼ ℒ/𝐹𝐵 or 𝒦 ∼ ℒ – and must show that the restricted cosmological
functor of Lemma 10.1.1 is again a biequivalence between the cosmologically
embedded ∞-cosmoi. Each of the arguments is similar; for concreteness’ sake,
we prove (viii). Proposition 10.3.6 proves that the property that characterizes
the objects and 0-arrows of the sub ∞-cosmos is preserved and reflected by any
biequivalence. Thus, the diagram of cosmological functors is a pullback:

𝒮𝑡𝑎𝑏(𝒦) 𝒮𝑡𝑎𝑏(ℒ)

𝒦 ℒ

𝐹

⌟

∼
𝐹

so Lemma 10.2.5 allows us to conclude that the induced functor 𝐹∶ 𝒮𝑡𝑎𝑏(𝒦) ∼

𝒮𝑡𝑎𝑏(ℒ) is a cosmological biequivalence.

Warning 10.1.5 mentioned some ∞-categorical properties that are not neces-
sarily preserved by cosmological functors. Importantly, these notions are pre-
served, reflected, and created by cosmological biequivalences. Lemma 11.1.7
proves this in the case of composites and exact squares, two notions which
are situated in the virtual equipment of modules, but we address the case of
pointwise right and left extensions now.

Proposition 10.3.8. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ preserves,
reflects, and creates pointwise left and right extensions:

(i) A diagram in 𝒦 of the form

𝐴 𝐶 𝐴 𝐶

𝐵 𝐵

𝑘

𝑓

or 𝑘

𝑓

𝑟
⇑𝜈

ℓ
⇓𝜆

defines a pointwise right or left extension in𝒦, respectively, if and only if
its image under 𝐹 defines, respectively, a pointwise right or left extension
in ℒ.

(ii) If 𝑓∶ 𝐴 → 𝐶 and 𝑘∶ 𝐴 → 𝐵 are functors in 𝒦 so that 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐶
admits a pointwise right or left extension along 𝐹𝑘∶ 𝐹𝐴 → 𝐹𝐵 in ℒ,
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then 𝑓 admits a pointwise right or left extension, respectively, along 𝑘 in
𝒦, and its image under 𝐹 is isomorphic to the corresponding data in ℒ.

To explain the idea of the proof, we first show that cosmological biequiva-
lences preserve and reflect right extensions; they create them as well, but this can
be proven just as easily in the pointwise case, which is discussed subsequently.

Suppose first that 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a right extension in𝒦. To prove that its image
defines a right extension in ℒ, we must show that for all 𝑑∶ 𝐹𝐵 → 𝐹𝐶 the map

hFun(𝐹𝐵, 𝐹𝐶)(𝑑, 𝐹𝑟) hFun(𝐹𝐴, 𝐹𝐶)(𝑑 ⋅ 𝐹𝑘, 𝐹𝑓)

𝑑
𝛾
𝐹𝑟 𝑑 ⋅ 𝐹𝑘

𝛾𝐹𝑘
𝐹𝑟 ⋅ 𝐹𝑘

𝐹𝜈
𝐹𝑓

𝐹𝜈∘−

defines a bijection between sets of 2-cells. By Corollary 10.3.2(ii), there exists
a functor 𝑐∶ 𝐵 → 𝐶 in 𝒦 together with a natural isomorphism 𝛿∶ 𝑑 ≅ 𝐹𝑐. By
Corollary 10.3.2(iii), application of 𝐹 and composition with 𝛿 defines a bijection

hFun(𝐵, 𝐶)(𝑐, 𝑟) hFun(𝐹𝐵, 𝐹𝐶)(𝐹𝑐, 𝐹𝑟) hFun(𝐹𝐵, 𝐹𝐶)(𝑑, 𝐹𝑟)

𝑐
𝛼
𝑟 𝐹𝑐

𝐹𝛼
𝐹𝑟 𝑑

𝛿
𝐹𝑐

𝐹𝛼
𝐹𝑟

𝐹 −∘𝛿

There is a similar bijection defined from the invertible 2-cell 𝛿𝐹𝑘∶ 𝑑 ⋅ 𝐹𝑘 ≅
𝐹𝑐 ⋅ 𝐹𝑘. Since 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a right extension, composition with 𝜈 induces its
own family of bijections. From the commutative square of functions

hFun(𝐵, 𝐶)(𝑐, 𝑟) hFun(𝐴, 𝐶)(𝑐 ⋅ 𝑘, 𝑓)

hFun(𝐹𝐵, 𝐹𝐶)(𝑑, 𝐹𝑟) hFun(𝐹𝐴, 𝐹𝐶)(𝑑 ⋅ 𝐹𝑘, 𝐹𝑓)

≃𝜈∘−

≃

𝐹−∘𝛿 ≃ 𝐹−∘𝛿𝐹𝑘

𝐹𝜈∘−

three of which are known to be bijections, we see that 𝐹𝜈∶ 𝐹𝑟 ⋅ 𝐹𝑘 ⇒ 𝐹𝑓 is a
right extension in ℒ, as claimed.

Now suppose 𝐹𝜈∶ 𝐹𝑟 ⋅ 𝐹𝑘 ⇒ 𝐹𝑓 is a right extension in ℒ. To see that
𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a right extension in 𝒦, note that for any functor 𝑐∶ 𝐵 → 𝐶, there
is a commutative square of functions

hFun(𝐵, 𝐶)(𝑐, 𝑟) hFun(𝐴, 𝐶)(𝑐 ⋅ 𝑘, 𝑓)

hFun(𝐹𝐵, 𝐹𝐶)(𝐹𝑐, 𝐹𝑟) hFun(𝐹𝐴, 𝐹𝐶)(𝐹𝑐 ⋅ 𝐹𝑘, 𝐹𝑓)

𝜈∘−

≃

𝐹 ≃ 𝐹

≃𝐹𝜈∘−

three of which are known to be bijections. This proves that 𝜈∶ 𝑟𝑘 ⇒ 𝑓 has the
universal property of a right extension.

The argument for pointwise right extensions is essentially the same, where
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we additionally make use of the fact that comma ∞-categories are preserved by
cosmological functors and invariant under equivalence, in the sense of Exercise
3.4.iv.

Proof Throughout we use the 2-categorical definition of a pointwise right
extension appearing in Theorem 9.3.3(ii). The idea is to take advantage of the
local bijections provided by Corollary 10.3.2.

Assume that 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a pointwise right extension in 𝒦. We must show
that for every ℎ∶ 𝐿 → 𝐹𝐵 in ℒ the diagram

Hom𝐹𝐵(ℎ, 𝐹𝑘) 𝐹𝐴 𝐹𝐶

𝐿 𝐹𝐵

𝑝0

𝑝1

⇑𝜙 𝐹𝑘

𝐹𝑓

ℎ

𝐹𝑟
⇑𝐹𝜈

is a right extension diagram in ℒ, meaning that for all 𝑑∶ 𝐿 ⇒ 𝐹𝐶 the map

hFun(𝐿, 𝐹𝐶)(𝑑, 𝐹𝑟 ⋅ ℎ) hFun(Hom𝐹𝐵(ℎ, 𝐹𝑘))(𝑑𝑝0, 𝐹𝑓 ⋅ 𝑝1)

𝑑
𝜁
𝐹𝑟⋅ℎ 𝑑𝑝0

𝜁𝑝0 𝐹𝑟⋅ℎ𝑝0
𝐹𝑟𝜙

𝐹𝑟⋅𝐹𝑘⋅𝑝1
𝐹𝜈𝑝1 𝐹𝑓⋅𝑝1

𝐹𝜈𝑝1∘𝐹𝑟𝜙∘−

defines a bijection between sets of 2-cells. By Corollary 10.3.2(i) there exists an
∞-category 𝐾 ∈ 𝒦 and an equivalence 𝑒∶ 𝐿 ∼ 𝐹𝐾, and by Corollary 10.3.2(ii)
there exist functors 𝑏∶ 𝐾 → 𝐵 and 𝑐∶ 𝐾 → 𝐶 and natural isomorphisms
𝛽∶ 𝐹𝑏 ⋅ 𝑒 ≅ ℎ and 𝛿∶ 𝑑 ≅ 𝐹𝑐 ⋅ 𝑒. By Corollary 10.3.2(iii), application of 𝐹 and
composition with 𝑒, 𝛽, and 𝛿 defines a bijection

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) Fun(𝐿, 𝐹𝐶)(𝑑, 𝐹𝑟 ⋅ ℎ)

𝑐
𝛾
𝑟𝑏 𝑑

𝛿
𝐹𝑐 ⋅ 𝑒

𝐹𝛾𝑒
𝐹𝑟 ⋅ 𝐹𝑏 ⋅ 𝑒

𝐹𝑟𝛽
𝐹𝑟 ⋅ ℎ

≃

Since 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a pointwise right extension in 𝒦, the diagram

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

𝐾 𝐵

𝑝0

𝑝1

⇑𝜙 𝑘

𝑓

𝑏

𝑟
⇑𝜈 (10.3.9)

is a (pointwise) right extension as well, defining a bijection

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) hFun(Hom𝐵(𝑏, 𝑘), 𝐶)(𝑐𝑝0, 𝑓𝑝1)

𝑐
𝛾
𝑟𝑏 𝑐𝑝0

𝛾𝑝0 𝑟𝑏𝑝0
𝑟𝜙

𝑟𝑘𝑝1
𝜈𝑝1 𝑓𝑝1

≃

By Exercise 3.4.iv, there is an equivalence 𝑦∶Hom𝐹𝐵(ℎ, 𝐹𝑘) ∼ Hom𝐹𝐵(𝐹𝑏, 𝐹𝑘)
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≅ 𝐹Hom𝐵(𝑏, 𝑘) over 𝑒 × id∶ 𝐿 × 𝐹𝐴 ∼ 𝐹𝐾 × 𝐹𝐴. By Corollary 10.3.2(iii),
application of 𝐹, composition with 𝑦, 𝛽, and 𝛿 defines the right-hand bijection
in the commutative square of functions

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) hFun(Hom𝐵(𝑏, 𝑘), 𝐶)(𝑐𝑝0, 𝑓𝑝1)

hFun(𝐿, 𝐹𝐶)(𝑑, 𝐹𝑟 ⋅ ℎ) hFun(Hom𝐹𝐵(ℎ, 𝐹𝑘), 𝐹𝐶)(𝑑𝑝0, 𝐹𝑓 ⋅ 𝑝1)

≃
≃

≃

and thus our pasted diagram in ℒ is a right extension diagram, as desired.
To see that pointwise right extensions are reflected we must show that (10.3.9)

is a right extension diagram in 𝒦 under the hypothesis that 𝐹𝜈∶ 𝐹𝑟 ⋅ 𝐹𝑘 ⇒ 𝐹𝑓
is a pointwise right extension diagram in ℒ. For any functor 𝑐∶ 𝐾 → 𝐶, we
have a commutative square of functions:

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) hFun(Hom𝐵(𝑏, 𝑘), 𝐶)(𝑐𝑝0, 𝑓𝑝1)

hFun(𝐹𝐾, 𝐹𝐶)(𝐹𝑐, 𝐹𝑟 ⋅𝐹𝑏) hFun(Hom𝐹𝐵(𝐹𝑏, 𝐹𝑘), 𝐹𝐶)(𝐹𝑐 ⋅𝑝0, 𝐹𝑓 ⋅𝑝1)

≃

𝐹 ≃ 𝐹

≃

Since comma squares are preserved by cosmological functors, the bottom map
is a bijection, as our the vertical functions, defined by application of 𝐹. Thus,
𝜈∶ 𝑟 ⋅ 𝑘 ⇒ 𝑓 satisfies the universal property of a pointwise right extension in 𝒦.

Finally, to see that pointwise right extension diagrams are created by cos-
mological biequivalences suppose we are given a pointwise right extension
diagram

𝐹𝐴 𝐹𝐶

𝐹𝐵

𝐹𝑓

𝐹𝑘 𝑠
⇑𝜍

in ℒ. By Corollary 10.3.2, there exists a functor 𝑟∶ 𝐵 → 𝐶 together with an
isomorphism 𝛼∶ 𝑠 ≅ 𝐹𝑟 and a natural transformation 𝜈∶ 𝑟𝑘 ⇒ 𝑓 mapping to 𝜎
under the bijection

hFun(𝐴, 𝐶)(𝑟𝑘, 𝑓) hFun(𝐹𝐴, 𝐹𝐶)(𝑠 ⋅ 𝐹𝑘, 𝐹𝑓)

𝑟𝑘
𝜈
𝑓 𝑠 ⋅ 𝐹𝑘

𝜍
𝐹𝑓

𝐹(−)∘𝛼𝐹𝑘

Since 𝐹𝜈 is isomorphic to a pointwise right extension diagram in ℒ it is a point-
wise right extension diagram in ℒ, and since pointwise right extension diagrams
are reflected by cosmological biequivalences, 𝜈 exhibits 𝑟 as a pointwise right
extension of 𝑓 along 𝑘 as claimed.
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Immediately from Definition 9.4.7 and Lemma 9.5.6:

Corollary 10.3.10. Cosmological biequivalences preserve, reflect, and create
(weighted) limits and colimits of ∞-category indexed diagrams.

Exercises
Exercise 10.3.i. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence. Show, that 𝐹
induces an equivalence of homotopy categories h𝐴 ∼ h𝐹𝐴 for any ∞-category
𝐴 ∈ 𝒦 (see Definition 1.4.11).

Exercise 10.3.ii. Consider a 2-functor 𝐹∶ 𝒞 → 𝒟 that defines a biequivalence
as in Proposition 10.3.1. Prove that:

(i) A 2-cell 𝐴 𝐵
𝑓

𝑔
⇓𝛼 in 𝒞 is invertible if and only if 𝐹𝛼 is invertible

in 𝒟.
(ii) A 1-cell 𝑢∶ 𝐴 → 𝐵 admits a left adjoint in 𝒞 if and only if 𝐹𝑢∶ 𝐹𝐴 →

𝐹𝐵 admits a left adjoint in 𝒟, in which case 𝐹 preserves the adjunction.

Exercise 10.3.iii. Prove that cosmological biequivalences between cartesian
closed ∞-cosmoi preserve exponential objects up to equivalence.

10.4 Inverse Cosmological Biequivalences

Two ∞-cosmoi are biequivalent just when they are connected by a finite zigzag
of cosmological biequivalences. In this section, we establish a few useful prop-
erties of the “composite” of such a zigzag, the analysis of which immediately
reduces to the base case: describing the inverse 𝐺∶ ℒ ∼ 𝒦 to a cosmolog-
ical biequivalence 𝐹∶ 𝒦 ∼ ℒ. The definitions introduced here describe the
∞-categorical structures that transfer to biequivalent ∞-cosmoi, such as the
weak exponentials discussed in Observation 10.3.4. The reader might consider
skipping this section for now and referring back to it with the applications of
Chapter 12 in mind.

To explain what to expect at the level of (∞, 2)-categories, consider the anal-
ogous 2-categorical case. By Proposition 10.3.1, a cosmological biequivalence
𝐹∶ 𝒦 ∼ ℒ induces a biequivalence 𝐹∶ 𝔥𝒦 ∼ 𝔥ℒ of homotopy 2-categories,
this being a 2-functor that is:

• surjective on objects up to equivalence and
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• defines a local equivalence of categories hFun(𝐴, 𝐵) ∼ hFun(𝐹𝐴, 𝐹𝐵) for
all 𝐴, 𝐵 ∈ 𝔥𝒦.

From these properties we may attempt to define an inverse biequivalence 𝐺 as
follows:

• For each 𝐶 ∈ 𝔥ℒ, we choose an 𝐴 ∈ 𝔥𝒦 together with a specified equiva-
lence 𝜖𝐶∶ 𝐹𝐴 ≃ 𝐶 and define 𝐺𝐶 ≔ 𝐴.

• For each pair 𝐶,𝐷 ∈ 𝔥ℒ, we define the action of 𝐺 on hom-categories to be
the composite

𝐺𝐶,𝐷 ≔ hFun(𝐶, 𝐷) hFun(𝐹𝐺𝐶, 𝐹𝐺𝐷) hFun(𝐺𝐶,𝐺𝐷)∼

(−∘𝜖𝐶,𝜖−1𝐷 ∘−)

∼

𝐹𝐺𝐶,𝐺𝐷
−1

of the equivalence defined by pre- and postcomposing with the maps of the
specified equivalences 𝜖𝐶∶ 𝐹𝐺𝐶 ≃ 𝐶 and 𝜖𝐷∶ 𝐹𝐺𝐷 ≃ 𝐷 together with an
inverse of the equivalence defined by the action of 𝐹.

These choices are suitably unique: the action of 𝐺 on objects is well-defined
up to equivalence and the action of 𝐺 on hom-categories is well-defined up to
natural isomorphism. However, these mappings cannot in general be chosen
to define a 2-functor (see Definition B.2.1 and [71, 3.1]): for instance, while
the triangle on the top commutes on the nose – expressing the unit axiom for
the 2-functor 𝐹 – the composite triangle on the bottom only commutes up to
isomorphism:

𝟙

hFun(𝐴, 𝐴) hFun(𝐹𝐴, 𝐹𝐴)

𝟙

hFun(𝐶, 𝐶) hFun(𝐹𝐺𝐶, 𝐹𝐺𝐶) hFun(𝐺𝐶,𝐺𝐶)

id𝐴 id𝐹𝐴

𝐹𝐴,𝐴

≅

id𝐶
id𝐹𝐺𝐶

id𝐺𝐶

≅

(−∘𝜖𝐶,𝜖−1𝐶 ∘−) 𝐹−1
𝐺𝐶,𝐺𝐶

Instead, the mapping 𝐺∶ 𝔥ℒ 𝔥𝒦 defines a pseudofunctor between the
homotopy 2-categories, a notion we now recall.

Definition 10.4.1. A pseudofunctor 𝐺∶ 𝒞 𝒟 between 2-categories 𝒞 and
𝒟 is given by:

• a mapping on objects 𝒞 ∋ 𝑥 ↦ 𝐺𝑥 ∈ 𝒟;
• a mapping on hom-categories 𝐺𝑥,𝑦∶ 𝒞(𝑥, 𝑦) → 𝒟(𝐺𝑥,𝐺𝑦) for each 𝑥, 𝑦 ∈
𝒞;
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• an invertible 2-cell for each 𝑥 ∈ 𝒞

𝟙

𝒞(𝑥, 𝑥) 𝒟(𝐺𝑥,𝐺𝑥)

id𝐺𝑥id𝑥

𝐺𝑥,𝑥

𝜄𝑥⇓≅

defining an isomorphism 𝜄𝑥∶ id𝐺𝑥 ≅ 𝐺 id𝑋 in 𝒟(𝐺𝑥,𝐺𝑥); and
• an natural isomorphism for each triple of objects 𝑥, 𝑦, 𝑧 ∈ 𝒞

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) 𝒟(𝐺𝑦, 𝐺𝑧) × 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑥, 𝑧) 𝒟(𝐺𝑥,𝐺𝑧)

∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑧⇓≅ ∘

𝐺

satisfying three coherence conditions encoded by the pasting equalities:

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒟(𝐺𝑦, 𝐺𝑧) × 𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐺𝑤,𝐺𝑥)

𝒞(𝑥, 𝑧) × 𝒞(𝑤, 𝑥) 𝒟(𝐺𝑥,𝐺𝑧) × 𝒟(𝐺𝑤,𝐺𝑥)

𝒞(𝑤, 𝑧) 𝒟(𝐺𝑤,𝐺𝑧)

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒟(𝐺𝑦, 𝐺𝑧) × 𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐺𝑤,𝐺𝑥)

𝒞(𝑦, 𝑧) × 𝒞(𝑤, 𝑦) 𝒟(𝐺𝑦, 𝐺𝑧) × 𝒟(𝐺𝑤,𝐺𝑦)

𝒞(𝑤, 𝑧) 𝒟(𝐺𝑤,𝐺𝑧)

∘

𝐺×𝐺×𝐺

𝛼𝑥,𝑦,𝑧×id⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑥,𝑧⇓≅ ∘

𝐺

=

∘

𝐺×𝐺×𝐺

id×𝛼𝑤,𝑥,𝑦⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑦,𝑧⇓≅ ∘

𝐺
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𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑥, 𝑦) × 𝒞(𝑥, 𝑥) 𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐺𝑥,𝐺𝑥)

𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑦, 𝑦) × 𝒞(𝑥, 𝑦) 𝒟(𝐺𝑦, 𝐺𝑦) × 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦)

𝐺

id× id𝑥 id×𝜄𝑥⇓≅ id× id𝐺𝑥

∘

𝐺×𝐺

𝛼𝑥,𝑥,𝑦⇓≅ ∘

𝐺

=

𝐺

id𝑦× id 𝜄𝑦×id⇓≅ id𝐺𝑦× id

∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑦⇓≅ ∘

𝐺

where both of these latter composites equal the unit 2-cell id𝐺𝑥,𝑦.

A 2-functor is a pseudofunctor in which the unit and composition cells 𝜄 and
𝛼 are identities. The notion of a 2-natural transformation (see Definition B.2.2)
between 2-functors similarly generalizes to a pseudonatural transformation
between pseudofunctors.

Definition 10.4.2. For any 2-categories 𝒞 and 𝒟 and parallel pseudofunctors
𝐹,𝐺∶ 𝒞 𝒟, a pseudonatural transformation 𝜙∶ 𝐹 𝐺 is given by:

• a 1-cell 𝜙𝑥∶ 𝐹𝑥 → 𝐺𝑥 ∈ 𝒟 for every object 𝑥 ∈ 𝒞 and
• an invertible 2-cell in 𝒟 for each 1-cell 𝑓∶ 𝑥 → 𝑦 ∈ 𝒞

𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦

𝐹𝑓

𝜙𝑥 𝜙𝑓⇓≅ 𝜙𝑦

𝐺𝑓

so that this data

• is natural, in the sense that for each 2-cell 𝑥 𝑦
𝑓

𝑔
⇓𝛾 in 𝒞 the pasted
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composites are equal

𝐹𝑥 𝐹𝑦 𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦 𝐺𝑥 𝐺𝑦

𝐹𝑓

𝐹𝑔

⇓𝐹𝛾

𝜙𝑥
𝜙𝑔⇓≅

𝜙𝑦 =

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑦

𝐺𝑔

𝐺𝑓

𝐺𝑔

⇓𝐺𝛾

and

• respects the composition and unit constraints specified by the pseudofunctors

𝐹𝑦 𝐹𝑦

𝐹𝑥 𝐹𝑧 𝐹𝑥 𝐹𝑧

𝐺𝑦

𝐺𝑥 𝐺𝑧 𝐺𝑥 𝐺𝑧

𝐹𝑘 𝐹𝑘

𝜙𝑦

𝐹𝑓

𝐹(𝑘𝑓)𝜙𝑥

𝛼𝑥,𝑦,𝑧𝑓,𝑘 ⇓≅

𝜙𝑧

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑧

=
𝐺𝑘

𝜙𝑘⇓≅

𝐺(𝑘𝑓)

𝜙𝑘𝑓⇓≅
𝐺𝑓

𝐺(𝑘𝑓)

𝛼𝑥,𝑦,𝑧𝑓,𝑘 ⇓≅

and
𝐹𝑥 𝐹𝑥 𝐹𝑥 𝐹𝑥

𝐺𝑥 𝐺𝑥 𝐺𝑥 𝐺𝑥

id𝐹𝑥

𝐹 id𝑥

𝜄𝑥⇓≅

𝜙𝑥
𝜙id𝑥⇓≅

𝜙𝑥 =

id𝐹𝑥

𝜙𝑥 𝜙𝑥

𝐺 id𝑥

id𝐺𝑥

𝐺 id𝑥

𝜄𝑦⇓≅

One context where pseudofunctors emerge are as inverses to 2-functors that
define biequivalences. The pseudofunctors that arise in this manner are them-
selves biequivalences: surjective on objects up to equivalence and defining
local equivalences on hom-categories. These functors are inverses in the sense
that there exist pseudonatural equivalences between the composites and the
identities, these being pseudonatural transformations that are componentwise
equivalences (see Exercise 10.4.ii for an alternate characterization). Collec-
tively, this data defines an equivalence of 2-categories in a sense appropriate to
bicategory theory:

Proposition 10.4.3. If 𝐹∶ 𝒞 → 𝒟 is a 2-functor between 2-categories 𝒞 and
𝒟 and a biequivalence then there exists a pseudofunctor 𝐺∶ 𝒟 𝒞 that is
also a biequivalence and is a pseudoinverse to 𝐹 in the sense that there exist
pseudonatural equivalences id𝒞 𝐺𝐹 and 𝐹𝐺 id𝒟.

Proof Exercise 10.4.v.

Proposition 10.4.3 describes a classical result in bicategory theory that John-
son and Yau refer to as “the bicategorical Whitehead theorem” [59, 7.4.1], so
we feel content to leave its proof to the exercises (see also Proposition 10.4.16).
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Recall from Definition 1.2.1 that an ∞-cosmos is, among other things, a
category enriched in the cartesian closed category of quasi-categories, while a
cosmological functor is, among other things, an enriched functor between quasi-
categorically enriched categories (see §A.2). To define a quasi-categorically
enriched pseudofunctor, we need to extend the 1-category of quasi-categories
and functors to a 2-category, so that we may use its 2-cells to encode the unit
and composition coherences. Fortunately, we have such a 2-category at our
disposal: the homotopy 2-category of quasi-categories 𝔥𝒬𝒞𝑎𝑡. By Proposition
1.4.5, this 2-category of quasi-categories, functors between them, and natural
transformations between these is cartesian closed, so we have well-behaved
cartesian product and transposition operations on these 2-cells.

The extra dimension in the 2-category 𝔥𝒬𝒞𝑎𝑡 enables us to define quasi-cate-
gorically enriched pseudofunctors as follows:

Definition 10.4.4. For quasi-categorically enriched categories 𝒦 and ℒ, a
quasi-categorically enriched pseudofunctor 𝐺∶ 𝒦 ℒ – a quasi-pseudo-
functor for short – is given by:

• a mapping on objects 𝒦 ∋ 𝑥 ↦ 𝐺𝑥 ∈ ℒ;
• a functor of hom quasi-categories 𝐺𝑥,𝑦∶ 𝒦(𝑥, 𝑦) → ℒ(𝐺𝑥,𝐺𝑦) for each
𝑥, 𝑦 ∈ 𝒦;

• an invertible 2-cell in the homotopy 2-category of quasi-categories for each
𝑥 ∈ 𝒦

𝟙

𝒦(𝑥, 𝑥) ℒ(𝐺𝑥, 𝐺𝑥)

id𝐺𝑥id𝑥

𝐺𝑥,𝑥

𝜄𝑥⇓≅

• an invertible 2-cell in the homotopy 2-category of quasi-categories for each
triple of objects 𝑥, 𝑦, 𝑧 ∈ 𝒦

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

𝒦(𝑥, 𝑧) ℒ(𝐺𝑥, 𝐺𝑧)

∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑧⇓≅ ∘

𝐺
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satisfying three coherence conditions encoded by the pasting equalities:

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) × 𝒦(𝑤, 𝑥) ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦) × ℒ(𝐺𝑤,𝐺𝑥)

𝒦(𝑥, 𝑧) × 𝒦(𝑤, 𝑥) ℒ(𝐺𝑥, 𝐺𝑧) × ℒ(𝐺𝑤,𝐺𝑥)

𝒦(𝑤, 𝑧) ℒ(𝐺𝑤,𝐺𝑧)

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) × 𝒦(𝑤, 𝑥) ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦) × ℒ(𝐺𝑤,𝐺𝑥)

𝒦(𝑦, 𝑧) × 𝒦(𝑤, 𝑦) ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐺𝑤,𝐺𝑦)

𝒦(𝑤, 𝑧) ℒ(𝐺𝑤,𝐺𝑧)

∘

𝐺×𝐺×𝐺

𝛼𝑥,𝑦,𝑧×id⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑥,𝑧⇓≅ ∘

𝐺

=
∘

𝐺×𝐺×𝐺

id×𝛼𝑤,𝑥,𝑦⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑦,𝑧⇓≅ ∘

𝐺
(10.4.5)

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥, 𝐺𝑦)

𝒦(𝑥, 𝑦) × 𝒦(𝑥, 𝑥) ℒ(𝐺𝑥, 𝐺𝑦) × ℒ(𝐺𝑥,𝐺𝑥)

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥, 𝐺𝑦)

𝐺

id× id𝑥 id×𝜄𝑥⇓≅ id× id𝐺𝑥

∘

𝐺×𝐺

𝛼𝑥,𝑥,𝑦⇓≅ ∘

=

𝐺

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥, 𝐺𝑦)

𝒦(𝑦, 𝑦) × 𝒦(𝑥, 𝑦) ℒ(𝐺𝑦, 𝐺𝑦) × ℒ(𝐺𝑥,𝐺𝑦)

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥, 𝐺𝑦)

𝐺

id𝑦× id 𝜄𝑦×id⇓≅ id𝐺𝑦× id

∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑦⇓≅ ∘

𝐺

where both of these latter composites equal the unit 2-cell id𝐺𝑥,𝑦.

Remark 10.4.6. To emphasize the analogy between Definitions 10.4.1 and
10.4.4, we write 𝟙 for the terminal quasi-category, which is also the nerve of
the terminal category; elsewhere we write 1 for the terminal ∞-category in a
generic ∞-cosmos. For any pair of objects 𝑎, 𝑏 ∈ ℒ in a quasi-categorically
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enriched category,
Fun(𝟙, ℒ(𝑎, 𝑏)) ≅ ℒ(𝑎, 𝑏),

and so hFun(𝟙, ℒ(𝑎, 𝑏)) ≅ hℒ(𝑎, 𝑏). Thus 2-cells in the homotopy 2-category
of quasi-categories 𝔥𝒬𝒞𝑎𝑡 with domain 𝟙 and codomain ℒ(𝑎, 𝑏) correspond to
2-cells in the homotopy 2-category of ℒ – defined exactly as in Definition 1.4.1
– from 𝑎 to 𝑏.

In particular, the data of the invertible 2-cell 𝜄𝑥 is no more and no less than

an invertible 2-cell 𝐺𝑥 𝐺𝑥
id𝐺𝑥

𝜄𝑥⇓≅

𝐺 id𝑥

in the homotopy 2-category of ℒ.

The notion of “quasi-pseudofunctor” introduced in Definition 10.4.4 should
be regarded as a 2-categorical truncation of an (∞, 2)-categorical notion in the
following sense:

Digression 10.4.7 (quasi-pseudofunctors as (∞, 2)-functors). A quasi-catego-
rically enriched functor between quasi-categorically enriched categories can be
understood as a “functor of (∞, 2)-categories.” Indeed, the category of simpli-
cially enriched categories has a model structure that presents the (∞, 1)-category
of (∞, 2)-categories, in which the fibrant objects are exactly the quasi-cate-
gorically enriched categories [79, 0.0.4]. However, the fibrant objects in this
category are not necessarily cofibrant. The cofibrant objects are the simplicial
computads first defined by Dwyer and Kan [37, 4.5]. So to model a generic
(∞, 2)-categorical functor from𝒦 toℒ as a quasi-categorically enriched functor,
one must first replace 𝒦 by a weakly equivalent simplicial computad.

This explains why the inverse to a cosmologically biequivalence is not neces-
sarily a strict simplicial functor but something weaker. The 2-cell coherences that
enumerate the data of a quasi-categorically enriched pseudofunctor can be under-
stood as a truncation of the higher coherences of a functor of (∞, 2)-categories,
much like the homotopy 2-category of quasi-categories is a truncation of the
quasi-categorically enriched category of quasi-categories. Since a theme of this
text is that much of ∞-category theory can be developed in the truncated homo-
topy 2-category rather than the full (∞, 2)-category, we decline to enumerate
the higher coherences of an inverse to a cosmological biequivalence as part of
Definition 10.4.4.

Definition 10.4.8. A quasi-pseudofunctor 𝐺∶ 𝒦 ℒ whose codomain ℒ is
an ∞-cosmos is a biequivalence when it is:

(i) surjective on objects up to equivalence: if for all 𝑎 ∈ ℒ there exists
𝑥 ∈ 𝒦 so that 𝐹𝑥 ≃ 𝑎; and
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(ii) a local equivalence of quasi-categories: if for every pair 𝑥, 𝑦 ∈ 𝒦, the
map

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥, 𝐺𝑦)∼

𝐺𝑥,𝑦

is an equivalence of quasi-categories.

Remark 10.4.9. We find it convenient to assume that ℒ is an ∞-cosmos in
Definition 10.4.8 because that provides us access to the various characterizations
of the equivalences in ℒ given by Theorem 1.4.7. In what follows we ask that
an equivalence 𝑎 ≃ 𝑏 in ℒ

• defines an equivalence in the homotopy 2-category of ℒ and
• induces an equivalence of quasi-categories ℒ(𝑥, 𝑎) ∼ ℒ(𝑥, 𝑏) in the homo-

topy 2-category of quasi-categories that is 2-natural in 𝑥.

The latter of these properties implies the former, so if we required a notion
of quasi-pseudofunctorial biequivalence between general quasi-categorically
enriched categories, we could use this notion of equivalence in Definition 10.4.8.
But we make no use of the concept outside of the context provided by∞-cosmoi
and so prefer the simpler terminology. Note that we permit the domain 𝒦 to be
merely quasi-categorically enriched.

Similarly:

Definition 10.4.10. For quasi-categorically enriched categories 𝒦 and ℒ and
quasi-pseudofunctors 𝐹,𝐺∶ 𝒦 ℒ, a quasi-categorically enriched pseudo-
natural transformation – a quasi-pseudonatural transformation for short –
𝜙∶ 𝐹 𝐺 is given by:

• a 0-arrow 𝜙𝑥∶ 𝐹𝑥 → 𝐺𝑥 ∈ ℒ for every object 𝑥 ∈ 𝒦 and
• an invertible 2-cell in the homotopy 2-category of quasi-categories, for each

pair of objects 𝑥, 𝑦 ∈ 𝒦

𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝑦)

ℒ(𝐺𝑥, 𝐺𝑦) ℒ(𝐹𝑥, 𝐺𝑦)

𝐹𝑥,𝑦

𝐺𝑥,𝑦 𝜙𝑥,𝑦⇓≅ 𝜙𝑦∘−

−∘𝜙𝑥

so that this data respects the composition and unit constraints specified by the
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quasi-pseudofunctors, as expressed by the following two pasting diagrams

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐹𝑥, 𝐹𝑦)

𝒦(𝑥, 𝑧) ℒ(𝐹𝑥, 𝐹𝑧)

ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

= ℒ(𝐺𝑥, 𝐺𝑧) ℒ(𝐹𝑥, 𝐺𝑧)

∘
𝐺×𝐺

𝐹×𝐹

∘
𝛼𝑥,𝑦,𝑧⇓≅

𝐹

𝐺 𝜙𝑥,𝑧⇓≅ 𝜙𝑧∘−

∘

𝛼𝑥,𝑦,𝑧⇓≅

−∘𝜙𝑥

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐹𝑥, 𝐹𝑦)

ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝑦, 𝐺𝑧) × ℒ(𝐹𝑥, 𝐹𝑦)

ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

ℒ(𝐺𝑦, 𝐺𝑧) × ℒ(𝐹𝑥, 𝐺𝑦) ℒ(𝐹𝑥, 𝐺𝑧)

𝐺×𝐹
𝐺×𝐺

𝐹×𝐹

(𝜙𝑧∘−)×id𝜙𝑦,𝑧×id⇓≅

(−∘𝜙𝑦)×id

id×(𝜙𝑦∘−) = ∘

id×(−∘𝜙𝑥)

id×𝜙𝑥,𝑦⇓≅

∘

and

𝟙 𝟙

𝒦(𝑥, 𝑥) ℒ(𝐹𝑥, 𝐹𝑥) 𝒦(𝑥, 𝑥) ℒ(𝐺𝑥, 𝐺𝑥)

ℒ(𝐺𝑥, 𝐺𝑥) ℒ(𝐹𝑥, 𝐺𝑥) ℒ(𝐺𝑥, 𝐺𝑥) ℒ(𝐹𝑥, 𝐺𝑥)

id𝐹𝑥id𝑥 id𝐺𝑥id𝑥

𝐹𝑥,𝑥
𝐺𝑥,𝑥 𝜙𝑥,𝑦⇓≅

𝜄𝑥⇓≅

=

𝜙𝑥∘−

𝐺𝑥,𝑥

𝐺𝑥,𝑥

𝜄𝑥⇓≅

−∘𝜙𝑥

−∘𝜙𝑥 −∘𝜙𝑥

Remark 10.4.11. There is an analogy between Definitions 10.4.2 and 10.4.10
that parallels the analogy between Definitions 10.4.1 and 10.4.4 that is concealed
by our presentation. The naturality requirement for the invertible 2-cell compo-
nents of a pseudonatural transformation 𝜙∶ 𝐹 𝐺 between pseudofunctors
𝐹,𝐺∶ 𝒞 𝒟 tells us that they assemble into a natural isomorphism between
the functors

𝒞(𝑥, 𝑦) 𝒟(𝐹𝑥, 𝐹𝑦)

𝒟(𝐺𝑥,𝐺𝑦) 𝒟(𝐹𝑥, 𝐺𝑦)

𝐹𝑥,𝑦

𝐺𝑥,𝑦 𝜙𝑥,𝑦⇓≅ 𝜙𝑦∘−

−∘𝜙𝑥

for every 𝑥, 𝑦 ∈ 𝒞. The coherence conditions that express the compatibility of
these natural isomorphisms with the composition and unit constraints can then
be expressed in the form appearing in Definition 10.4.10, but since two natural
isomorphisms are equal just when their components are equal, we can reduce
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these coherence conditions to the two remaining pasting identities of Definition
10.4.2 expressed in terms of the components of 𝜙.

The data of a natural isomorphism between functors between quasi-categor-
ies is more intricate than the data of a natural isomorphism between functors
between categories, which is why the coherence conditions in Definition 10.4.10
must be expressed in a more universal way. However, the coherence conditions
of Definition 10.4.2 can be extracted from these as follows.

Recall the 0-arrows in 𝒦(𝑥, 𝑦) correspond to functors 𝑓∶ 𝟙 → 𝒦(𝑥, 𝑦). By
Remark 10.4.6, the restriction 𝜙𝑥,𝑦𝑓 defines the component

𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦

𝐹𝑓

𝜙𝑥 𝜙𝑓⇓≅ 𝜙𝑦

𝐺𝑓

of an invertible 2-cell in the homotopy 2-category of 𝔥ℒ. This 2-cell is auto-

matically natural, in the sense that for each 2-cell 𝑥 𝑦
𝑓

𝑔

⇓𝛾 in the homotopy

2-category of 𝒦 the pasted composites

𝐹𝑥 𝐹𝑦 𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦 𝐺𝑥 𝐺𝑦

𝐹𝑓

𝐹𝑔

⇓𝐹𝛾

𝜙𝑥
𝜙𝑔⇓≅

𝜙𝑦 =

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑦

𝐺𝑔

𝐺𝑓

𝐺𝑔

⇓𝐺𝛾

are equal in the homotopy 2-category ofℒ. This follows by naturality of whisker-
ing (see Lemma B.1.3), since both pasted composites are represented by the
horizontal composite

𝟙 𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐺𝑦)
𝑓

𝑔

⇓𝛾

(𝜙𝑦∘−)∘𝐹𝑥,𝑦

(−∘𝜙𝑥)∘𝐺𝑥,𝑦

𝜙𝑥,𝑦⇓≅

in the homotopy 2-category of quasi-categories.
Similarly, the composition and unit diagrams of Definition 10.4.10 imply

that the corresponding diagrams displayed in Definition 10.4.2 commute in the
homotopy 2-category of ℒ (see Exercise 10.4.iii).

For any quasi-categorically enriched category𝒦, the hom bifunctor𝒦(−,−)∶
𝒦op ×𝒦 → 𝒬𝒞𝑎𝑡 is a quasi-categorically enriched functor.
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Lemma 10.4.12. The action on homs of a quasi-pseudofunctor 𝐹∶ 𝒦 ℒ
between quasi-categorically enriched categories defines a quasi-pseudonatural
transformation

𝐹−,−∶ 𝒦(−,−) ℒ(𝐹−, 𝐹−)

between quasi-pseudonatural functors 𝒦op ×𝒦 𝒬𝒞𝑎𝑡.

Proof The 2-cell component of the quasi-pseudonatural transformation asso-
ciated to a pair of objects (𝑥, 𝑦) and (𝑤, 𝑧) in 𝒦op ×𝒦 is given by

𝒦(𝑦, 𝑧) × 𝒦(𝑤, 𝑥) 𝒦(𝑤, 𝑧)𝒦(𝑥,𝑦)

ℒ(𝐹𝑤, 𝐹𝑧)ℒ(𝐹𝑥,𝐹𝑦) ℒ(𝐹𝑤, 𝐹𝑧)𝒦(𝑥,𝑦)

∘

𝐹 𝛼𝑤,𝑥,𝑦,𝑧⇓≅ 𝐹𝑤,𝑧∘−

−∘𝐹𝑥,𝑦

where 𝛼𝑤,𝑥,𝑦,𝑧 is a transpose of the common 2-cell defined by (10.4.5). We leave
the verification of the composition and unit axioms to Exercise 10.4.iv.

Definition 10.4.13. A quasi-pseudonatural transformation𝜙∶ 𝐹 𝐺 between
quasi-pseudofunctors 𝐹,𝐺∶ 𝒦 ℒ whose codomain is an ∞-cosmos is a
quasi-pseudonatural equivalence if each of its components 𝜙𝑥∶ 𝐹𝑥 → 𝐺𝑥
defines an equivalence in the homotopy 2-category of ℒ.

For the reasons noted in Remark 10.4.9, it is convenient to assume that ℒ is an
∞-cosmos so we need not be more explicit about the appropriate notion of equiv-
alence in the target category. Our interest in the class of quasi-pseudonatural
equivalences stems from the following result, which can be understood as a
version of the bicategorical Yoneda lemma in the context of quasi-categorically
enriched categories, quasi-pseudofunctors, and quasi-pseudonatural transforma-
tions.

Lemma 10.4.14. If there exists a quasi-pseudonatural equivalence

𝜙∶ 𝒦(−, 𝑎) 𝒦(−, 𝑏)

between the simplicial functors 𝒦op → 𝒬𝒞𝑎𝑡 represented by a pair of objects
𝑎, 𝑏 in an ∞-cosmos 𝒦, then 𝑎 and 𝑏 are equivalent in 𝒦.

Proof We will show that the 0-arrow 𝑦 ≔ 𝜙𝑎(id𝑎)∶ 𝑎 → 𝑏 is an equivalence
in 𝒦. First observe that for every 𝑥 ∈ 𝒦 the component 𝜙𝑥∶ 𝒦(𝑥, 𝑎) ∼

𝒦(𝑥, 𝑏) – the top-right composite in the following diagram – is isomorphic in
the homotopy 2-category of quasi-categories to postcomposition with 𝑦 – the
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lower-left composite in the diagram:

𝒦(𝑥, 𝑎) 𝒦(𝑥, 𝑎)𝒦(𝑎,𝑎)

𝒦(𝑥, 𝑎)

𝒦(𝑥, 𝑏)𝒦(𝑎,𝑏) 𝒦(𝑥, 𝑏)𝒦(𝑎,𝑎)

𝒦(𝑥, 𝑏) 𝒦(𝑥, 𝑏)

∘

∘ 𝜙𝑥,𝑎⇓≅

evid𝑎

𝜙𝑥∘−

𝜙𝑥

ev𝑦
−∘𝜙𝑎 evid𝑎

≕ 𝒦(𝑥, 𝑎) 𝒦(𝑥, 𝑏)
𝜙𝑥

𝑦∘−

⇓≅

In particular, by Exercise 1.4.iii, the map 𝑦 ∘ −∶ 𝒦(𝑥, 𝑎) ∼ 𝒦(𝑥, 𝑏) is an
equivalence for any 𝑥 ∈ 𝒦, which means that 𝑦∶ 𝑎 ∼ 𝑏 is an equivalence in
the ∞-cosmos 𝒦.

Quasi-pseudonatural equivalences may be constructed as adjoint equivalence
inverses of simplicial natural transformations that define componentwise equiv-
alences.

Lemma 10.4.15. Consider a simplicial natural transformation 𝒦 ℒ
𝐹

𝐺

⇓𝜙

between quasi-categorically enriched functors between∞-cosmoi in which the 0-
arrow components 𝜙𝑥∶ 𝐹𝑥 ∼ 𝐺𝑥 all define equivalences in ℒ. Then any choice
of adjoint equivalence inverses 𝜓𝑥∶ 𝐺𝑥 ∼ 𝐹𝑥 assemble into the components of
a quasi-pseudonatural transformation 𝜓∶ 𝐺 𝐹 that is a quasi-pseudonatural
equivalence.

Proof The components of the quasi-pseudonatural transformation 𝜓 are de-
fined by the adjoint equivalence inverse arrows 𝜓𝑥∶ 𝐺𝑥 ∼ 𝐹𝑥 and by the pasted
composite natural transformation

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥, 𝐺𝑦)

𝜓𝑥,𝑦 ≔ ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝑥, 𝐺𝑦) ℒ(𝐺𝑥, 𝐺𝑦)

ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐺𝑥, 𝐹𝑦)

𝐺𝑥,𝑦

𝐹𝑥,𝑦 −∘𝜙𝑥 𝜂𝑥≅
𝜙𝑦∘−

𝜓𝑦∘−
−∘𝜓𝑥

𝜓𝑦∘−
𝜖𝑦≅

−∘𝜓𝑥

involving the unit and counit isomorphisms of the adjoint equivalence.
Since 𝐹 and 𝐺 are simplicial functors, the unit condition simplifies to ask

only that the component of this pasted natural transformation at the identity
arrow id𝑥∶ 𝟙 → 𝒦(𝑥, 𝑥) is an identity 2-cell id𝜓𝑥. This component is the pasted
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composite

𝐺𝑥 𝐺𝑥

𝐹𝑥 𝐹𝑥
𝜓𝑥

𝜓𝑥𝜙𝑥𝜂≅
𝜖≅

which is indeed the identity, since the specified data defines an adjoint equiva-
lence.

Similarly, to verify the composition axiom, we must show that the composite

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦)

𝒦(𝑥, 𝑧) ℒ(𝐺𝑥, 𝐺𝑧)

ℒ(𝐹𝑥, 𝐹𝑧) ℒ(𝐹𝑥, 𝐺𝑧) ℒ(𝐺𝑥, 𝐺𝑧)

ℒ(𝐹𝑥, 𝐹𝑧) ℒ(𝐺𝑥, 𝐹𝑧)

∘

𝐺𝑥,𝑧

𝐹𝑥,𝑧 −∘𝜙𝑥 𝜂𝑥≅
𝜙𝑧∘−

𝜓𝑧∘−
−∘𝜓𝑥

𝜓𝑧∘−
𝜖𝑧≅

−∘𝜓𝑥

equals

𝒦(𝑦, 𝑧)×𝒦(𝑥, 𝑦)

ℒ(𝐹𝑦, 𝐹𝑧)×ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝑦, 𝐹𝑧)×ℒ(𝐺𝑥, 𝐺𝑦) ℒ(𝐺𝑦, 𝐺𝑧)×ℒ(𝐺𝑥, 𝐺𝑦)

ℒ(𝐹𝑦,𝐹𝑧)×ℒ(𝐹𝑥,𝐺𝑦) ℒ(𝐹𝑦,𝐺𝑧)×ℒ(𝐺𝑥,𝐺𝑦)

ℒ(𝐹𝑦, 𝐹𝑧)×ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝑦, 𝐹𝑧)×ℒ(𝐺𝑥, 𝐺𝑧) ℒ(𝐺𝑦, 𝐺𝑧)×ℒ(𝐺𝑥, 𝐺𝑦)

ℒ(𝐹𝑦, 𝐹𝑧)×ℒ(𝐺𝑥, 𝐹𝑦) ℒ(𝐺𝑦, 𝐹𝑧)×ℒ(𝐺𝑥, 𝐺𝑦)

ℒ(𝐺𝑥, 𝐹𝑧)

𝐹×𝐹 𝐺×𝐺
𝐹×𝐺

𝜖𝑦≅

𝜙𝑦∘− −∘𝜙𝑥

𝜖𝑧≅

𝜂𝑥≅

𝜙𝑧∘− −∘𝜙𝑦

𝜂𝑦≅

𝜓𝑦∘− −∘𝜓𝑥 𝜓𝑧∘− −∘𝜓𝑦

−∘𝜓𝑥 𝜓𝑦∘− −∘𝜓𝑦 𝜓𝑧∘−

∘ ∘

The pre- and postcomposition maps appearing in this diagram are 2-natural (see
Definition B.2.2), so for instance the whiskered composite of 𝜖𝑦 and − ∘ 𝜓𝑥 can
be formed in either order. Using this commutativity property repeatedly in the
second pasting diagram and applying the triangle identity 𝜙𝑦𝜖𝑦 ⋅ 𝜂𝑦𝜙𝑦 = id𝜙𝑦,
the second pasting diagram reduces to the first one.
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We now show that any biequivalence 𝐹∶ 𝒦 ∼ ℒ between ∞-cosmoi ad-
mits a quasi-pseudofunctorial “inverse” 𝐺∶ ℒ 𝒦 equipped with quasi-
pseudonatural equivalences 𝜂∶ id𝒦 𝐺𝐹 and 𝜖∶ 𝐹𝐺 idℒ.

Proposition 10.4.16. If 𝐹∶ 𝒦 → ℒ is a quasi-categorically enriched functor
between ∞-cosmoi and a biequivalence then there exists a quasi-pseudofunctor
𝐺∶ ℒ 𝒦 that is also a biequivalence. Moreover 𝐺 is a quasi-pseudoinverse
to 𝐹 in the sense that there exist quasi-pseudonatural equivalences id𝒦 𝐺𝐹
and 𝐹𝐺 idℒ.

Proof To coherently define an inverse to a biequivalence 𝐹∶ 𝒦 ∼ ℒ, we “fully
specify” its data, choosing:

(𝛽) fully specified adjoint equivalences 𝜖𝑎∶ 𝐹𝑥𝑎 ≃ 𝑎 for each 𝑎 ∈ ℒ and
(𝛾) fully specified inverse adjoint equivalences of quasi-categories

𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝑦)∼

𝐹𝑥,𝑦

for each pair 𝑥, 𝑦 ∈ 𝒦 whose inverse is quasi-pseudonatural in 𝑥 and 𝑦.

In (𝛾), we apply to the simplicial natural transformation 𝐹−,−∶ 𝒦(−,−) →
ℒ(𝐹−, 𝐹−) to observe that the pointwise adjoint equivalences to these maps
assemble into a quasi-pseudonatural transformation, which is also a pointwise
equivalence.

Now, to define 𝐺∶ ℒ 𝒦, use (𝛽) to specify for each 𝑎 ∈ ℒ an object
𝐺𝑎 ≔ 𝑥𝑎 ∈ 𝒦 together with an equivalence 𝜖𝑎∶ 𝐹𝐺𝑎 ≃ 𝑎 inℒ. This defines the
mapping of𝐺 on objects and the 0-arrow components of the quasi-pseudonatural
transformation 𝜖. To define the action of 𝐺 on functor spaces, use this data and
(𝛾) to define

𝐺𝑎,𝑏 ≔ ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑏)∼

(−∘𝜖𝑎,𝜖−1𝑏 ∘−)

∼

𝐹−1
𝐺𝑎,𝐺𝑏

For each 𝑎 ∈ ℒ define 𝜄𝑎∶ id𝐺𝑎 ≅ 𝐺𝑎,𝑎 id𝑎 to be the composite

𝟙

ℒ(𝑎, 𝑎) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑎) 𝒦(𝐺𝑎,𝐺𝑎)
𝛽≅

id𝑎
id𝐹𝐺𝑎

id𝐺𝑎
𝛾≅

(−∘𝜖𝑎,𝜖−1𝑎 ∘−) 𝐹−1
𝐺𝑎,𝐺𝑎

of the isomorphism 𝛽𝑎∶ 𝜖−1𝑎 ∘ 𝜖𝑎 ≅ id𝐹𝐺𝑎 in the homotopy 2-category of ℒ
with the component of the isomorphism 𝛾∶ 𝐹−1𝐺𝑎,𝐺𝑎 ∘ 𝐹𝐺𝑎,𝐺𝑎 ≅ id𝒦(𝐺𝑎,𝐺𝑎) at
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id𝐺𝑎. For each 𝑎, 𝑏, 𝑐 ∈ ℒ, define 𝛼𝑎,𝑏,𝑐 to be the composite

ℒ(𝑏, 𝑐) × ℒ(𝑎, 𝑏) ℒ(𝑎, 𝑐)

ℒ(𝐹𝐺𝑏, 𝐹𝐺𝑐) × ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑐)

𝒦(𝐺𝑏, 𝐺𝑐) × 𝒦(𝐺𝑎,𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑐)

∘

(−∘𝜖𝑏,𝜖−1𝑐 ∘−)×(−∘𝜖𝑎,𝜖−1𝑏 ∘−) 𝛽≅ (−∘𝜖𝑎,𝜖−1𝑐 ∘−)

𝐹−1
𝐺𝑏,𝐺𝑐×𝐹

−1
𝐺𝑎,𝐺𝑏

∘

𝛾≅ 𝐹−1
𝐺𝑎,𝐺𝑐

∘

of the canonical natural transformations built from the data of (𝛽) and (𝛾).
We next verify that these choices make 𝐺 into a quasi-pseudofunctor. For the

unit condition, we must verify that the composite

ℒ(𝑎, 𝑏) ℒ(𝑏, 𝑏) × ℒ(𝑎, 𝑏) ℒ(𝑎, 𝑏)

ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) ℒ(𝐹𝐺𝑏, 𝐹𝐺𝑏) × ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏)

𝒦(𝐺𝑎,𝐺𝑏) 𝒦(𝐺𝑏, 𝐺𝑏) × 𝒦(𝐺𝑎,𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑏)

(−∘𝜖𝑎,𝜖−1𝑏 ∘−)

id𝑏× id

𝛽≅

∘

(−∘𝜖𝑏,𝜖−1𝑏 ∘−)×(−∘𝜖𝑎,𝜖−1𝑏 ∘−) 𝛽≅ (−∘𝜖𝑎,𝜖−1𝑏 ∘−)

𝛾≅𝐹−1
𝐺𝑎,𝐺𝑏

id𝐹𝐺𝑏× id

𝐹−1
𝐺𝑏,𝐺𝑏×𝐹

−1
𝐺𝑎,𝐺𝑏

∘

𝛾≅ 𝐹−1
𝐺𝑎,𝐺𝑏

id𝐺𝑏× id ∘

is the identity; in fact, each pair of vertical composites is the identity. On the
left-hand side, this is on account of one of the triangle equality relations for
the adjoint equivalence 𝜖𝑏. On the right-hand side, this is a consequence of
quasi-pseudonaturality of the pair 𝐹−1𝐺𝑎,𝐺𝑏 and 𝛾 established in Lemma 10.4.15.
The right unit constraint and associativity conditions are similar. This completes
the proof that 𝐺∶ ℒ 𝒦 defines a quasi-pseudofunctor.

By construction, the quasi-pseudofunctor 𝐺 is a local equivalence: its action
on homs is defined by composing an equivalence with a map induced by pre-
and postcomposing with equivalences in the ∞-cosmos ℒ, which is then an
equivalence by Corollary 1.4.8. We use this local equivalence to argue that
for each 𝑥 ∈ 𝒦, there is an equivalence 𝜂𝑥∶ 𝑥 ∼ 𝐺𝐹𝑥, proving essential
surjectivity of 𝐺. This component is defined by applying the specified inverse
adjoint equivalence 𝐹−1𝑥,𝐺𝑓𝑥∶ ℒ(𝐹𝑥, 𝐹𝐺𝐹𝑥) ∼ 𝒦(𝑥, 𝐺𝐹𝑥) of (𝛾) to the inverse
of the specified adjoint equivalence 𝜖−1𝐹𝑥∶ 𝐹𝑥 → 𝐹𝐺𝐹𝑥 of (𝛽). Since 𝐹 is a
cosmological biequivalence, which carries the map 𝜂𝑥 to an equivalence in
ℒ, 𝜂𝑥 is itself an equivalence in 𝒦. Thus, the quasi-pseudofunctor 𝐺 is an
biequivalence.

It remains only to check quasi-pseudonaturality of 𝜂 and 𝜖. For the latter, we
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define the component natural isomorphism by the pasting diagram

𝜖𝑎,𝑏 ≔

ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑏)

ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏)

ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝑏)

−∘𝜖𝑎 𝜖−1𝑏 ∘− 𝐹−1
𝐺𝑎,𝐺𝑏

𝐹𝐺𝑎,𝐺𝑏
≅𝛾

𝜖𝑏∘−

−∘𝜖𝑎

≅𝛽

For the former, using the definition 𝜂𝑥 ≔ 𝐹−1𝜖−1𝐹𝑥 and the quasi-pseudonaturality
of 𝐹−1−,−, we have a pasting diagram

𝜂𝑥,𝑦 ≔
𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝐺𝐹𝑥, 𝐹𝐺𝐹𝑦) 𝒦(𝐺𝐹𝑥,𝐺𝐹𝑦)

𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝐺𝐹𝑦) 𝒦(𝑥, 𝐺𝐹𝑦)

𝐹𝑥,𝑦

𝜖−1𝐹𝑦∘−

(−∘𝜖𝐹𝑥,𝜖−1𝐹𝑦∘−)

−∘𝜖−1𝐹𝑥

𝐹−1
𝐺𝐹𝑥,𝐺𝐹𝑦

−∘𝜂𝑥

𝜂𝑦∘−

𝛾≅ 𝛽≅

𝐹−1
𝑥,𝐺𝐹𝑦

𝛾≅

which defines component natural isomorphism. We leave the verification that
these natural transformations satisfy the unit and composition coherence condi-
tions to define quasi-pseudonatural equivalences 𝜂∶ id𝒦 𝐺𝐹 and 𝜖∶ 𝐹𝐺
idℒ to the reader.

It follows direction from the definitions that composites of quasi-pseudofunc-
tors are quasi-pseudofunctors and composites of biequivalences are biequiva-
lences. Hence:

Corollary 10.4.17. Any zigzag of cosmological biequivalences composes
to define a quasi-pseudofunctor 𝒦 ∼ ℒ between ∞-cosmoi that is also a
biequivalence.

Moreover, the preservation and reflection properties of cosmological biequiv-
alences established in Proposition 10.3.6 extend to their quasi-pseudofunctorial
inverses, as the reader is invited to explore in Exercise 10.4.vi.

Exercises
Exercise 10.4.i. For a fixed pair of 2-categories 𝒞 and 𝒟, show that the col-
lection of pseudofunctors 𝒞 𝒟, pseudonatural transformations between
them, and modifications (see Definition B.2.3) between these assemble into a
2-category.
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Exercise 10.4.ii ([59, 6.2.16]). For a pseudonatural transformation 𝜙∶ 𝐹 𝐺
between pseudofunctors 𝐹,𝐺∶ 𝒞 𝒟 between 2-categories 𝒞 and 𝒟, show
that the following are equivalent.

• Each 1-cell component 𝜙𝑥∶ 𝐹𝑥 ∼ 𝐺𝑥 is an equivalence in 𝒟.
• The 1-cell 𝜙 defines an equivalence in the 2-category described in Exercise

10.4.i.

Exercise 10.4.iii. Let 𝜙∶ 𝐹 𝐺 be a quasi-pseudonatural transformation
between quasi-pseudofunctors 𝐹,𝐺∶ 𝒦 ℒ. For any pair of 0-arrows 𝑓∶ 𝑥 →
𝑦 and 𝑘∶ 𝑦 → 𝑧 in the𝒦, verify the following pasting equalities in the homotopy
2-category of ℒ.

𝐹𝑦 𝐹𝑦

𝐹𝑥 𝐹𝑧 𝐹𝑥 𝐹𝑧

𝐺𝑦

𝐺𝑥 𝐺𝑧 𝐺𝑥 𝐺𝑧

𝐹𝑘 𝐹𝑘

𝜙𝑦

𝐹𝑓

𝐹(𝑘𝑓)𝜙𝑥

𝛼𝑥,𝑦,𝑧𝑓,𝑘 ⇓≅

𝜙𝑧

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑧

=
𝐺𝑘

𝜙𝑘⇓≅

𝐺(𝑘𝑓)

𝜙𝑘𝑓⇓≅
𝐺𝑓

𝐺(𝑘𝑓)

𝛼𝑥,𝑦,𝑧𝑓,𝑘 ⇓≅

and
𝐹𝑥 𝐹𝑥 𝐹𝑥 𝐹𝑥

𝐺𝑥 𝐺𝑥 𝐺𝑥 𝐺𝑥

id𝐹𝑥

𝐹 id𝑥

𝜄𝑥⇓≅

𝜙𝑥
𝜙id𝑥⇓≅

𝜙𝑥 =

id𝐹𝑥

𝜙𝑥 𝜙𝑥

𝐺 id𝑥

id𝐺𝑥

𝐺 id𝑥

𝜄𝑦⇓≅

Exercise 10.4.iv. Finish the proof of Lemma 10.4.12.

Exercise 10.4.v. Derive a proof of Proposition 10.4.3 from the proof of Propo-
sition 10.4.16, modified according to Remark 10.4.9.

Exercise 10.4.vi. Develop a heuristic argument that explains why any ∞-cate-
gorical property or structure that is preserved and reflected by a cosmological
biequivalence is also preserved and reflected by its inverse quasi-pseudofunctor.
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Model Independence

Our aim in this chapter is to prove that the theory of ∞-categories is invari-
ant under change of model. Part of the meaning of this result is established
in Chapter 10, where we prove that the ∞-categorical notions developed in
this text are preserved, reflected, and created, by cosmological biequivalences,
which provide our change-of-model functors. But our aim here is to establish
something stronger: that statements about ∞-categories that may have been
proven by “analytic” techniques particular to a single ∞-cosmos are also model
independent, provided that the statements are expressible in a suitable equiv-
alence invariant language. Chapter 12 illustrates applications of this transfer
principle.

The problem with our naïve explorations of the model independence of ∞-
category theory – such as the results enumerated in Proposition 10.3.6 – is
they are ad hoc and tiresome. In §11.1, we pursue a more systematic result.
We review the construction of the virtual equipment of modules associated to
an ∞-cosmos and explain why it describes a suitable context for proving the
model independence of the fundamental ∞-categorical notions. We then prove
in Theorem 11.1.6 that a cosmological biequivalence induces a biequivalence
of virtual equipments, and revisit a few of our ad hoc model independence
statements from the vantage point of this result.

Informally, Theorem 11.1.6 means that any ∞-categorical notion that can be
encoded as a property of the virtual equipment of modules is model independent:
a biequivalence of virtual equipments gives a mechanism by which results proven
with one model of ∞-categories can be transferred to another model. But how
can we be sure when a statement about ∞-categories that has been expressed in
the language of virtual equipments is in fact invariant under a biequivalence of
virtual equipments?

Building on past work of Blanc [19], Freyd [43], Preller [92], and Cartmell
[25], Makkai has been in pursuit of a higher categorical foundation of math-
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ematics. In particular, his First-Order Logic with Dependent Sorts (FOLDS)
[82] provides a formal language for writing mathematical sentences about finite-
dimensional higher categorical structures. In §11.2, we sketch the key ideas
behind Makkai’s FOLDS framework and explain how his work specializes to
show that any statement written in the “language of 2-categories” is invariant
under a biequivalence between 2-categories.

Since ∞-categories live as objects in an infinite-dimensional category, it is
not immediately apparent that Makkai’s theory is applicable to the situation at
hand. However, a key theme of this text is that a significant chunk of∞-category
theory can be developed in a truncated finite-dimensional framework: namely
the virtual equipment of modules. In §11.3, we adapt Makkai’s framework
to prove that any statement that can be expressed in the “language of virtual
equipments,” as we define it in a precise sense, gives rise to a model independent
statement about ∞-categories.

11.1 A Biequivalence of Virtual Equipments

In this section, we show that a cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ induces
a biequivalence of virtual equipments 𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ). We then explain
the interpretation of this result: that the category theory of ∞-categories is
preserved, reflected, and created by any “change-of-model” functor of this form.

The claim that “the theory of ∞-categories is model independent” should
certainly encompass assertions like:

• A functor between ∞-categories admits a left adjoint in a particular model
if and only if it admits a left adjoint in every model.

• An ∞-category-valued diagram has a limit in one model if and only if it has
a limit in every model.

In our setting, change-of-model functors such as (10.0.1) define cosmological
biequivalences, or zigzags thereof. Thus, along these lines, an ad hoc approach to
proving the model independence of the basic category theory of ∞-categories is
developed in §10.3, where we observe that ad hoc translations of ∞-categorical
data and properties between biequivalent ∞-cosmoi can be given relatively
mechanically and in excruciating detail, if desired.

A more systematic approach to model independence makes use of most
comprehensive framework for the formal category theory of ∞-categories,
namely the virtual equipment of modules. We briefly review its essential features.
Recall from Chapter 8 that the virtual double category of modules 𝕄od(𝒦)
in an ∞-cosmos 𝒦 consists of:
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• a category of objects and vertical arrows, here the ∞-categories and ∞-
functors, drawn vertically

• for any pair of objects 𝐴, 𝐵, a collection of horizontal arrows 𝐴 𝐸 𝐵, here
the modules (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 from 𝐴 to 𝐵.

• cells, with boundary depicted as follows

𝐴 𝐵

𝐶 𝐷

𝑓

𝐸⃗

⇓𝛼 𝑔

𝐹

where ⃗𝐸 abbreviates a compatible sequence of modules 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from

𝐴 to 𝐵, which may be empty in the case where 𝐴 = 𝐵. Here, a cell with
the displayed boundary is an isomorphism class of objects in the functor
space Fun𝑓×𝑔( ⃗𝐸, 𝐹) of maps from the two-sided fibration 𝐴 ↞ ⃗𝐸 ↠ 𝐵 to
𝐶 ↞ 𝐹 ↠ 𝐷 over 𝑓 × 𝑔.

• a composite cell, for any configuration

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶0 𝐶𝑛

𝑓0

𝐸⃗1

⇓𝛼1

𝐸⃗2

𝑓1 ⇓𝛼2

𝐸⃗𝑛

⋯ ⇓𝛼𝑛 𝑓𝑛

𝑔

𝐹1 𝐹2

⇓𝛽

𝐹𝑛

ℎ

𝐺

defined by pulling back and then composing fibered isomorphism classes of
maps of spans.

• an identity cell for every horizontal arrow

𝐴 𝐵

𝐴 𝐵

𝐸

⇓id𝐸

𝐸

so that composition of cells is strictly associative and unital in the usual multi-
categorical sense.

Lemma 11.1.1. A cosmological functor induces a functor of virtual double
categories, preserving all of the structure.

Proof In Corollary 8.1.14, the categorical structures in the virtual double
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category of modules are inherited from the double category of two-sided isofi-
brations. We can understand the action of a cosmological functor 𝐹∶ 𝒦 → ℒ
on the virtual double category of modules by taking a similar route.

As outlined in Exercise 8.1.i, the nonunital double category of two-sided
isofibrations can be understood as a quotient of the “nonunital internal category”
(see Definition B.1.8) of ∞-cosmoi and cosmological functors

𝒦⤩ ×
𝒦
𝒦⤩ 𝒦⤩ 𝒦∘ l-cod

r-cod

where𝒦⤩ is the∞-cosmos of two-sided isofibrations and l-cod, r-cod∶ 𝒦⤩ →
𝒦 refer to the left and right codomain functors that map a two-sided isofibration
𝐴 𝑞 𝐸 𝑝 𝐵 to the base ∞-categories 𝐴 and 𝐵 of the span. Note these functors
combine to define a Grothendieck fibration cod∶ 𝒦⤩ → 𝒦 ×𝒦. The pullback

𝒦⤩ ×
𝒦
𝒦⤩ 𝒦⤩

𝒦⤩ 𝒦

⌟
l-cod

r-cod

is an ∞-cosmos (see Exercise 6.1.iii), namely the ∞-cosmos of horizontally
composable pairs of two-sided isofibrations 𝐴 𝑞 𝐸 𝑝 𝐵 𝑟 𝐹 𝑠 𝐶. The com-
position functor ∘∶ 𝒦⤩ ×𝒦𝒦⤩ → 𝒦⤩, which sends a horizontal composable
pair of two-sided isofibrations to a chosen composite span, is associative only up
to simplicial natural isomorphism, which accounts for the “pseudo-ness” in the
horizontal composition in the double category of two-sided isofibrations. The
(nonunital pseudo) double category of two-sided isofibrations can be understood
as the quotient of this structure obtained by replacing the ∞-cosmos 𝒦 by its
underlying category and replacing the fibers of cod∶ 𝒦⤩ → 𝒦 × 𝒦 by the
quotient 1-categories with the same objects but with hom-sets defined to be the
isomorphism classes of vertices in the sliced functor spaces.

Now any cosmological functor 𝐹∶ 𝒦 → ℒ induces cosmological functors

𝒦⤩ ×
𝒦
𝒦⤩ 𝒦⤩ 𝒦

ℒ⤩ ×
ℒ
ℒ⤩ ℒ⤩ ℒ

∘

𝐹 ≅

l-cod

r-cod
𝐹 𝐹

∘ l-cod

r-cod

that commute strictly with the codomain functors and up to isomorphism with
the composition functor. Thus, a cosmological functor induces a double functor
between the double categories of two-sided isofibrations that strictly preserves
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vertical composition of functors and squares and preserves horizontal composi-
tion of spans and squares up to coherent natural isomorphism.

It follows that a cosmological functor 𝐹∶ 𝒦 → ℒ induces a functor of virtual
double categories of modules 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) that preserves all of the
structure strictly, since the multicategorical composition of module maps is
derived from the strictly defined vertical composition of squares in the double
category of two-sided isofibrations.

Of crucial importance to its utility as a setting for formal category theory is
the fact that the virtual double category of modules is a virtual equipment,
which means that it satisfies the two further properties:

(i) For any module and pair of functors as displayed on the left, there exists
a restriction module and cartesian cell as displayed on the right

𝐴′ 𝐵′ 𝐴′ 𝐵′

𝐴 𝐵 𝐴 𝐵

𝑎 𝑏 ⇝ 𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸 𝐸

characterized by the universal property that any cell as displayed below-
left factors uniquely through 𝜌 as below-right:

𝑋 𝑌

𝐴 𝐵

𝑎𝑓

𝐸⃗

⇓ 𝑏𝑔

𝐸

=

𝑋 𝑌

𝐴′ 𝐵′

𝐴 𝐵

𝑓

𝐸⃗

∃!⇓ 𝑔

𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸

The restriction module is defined by pulling back a module𝐴 𝐸 𝐵 along
functors 𝑎∶ 𝐴′ → 𝐴 and 𝑏∶ 𝐵′ → 𝐵. The simplicial pullback defining
𝐸(𝑏, 𝑎) induces an equivalence of functor spaces

Fun𝑎𝑓×𝑏𝑔(𝐸1 ×⋯× 𝐸𝑛, 𝐸) ≃ Fun𝑓×𝑔(𝐸1 ×⋯× 𝐸𝑛, 𝐸(𝑏, 𝑎)),

which gives rise to the universal property (see Proposition 8.2.1).
(ii) Every object 𝐴 admits a unit module equipped with a nullary cocarte-

sian cell
𝐴 𝐴

𝐴 𝐴

⇓𝜄

Hom𝐴
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satisfying the universal property that any cell in the virtual double cat-
egory of modules whose horizontal source includes the object 𝐴, as
displayed on the left

𝑋 𝐴 𝑌

𝐵 𝐶

𝑓

𝐸⃗

⇓

𝐹⃗

𝑔

𝐺

=

𝑋 𝐴 𝐴 𝑌

𝑋 𝐴 𝐴 𝑌

𝐵 𝐶

𝐸⃗

⇓id ⇓𝜄

𝐹⃗

⇓id

𝑓

𝐸⃗ Hom𝐴

⇓∃!

𝐹⃗

𝑔

𝐺

factors uniquely through 𝜄 as displayed on the right. The unit module is
the arrow∞-category, given the notation𝐴 Hom𝐴 𝐴when considered as
a module from 𝐴 to 𝐴. The universal property follows from the Yoneda
lemma (see Proposition 8.2.4).

Lemma 11.1.1 extends to the virtual equipments of modules:

Proposition 11.1.2. A cosmological functor 𝐹∶ 𝒦 → ℒ induces a functor
𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) of virtual equipments, preserving all of the structure.

Proof In light of Lemma 11.1.1, it remains to consider unit and restriction
modules and cells. It follows immediately from the constructions given in the
proofs of Propositions 8.2.4 and 8.2.1 that these are preserved by cosmological
functors:

𝐴

𝐴 𝐴

Hom𝐴

𝜄

𝑝1 𝑝0

𝐸(𝑏, 𝑎) 𝐸

𝐴′ × 𝐵′ 𝐴 × 𝐵

⌟
𝜌

(𝑎,𝑏)

The functors and natural transformations in the homotopy 2-category 𝔥𝒦
embed into the virtual equipment 𝕄od(𝒦) in three ways. A functor 𝑓∶ 𝐴 → 𝐵
is represented as a vertical arrow and also by the pair of horizontal modules
𝐴 Hom𝐵(𝐵,𝑓) 𝐵 and 𝐵 Hom𝐵(𝑓,𝐵) 𝐴, which behave like adjoints is a sense suit-
able to a virtual double category: the module 𝐴 Hom𝐵(𝐵,𝑓) 𝐵 defines a com-
panion and the module 𝐵 Hom𝐵(𝑓,𝐵) 𝐴 defines a conjoint to the vertical arrow
𝑓∶ 𝐴 → 𝐵 (see Proposition 8.4.1, Theorem 8.4.4, and Corollary 8.4.6). These
embeddings extend to natural transformations by Proposition 8.4.11: for any par-
allel pair of functors there are natural bijections between natural transformations
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in the homotopy 2-category

𝐴 𝐵
𝑓

𝑔
⇓𝛼

and cells in the virtual equipment of modules:

𝐴 𝐵 𝐴 𝐴 𝐵 𝐴

𝐴 𝐵 𝐵 𝐵 𝐵 𝐴

⇓𝛼∗

Hom𝐵(𝐵,𝑓)

↭ ⇓𝛼⃖𝑔

Hom𝐴

𝑓 ↭

Hom𝐵(𝑔,𝐵)

⇓𝛼∗

Hom𝐵(𝐵,𝑔) Hom𝐵 Hom𝐵(𝑓,𝐵)

As remarked upon in Definition 8.4.12, as a consequence of these results,
there are three locally fully faithful homomorphisms from the homotopy 2-cate-
gory 𝔥𝒦 into the virtual equipment 𝕄od(𝒦). The vertical embedding described
by Propositions 8.3.18 sends the functors of 𝔥𝒦 to vertical arrows and the 2-cells
to unary cells whose sources and targets are given by unit modules. The other
two are the covariant and contravariant embeddings, respectively – embedding
the homotopy 2-category into the substructure1 of 𝕄od(𝒦) comprised only of
unary cells whose vertical boundaries are identities. The modules in the image
of the covariant embedding are the right representables and the modules in the
image of the contravariant embedding are the left representables. We leave it to
the reader to verify:

Lemma 11.1.3. The functor of virtual equipments 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ)
induced by a cosmological functor 𝐹∶ 𝒦 → ℒ commutes with the covariant,
contravariant, and vertical embeddings.

Proof Exercise 11.1.ii.

The theme of Chapter 9 could be summarized by saying that the virtual
equipment of modules in an∞-cosmos is a robust setting to develop the category
theory of ∞-categories. On the one hand, it contains the homotopy 2-category
of the ∞-cosmos, which is the setting for most of the results of Part I. It is
also a very natural home to study ∞-categorical properties that are somewhat
awkward to express in the homotopy 2-category. For instance, the weak 2-
universal property of comma ∞-categories is now encoded by a bijection in
Lemma 8.1.16: cells in the virtual equipment whose codomain is a comma
module correspond bijectively to natural transformations of a particular form in
the homotopy 2-category. Fibered equivalences of modules, as used to express
1 This substructure is very nearly a bicategory, with horizontal composites of unary cells

constructed as in Definition 8.3.16, except that compatible sequences of modules do not always
admit a horizontal composite.
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the universal properties of adjunctions, limits, and colimits in Chapter 4, are
now vertical isomorphisms in the virtual equipment between parallel modules.
The virtual equipment also cleanly encodes the universal property of pointwise
left and right Kan extensions, which are used to define (weighted) limits and
colimits of functors between ∞-categories.

We will show that when 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence, the
corresponding functor of virtual equipments is a biequivalence in a suitable
sense. In pursuit of this result, we first elaborate on Proposition 10.3.1(xiii).

Proposition 11.1.4. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ preserves,
reflects, and creates modules:

(i) An isofibration (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴 × 𝐵 is a module in 𝒦 if and only if
(𝐹𝑞, 𝐹𝑝)∶ 𝐹𝐸 ↠ 𝐹𝐴 × 𝐹𝐵 is a module in ℒ.

(ii) A pair of modules 𝐴 𝐸 𝐵 and 𝐴 𝐸′
𝐵 are equivalent in 𝒦 if and only

if the modules 𝐹𝐴 𝐹𝐸 𝐹𝐵 and 𝐹𝐴 𝐹𝐸′
𝐹𝐵 define equivalent modules

in ℒ.
(iii) For every module 𝐴′ 𝐺 𝐵′ in ℒ and every pair of ∞-categories 𝐴, 𝐵 in

𝒦 with specified equivalences 𝐹𝐴 ≃ 𝐴′ and 𝐹𝐵 ≃ 𝐵′ there is a module
𝐴 𝐸 𝐵 in 𝒦 so that 𝐹𝐸 is equivalent to 𝐺 over the pair of equivalences.

Proof The result of (i) was proven already in Proposition 10.3.1(xiii). The
result of (ii) follows from the fact that the induced cosmological biequivalence

𝐴\ℳ𝑜𝑑(𝒦)/𝐵 𝐹𝐴\ℳ𝑜𝑑(ℒ)/𝐹𝐵

𝒦/𝐴×𝐵 ℒ/𝐹𝐴×𝐹𝐵

∼𝐹

∼𝐹

preserves and reflects equivalences between objects.
For (iii), fix a pair of equivalences 𝐹𝐴 ≃ 𝐴′ and 𝐹𝐵 ≃ 𝐵′, defining an

equivalence 𝑒∶ 𝐴′ × 𝐵′ ∼ 𝐹𝐴 × 𝐹𝐵, and consider the composite biequivalence

𝒦/𝐴×𝐵 ℒ/𝐹𝐴×𝐹𝐵 ℒ/𝐴′×𝐵′

∼𝐹 ∼𝑒
∗

given by Propositions 10.2.2 and 10.2.4. Consider a module 𝐺 ↠ 𝐴′ × 𝐵′.
By essential surjectivity, there is an isofibration 𝐸 ↠ 𝐴 × 𝐵 whose image
under this cosmological functor – the pullback of 𝐹𝐸 ↠ 𝐹𝐴 × 𝐹𝐵 along
𝑒∶ 𝐴′ × 𝐵′ ∼ 𝐹𝐴 × 𝐹𝐵 – defines an isofibration (𝑞, 𝑝)∶ 𝐸′ ↠ 𝐴′ × 𝐵′ that is
equivalent to 𝐺 in ℒ/𝐴′×𝐵′. It remains only to argue that 𝐸 defines a module
from 𝐴 to 𝐵, which will follow, essentially as in the proof of (i), from the fact
that 𝐸′ ≃ 𝐺 defines a module from 𝐴′ to 𝐵′.

As the image 𝐸′ of 𝐸 is equivalent to a discrete object, Proposition 10.3.6(v)
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tells us 𝐸 is discrete in 𝒦/𝐴×𝐵. The final step is to argue that the desired
right adjoint to 𝐸 → Hom𝐵(𝐵, 𝑝) is present in the image of the biequivalence
𝒦/𝐴×𝐵

∼ ℒ/𝐴′×𝐵′, and apply Proposition 10.3.6(iii) to deduce its presence in
𝒦/𝐴×𝐵; a similar argument of course applies to the functor 𝐸 → Hom𝐴(𝑞, 𝐴).
To see this note that 𝐹∶ 𝒦/𝐴×𝐵

∼ ℒ/𝐹𝐴×𝐹𝐵 carries Hom𝐵(𝐵, 𝑝) ↠ 𝐴 × 𝐵 to
Hom𝐹𝐵(𝐹𝐵, 𝐹𝑝) ↠ 𝐹𝐴 × 𝐹𝐵. By (i), it suffices to argue that this functor has a
right adjoint over 𝐹𝐴×𝐹𝐵. Applying Proposition 10.3.6(iii) to the biequivalence
𝑒∗∶ ℒ/𝐹𝐴×𝐹𝐵

∼ ℒ/𝐴′×𝐵′, this follows from the fact that 𝐸′ → Hom𝐵′(𝐵′, 𝑝′)
has a right adjoint over 𝐴′ × 𝐵′.

Proposition 11.1.5. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence. Then a
module 𝐴 𝐸 𝐵 in𝒦 is right representable if and only if the module 𝐹𝐴 𝐹𝐸 𝐹𝐵
is right representable in ℒ, in which case, 𝐹 carries the representing functor
𝑓∶ 𝐴 → 𝐵 in 𝒦 to a representing functor 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 in ℒ.

Proof To say that 𝐴 𝐸 𝐵 is right representable in 𝒦 is to say that there exists
a functor 𝑓∶ 𝐴 → 𝐵 together with an equivalence 𝐸 ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑓) of
modules over 𝐵. If this is the case then any cosmological functor 𝐹∶ 𝒦 → ℒ
carries this to a fibered equivalence 𝐹𝐸 ≃𝐹𝐴×𝐹𝐵 Hom𝐹𝐵(𝐹𝐵, 𝐹𝑓), and hence
the module 𝐹𝐴 𝐹𝐸 𝐹𝐵 is right represented by 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 in ℒ.

Conversely, if 𝐹𝐴 𝐹𝐸 𝐹𝐵 is right represented by some functor 𝑔∶ 𝐹𝐴 → 𝐹𝐵,
then by Corollary 10.3.2(ii), there exists a functor 𝑓∶ 𝐴 → 𝐵 in 𝒦 so that 𝐹𝑓 ≅
𝑔 inℒ. By Proposition 8.4.11, naturally isomorphic functors represent equivalent
modules; that is, Hom𝐹𝐵(𝐹𝐵, 𝑔) ≃𝐹𝐴×𝐹𝐵 Hom𝐹𝐵(𝐹𝐵, 𝐹𝑓). Thus 𝐹𝐸 ≃𝐹𝐴×𝐹𝐵
Hom𝐹𝐵(𝐹𝐵, 𝐹𝑓). By Proposition 11.1.4(ii), this fibered equivalence lifts along
the cosmological functor 𝐹∶ 𝒦/𝐴×𝐵 → ℒ/𝐹𝐴×𝐹𝐵 to a fibered equivalence
𝐸 ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑓), which proves that 𝐸 is right represented by 𝑓∶ 𝐴 → 𝐵 in
𝒦.

We have seen that cosmological functors induce functors of virtual equip-
ments, preserving all the structure. When a cosmological functor is a biequiv-
alence, the induced functor of virtual equipments also creates structure and
reflects universal properties, on account of bijections we now enumerate.

Theorem 11.1.6 (model independence of ∞-category theory). If 𝐹∶ 𝒦 ∼ ℒ is
a cosmological biequivalence, then the induced functor of virtual equipments

𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ)

defines a biequivalence of virtual equipments: i.e., it is

(i) bijective on equivalence classes of objects;
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(ii) locally bijective on isomorphism classes of parallel vertical functors
extending the bijection of (i);

(iii) locally bijective on equivalence classes of parallel modules extending
the bijection of (ii);

(iv) locally bijective on cells extending the bijections of (i), (ii), and (iii).

Note further that if two ∞-cosmoi are connected by a finite zigzag of biequiv-
alences, then the bijections described in Theorem 11.1.6 compose.

Proof Properties (i) and (ii) are restatements of Corollary 10.3.2(i) and (ii).
The local bijection (iii) follows immediately from Proposition 11.1.4 and the

fact that for any pair of equivalences 𝑒∶ 𝐴′ × 𝐵′ ∼ 𝐹𝐴 × 𝐹𝐵, the composite
biequivalence

𝒦/𝐴×𝐵 ℒ/𝐹𝐴×𝐹𝐵 ℒ/𝐴′×𝐵′

∼𝐹 ∼𝑒
∗

preserves, reflects, and creates equivalences between objects, again by Corollary
10.3.2(i). Finally (iv) is an application of Corollary 10.3.2(ii) to this cosmological
biequivalence.

Theorem 11.1.6 subsumes many of the model independence statements es-
tablished thus far. For instance, the presence of an adjunctions between ∞-cate-
gories and the existence of limits and colimits inside an ∞-category can both
be encoded as an equivalence invariant proposition in the virtual equipment
of modules. The model independence of pointwise right and left extensions,
first proven in Proposition 10.3.8, can also be established as an elementary
corollary of Theorem 11.1.6, by an argument left to Exercise 11.1.iii. Along
the same lines, a biequivalence of virtual equipments preserves, reflects, and
creates composites of modules:

Lemma 11.1.7. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence.

(i) Then a compatible sequence of modules in 𝒦 admits a composite in
𝕄od(𝒦) if and only if the image of this sequence admits a composite in
𝕄od(ℒ).

(ii) Hence, cosmological biequivalences preserve and reflect exact squares.

Proof Via Definition 9.2.2, (ii) follows immediately from (i), so it remains
only to show that a biequivalence of virtual equipments 𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ)
preserves, reflects, and creates composites of modules. To see that an 𝑛-ary
composite cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 in 𝔥𝒦 is preserved, note that by Theorem
11.1.6(iv), any cell in 𝕄od(ℒ) is isomorphic to a cell in the image of 𝐹: first
replace the objects by equivalent ones in the image, then replace the vertical
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functors by naturally isomorphic ones in the image, then replace the modules by
equivalent ones in the image over the specified equivalences between their ∞-
categorical sources and targets, and then finally apply the local bijection (iv) to
replace the cell in 𝕄od(ℒ) by a unique cell in the image of 𝕄od(𝒦) by compos-
ing with this data. Now, by local full and faithfulness and essential surjectivity,
the universal property of the cocartesian cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 implies
that its image 𝐹𝜇∶ 𝐹𝐸1

⨰ ⋯ ⨰ 𝐹𝐸𝑛 ⇒ 𝐹𝐸 is again a cocartesian cell. Thus
composites 𝐸1 ⊗⋯⊗𝐸𝑛 ≃ 𝐸 are preserved by cosmological biequivalences.

Now if 𝐹𝜇∶ 𝐹𝐸1
⨰ ⋯ ⨰ 𝐹𝐸𝑛 ⇒ 𝐹𝐸 is a composite, since 𝐹∶ 𝕄od(𝒦) →

𝕄od(ℒ) is locally fully faithful, then 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 is also a com-

posite; thus composites 𝐹𝐸1 ⊗⋯⊗ 𝐹𝐸𝑛 ≃ 𝐹𝐸 are reflected by cosmological
biequivalences.

Finally, suppose the sequence 𝐹𝐸1
⨰ ⋯ ⨰ 𝐹𝐸𝑛 of modules in𝕄od(ℒ) admits

a composite 𝐹𝐴0
𝐺 𝐹𝐴𝑛; since the compatible sequence of modules is in the

image of 𝐹 the source and target ∞-categories of the composite module 𝐺
are as well. By Theorem 11.1.6(iii) there exists a module 𝐴0

𝐸 𝐴𝑛 in 𝔥𝒦 so
that 𝐹𝐸 ≃ 𝐺 as modules from 𝐹𝐴0 to 𝐹𝐴𝑛. The cocartesian cell 𝐹𝐸1

⨰ ⋯ ⨰

𝐹𝐸𝑛 ⇒ 𝐺 that witnesses the composition relation composes with the unary cell
of this equivalence to define a cocartesian cell 𝐹𝐸1

⨰ ⋯ ⨰ 𝐹𝐸𝑛 ⇒ 𝐹𝐸. By
Theorem 11.1.6(iv), this lifts to an 𝑛-ary cell 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 in 𝕄od(𝒦).
As we have just seen that cocartesianness of cells is reflected by biequivalences
𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ), this completes the proof that composites are created
by cosmological biequivalences.

The upshot of Theorem 11.1.6, and the reason that we consider this as a proof
of the model independence of ∞-category theory, is that any statement about
∞-categories that can be encoded in the “language of virtual equipments” is
invariant under change of model. Our experience gives us some informal under-
standing of this language. It includes statements that characterize an∞-category
up to equivalence (such as a comma or arrow ∞-category) or a functor up to
natural isomorphism (such as a left or right adjoint). Other model independent
statements are those which are expressible as an equivalence between modules
(such as results concerning the left or right representability of modules) or in
terms of the existence of a cell between modules with certain properties (such
as in the case of pointwise extensions). But as we shall discover, this model
independent language can be described much more formally by taking advantage
of a logical framework that we now introduce.
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Exercises
Exercise 11.1.i. Pick your favorite ∞-categorical notion and give an ad hoc
proof of its model independence. Compare this with a proof using Theorem
11.1.6.

Exercise 11.1.ii. Prove Lemma 11.1.3.

Exercise 11.1.iii. Use Theorem 11.1.6 to prove a module-theoretic proof that
cosmological biequivalences preserve, reflect, and create pointwise right and
left extensions, and compare this argument with the proof of Proposition 10.3.8.

Exercise 11.1.iv. Prove that cosmological biequivalences between cartesian
closed ∞-cosmoi preserve and reflect initial and final functors.

11.2 First-Order Logic with Dependent Sorts

There is an important caveat to the invariance of ∞-category theory under
change of model. After passing from a complete Segal space to its underlying
quasi-category and then back

𝒞𝒮𝒮 𝒬𝒞𝑎𝑡 𝒞𝒮𝒮∼(−)0 ∼nerve

the resulting complete Segal space is equivalent, but likely not equal to the
original one. But even in the classical strict case, not every statement about
1-categories is invariant under equivalence: “this category has a single object”
is a famous counterexample. Similarly, not every statement about 2-categories is
invariant under biequivalence. Consider, for instance, the statement that Propo-
sition 1.4.5 proves for homotopy 2-categories: “this 2-category has a 2-terminal
object.” If 𝐹∶ 𝒞 ∼ 𝒟 is a biequivalence between 2-categories and 𝒟 has a
2-terminal object 𝑡, then by essential surjectivity there is an 𝑠 ∈ 𝒞 so that 𝐹𝑠 ≃ 𝑡
in 𝒟. But the local equivalence property only supplies an equivalence

𝒞(𝑐, 𝑠) ≃ 𝒟(𝐹𝑐, 𝐹𝑠) ≃ 𝒟(𝐹𝑐, 𝑡) ≅ 1,

making 𝑠 into a biterminal object but not necessarily a 2-terminal object.
The Model Independence Theorem 11.1.6 supplies a biequivalence between

the virtual equipments of modules defined for any pair of biequivalent ∞-cos-
moi. Since the important statements about ∞-categories can be expressed as
properties of the virtual equipment, this biequivalence gives a mechanism by
which results proven with one model of ∞-categories can be transferred to
another model. But how can we be sure when a statement about ∞-categories
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that has been expressed in the language of virtual equipments is in fact invariant
under a biequivalence of virtual equipments?

This sort of problem has a long history. Blanc [19] and Freyd [43] character-
ize the properties of ordinary categories that are invariant under equivalence of
categories (see also Preller [92]). Makkai’s FOLDS was developed to extend
these results to higher categorical structures, such as 2-categories and bicat-
egories [82]. In future work, we hope to provide a complete characterization
of the statements about ∞-categories that are invariant under biequivalence of
∞-cosmoi,2 but our present aim is a result that is arguably more useful and much
more easily obtained. In this section, we sketch the key ideas behind Makkai’s
FOLDS framework; all the main concepts and results that follow are due to him,
though we have made a few minor modifications in the definitions and depart
somewhat in notation and terminology, taking inspiration from conversations
with Henry [52]. In §11.3, we apply this work to prove that any statement that
can be expressed in the language of virtual equipments – a specialization of
Makkai’s formal language to a signature we introduce in 11.3.2 – gives rise to a
model independent statement about ∞-categories.

Makkai’s FOLDS provides a formal language for writing mathematical sen-
tences whose variables are structured according to a given signature. As the
name suggests, sentences in FOLDS closely resemble the sentences of first-order
logic, with an important new ingredient. Each variable is typed to belong to a
specific sort and these sorts may depend on a finite family of compatibly defined
variables belonging to other sorts of lower degree. Universal and existential
quantification is defined only over the variables of a single sort at a time, and
the formula being quantified cannot contain any variables that depend on the
variable being quantified over. Finally, relations, such as equality, are only per-
mitted on the maximal sorts. For example, in the language of categories it is
permissible to write “for all objects 𝑥 and 𝑦 and for all arrows 𝑓 and 𝑔 from 𝑥 to
𝑦, 𝑓 equals 𝑔,” asserting that the category is a pre-order. But it is not permissible
to write “there exists an object 𝑥 so that for all arrows ℎ, ℎ equals 1𝑥” – asserting
that the category is the terminal category – since the equality relation ranges
over all arrows, rather than over the a single specified hom-set.

Before we introduce the FOLDS language, we must describe its signatures.

Definition 11.2.1. A simple inverse category is an inverse category ℐ (see
Definition C.1.16) with “finite fan-out,” meaning each object is the domain
2 Note our sought-for result is more similar to Makkai’s result about bicategories than Blanc and

Freyd’s result about 1-categories, since our concern has to do with invariance change of model
of higher categories rather than with invariance under equivalence between ∞-categories in a
given model.
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of only finitely many arrows. The objects of such categories can be assigned
canonical degrees by examining the graph of nonidentity arrows:

• objects which are not domains of any (nonidentity) arrow have degree 0,
while

• an object for which every (nonidentity) “outgoing arrow” has codomain of
degree 0 is assigned degree 1, and continuing inductively,

• any object is assigned the minimal degree that exceeds the degree of the
codomain of each of its (nonidentity) outgoing arrows.

This defines a canonical identity-reflecting functor deg∶ ℐ → 𝝎op.

An object in a simple inverse category is maximal if it is not the codomain
of any nonidentity arrow.

Definition 11.2.2. A FOLDS signature is a simple inverse category with a
distinguished (possibly empty) set of maximal objects called “relation symbols.”
The remaining objects are referred to as “kinds.”

Each nonidentity arrow in a FOLDS signature indicates some dependency
of a kind or relation symbol on other kinds, while commutativity conditions in
the category encode compatibility conditions among the dependencies. In what
follows, we indicate the relation symbols with a dot “ ̇ ”.

Example 11.2.3. The FOLDS signature ℐ𝒞𝑎𝑡 for categories has kinds for the
objects and arrows

̇𝐼 ̇𝑇 ̇𝐸

𝐴

𝑂

𝑖 ℓ 𝑟 𝑐 ℓ𝑟

𝑡𝑠

with the composition relations

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑟
𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑡 ⋅ 𝑟
𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟

In this instance, every maximal object is a relation symbol. The unary rela-
tion symbol ̇𝐼 encodes identity arrows, while ̇𝑇 witnesses ternary composition
relations, and ̇𝐸 expresses the equality of parallel arrows.
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Example 11.2.4. The FOLDS signature ℐ2-𝒞𝑎𝑡 for 2-categories has kinds for
the 0-, 1-, and 2-cells, as well as for identity 1-cells and composition of 1-cells.
In addition there are relation symbols for equality of parallel 2-cells, identity
2-cells, and vertical and horizontal composition of 2-cells:

̇𝑉 ̇𝐸

𝐻̇ 𝐶2 ̇𝐼2

𝑇 𝐶1 𝐼1

𝐶0

ℓ 𝑟 𝑐 ℓ𝑟

ℓ
𝑟
𝑐

𝑡𝑠 𝑡𝑠

𝑖

ℓ
𝑟
𝑐

𝑡𝑠

𝑖

The inverse category ℐ2-𝒞𝑎𝑡 has the relations from the underlying 1-category

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟,

globularity relations

𝑠 ⋅ 𝑠 = 𝑠 ⋅ 𝑡 𝑡 ⋅ 𝑠 = 𝑡 ⋅ 𝑡,

relations governing vertical composition, identities, and equality between paral-
lel 2-cells

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑟
𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑡 ⋅ 𝑟
𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟

plus relations relating horizontal composition to composition of 1-cells

𝑠 ⋅ ℓ = ℓ ⋅ 𝑠 𝑠 ⋅ 𝑟 = 𝑟 ⋅ 𝑠 𝑠 ⋅ 𝑐 = 𝑐 ⋅ 𝑠
𝑡 ⋅ ℓ = ℓ ⋅ 𝑡 𝑡 ⋅ 𝑟 = 𝑟 ⋅ 𝑡 𝑡 ⋅ 𝑐 = 𝑐 ⋅ 𝑡.

Definition 11.2.5. For a given FOLDS signature ℐ, an ℐ-structure is a functor
Μ∶ ℐ → 𝒮𝑒𝑡 so that for each relation symbol 𝑅̇ ∈ ℐ, the map induced by the
family of nonidentity arrows with domain 𝑅̇ is a monomorphism.3

Μ𝑅̇ ∏
𝑝∶ 𝑅̇

≠
→𝐾𝑝

Μ𝐾𝑝

3 An alternate, and arguably more useful, way to state this condition is to require that the
components of the matching maps of Observation 11.2.8 for the relation symbols are
monomorphisms (see Exercise 11.2.i.)
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Example 11.2.6. Consider the functor 𝐷𝒞𝑎𝑡∶ ℐ
op
𝒞𝑎𝑡 → 𝒞𝑎𝑡 whose image is

given by

𝟙 𝟛 𝟚

𝟚

𝟙

!
𝛿1𝛿0𝛿2

id

id

0 1

Mapping out of 𝐷𝒞𝑎𝑡 defines a functor Μ−∶ 𝒞𝑎𝑡 → 𝒮𝑒𝑡ℐ𝒞𝑎𝑡 whose image lies
in the full subcategory of ℐ𝒞𝑎𝑡-structures.4 For any small 1-category 𝐶, Μ𝐶𝑂
is the set of objects and Μ𝐶𝐴 is the set of arrows, with Μ𝐶 ̇𝐼, Μ𝐶 ̇𝑇, and Μ𝐶 ̇𝐸
encoding the relations that detect identity arrows, commutative triangles, and
equality between parallel arrows, respectively.

Example 11.2.7. Consider the functors 𝐸2-𝒞𝑎𝑡, 𝐷2-𝒞𝑎𝑡∶ ℐ
op
2-𝒞𝑎𝑡 → 2-𝒞𝑎𝑡 de-

fined by

Σ[𝟛] Σ[𝟚] Σ[𝟛] Σ[𝟚]

ℍ= Σ[𝟚] 𝟚 ℍ≅ Σ[𝟚] 𝟚

𝟛 𝟚 𝟙 𝕋 𝟚 𝔸

𝟙 𝟙

where

𝕋 ≔
•

• •
≅ , 𝔸 ≔ • ≅ , Σ𝟚 ≔ • •⇓ , Σ[𝟛] ≔ • •

⇓

⇓
,

ℍ= ≔ • • •⇓ ⇓ , and ℍ≅ ≔ • • •
≅

≅

⇓ ⇓

4 This follows because the latching maps (see Definition C.4.14) for the diagram 𝐷𝒞𝑎𝑡 at the
objects ̇𝐼, ̇𝑇, and 𝐸̇ each define epimorphisms, surjective functors of categories.
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are the free 2-categories generated by the depicted data. The diagram 𝐷2-𝒞𝑎𝑡
can be understood as a Reedy cofibrant replacement of 𝐸2-𝒞𝑎𝑡 relative to Lack’s
model structure for 2-categories (see Theorem C.5.14), in which the cofibrations
are the 2-functors that are injective on objects and 1-cells and the trivial fibrations
are the surjective equivalences [71].

Mapping out of 𝐸2-𝒞𝑎𝑡 or out of 𝐷2-𝒞𝑎𝑡 defines functors Ν−,Μ−∶ 2-𝒞𝑎𝑡 →
𝒮𝑒𝑡ℐ2-𝒞𝑎𝑡 whose images lie in the full subcategory of ℐ2-𝒞𝑎𝑡-structures.5 We refer
to Μ𝒞 as the “saturated” ℐ2-𝒞𝑎𝑡-structure and Ν𝒞 as the “naïve” ℐ2-𝒞𝑎𝑡-structure
associated to a 2-category 𝒞.

Observation 11.2.8 (the fibers of the matching map). For each ℐ-structure
Μ∶ ℐ → 𝒮𝑒𝑡 and object 𝐾 ∈ ℐ, either a kind or a relation symbol, there is a
canonical matching map

Μ𝐾 ∏
𝑝∶ 𝐾

≠
→𝐾𝑝

Μ𝐾𝑝

𝜕𝐾Μ ≔ lim
𝑝∶ 𝐾

≠
→𝐾𝑝

Μ𝐾𝑝
𝑚𝐾

whose codomain is the matching object defined in Observation C.1.18. Note
both the limit and the product are over nonidentity arrows with domain 𝐾, an
implicit condition in similar constructions that follow. We think of an ℐ-structure
Μ as a structured set in which each set Μ𝐾 is further partitioned into the fibers
of the matching map 𝑚𝑘∶ Μ𝐾 → 𝜕𝐾Μ.

We now describe Makkai’s “dependent sorts,” which are defined together
with their variables by mutual recursion. The variables can be introduced purely
syntactically, but we find it more intuitive to think of them as belonging to a
context, this being an ℐ-structure Γ in which the sets Γ𝐾 associated to each kind
𝐾 ∈ ℐ are disjoint.

Definition 11.2.9 (sorts and their variables). Fix a FOLDS signature ℐ and a
context Γ∶ ℐ → 𝒮𝑒𝑡.

• Each kind𝐾 of degree zero defines a sort, also denoted by𝐾, whose variables
are the elements of the set Γ𝐾. Write “𝑥 ∶ 𝐾” to mean that 𝑥 ∈ Γ𝐾, i.e., that
𝑥 is a variable belonging to the sort 𝐾 in context Γ.

• For each kind𝐾 of degree one, the matching map𝑚𝐾 takes the form displayed
below-right, where the product is over arrows in ℐ with domain 𝐾 and
codomain of degree zero. For any family of variables {𝑥𝑝 ∶ 𝐾𝑝}𝑝∶ 𝐾≠

→𝐾𝑝
,

5 Again, the latching maps for each diagram at all four of the relation symbols are epimorphisms.
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there is a sort 𝐾⟨𝑥𝑝⟩ whose variables are the elements of the fiber

Γ𝐾⟨𝑥𝑝⟩ Γ𝐾

1 ∏
𝑝∶ 𝐾

≠
→𝐾𝑝

Γ𝐾𝑝

⌟
𝑚𝐾

⟨𝑥𝑝⟩

and are said to depend on the variables 𝑥𝑝 ∶ 𝐾𝑝.
• For a kind 𝐾 of higher degree, a family of variables {𝑥𝑝 ∶ 𝐾𝑝⟨𝑥𝑞𝑝⟩}𝑝∶ 𝐾≠

→𝐾𝑝
is compatible if ⟨𝑥𝑝⟩ ∈ ∏

𝑝∶ 𝐾
≠
→𝐾𝑝

Γ𝐾𝑝 belongs to the matching object 𝜕𝐾Γ.

In practice, this means that the higher degree variables in the list depend on
the lower degree ones in the way prescribed by the dependency relations
in the FOLDS signature. For any compatible family of variables, there is
a sort 𝐾⟨𝑥𝑝⟩ whose variables are the elements of the fiber of the matching
map 𝑚𝐾 over ⟨𝑥𝑝⟩ ∈ 𝜕𝐾Γ.

Γ𝐾⟨𝑥𝑝⟩ Γ𝐾

1 𝜕𝐾Γ

⌟
𝑚𝐾

⟨𝑥𝑝⟩

By convention, the only variables that are explicitly listed in the specification
of a sort are those of highest degree; the lower-degree variables that these
variables depend on can be deduced from the sorts to which the highest degree
variables belong.

Example 11.2.10. For the FOLDS signature ℐ𝒞𝑎𝑡:

• There is a sort 𝑂.
• There is a sort 𝐴⟨𝑥, 𝑦⟩ for any pair of variables 𝑥, 𝑦 ∶ 𝑂.

Example 11.2.11. For the FOLDS signature ℐ2-𝒞𝑎𝑡:

• There is a sort 𝐶0.
• There is a sort 𝐶1⟨𝑥, 𝑦⟩ for any pair of variables 𝑥, 𝑦 ∶ 𝐶0.
• There is a sort 𝐶2⟨𝑥, 𝑦, 𝑓, 𝑔⟩ for any 𝑥, 𝑦 ∶ 𝐶0 and 𝑓, 𝑔 ∶ 𝐶1⟨𝑥, 𝑦⟩. This sort

is typically abbreviated by 𝐶2⟨𝑓, 𝑔⟩ with the implicit variables 𝑥, 𝑦 ∶ 𝐶0
inferable from the sort in which the variables 𝑓 and 𝑔 live.

Using the same abbreviations:

• There is a sort 𝐼1⟨𝑓⟩ for any 𝑥 ∶ 𝐶0 and 𝑓 ∶ 𝐶1⟨𝑥, 𝑥⟩.
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• There is a sort 𝑇⟨𝑓, 𝑔, ℎ⟩ for any 𝑥, 𝑦, 𝑧 ∶ 𝐶0 and 𝑓 ∶ 𝐶1⟨𝑥, 𝑦⟩, 𝑔 ∶ 𝐶1⟨𝑦, 𝑧⟩,
and ℎ ∶ 𝐶1(𝑥, 𝑧⟩.

We are now prepared to introduce the formulas and sentences of the formal
language associated to a FOLDS signature ℐ. These are defined by recursion
starting from the atomic formulae, which are governed by the relation symbols.
Again, we fix a FOLDS signature ℐ and a context Γ∶ ℐ → 𝒮𝑒𝑡.

Definition 11.2.12. An atomic formula in the logic with dependent sorts is
an entity of the form 𝑅̇⟨𝑥𝑝⟩, where 𝑅̇ is a relation symbol and the variables
{𝑥𝑝 ∶ 𝐾𝑝⟨𝑥𝑞𝑝⟩}𝑝∶ 𝑅̇ ≠

→𝐾𝑝
must define a compatible family, meaning that they

define an element ⟨𝑥𝑝⟩ ∈ 𝜕𝑅̇Γ.

Example 11.2.13. In the FOLDS signature ℐ𝒞𝑎𝑡, there is an atomic formula
̇𝑇⟨𝑥, 𝑦, 𝑧, 𝑓, 𝑔, ℎ⟩, abbreviated ̇𝑇⟨𝑓, 𝑔, ℎ⟩, for any 𝑥, 𝑦, 𝑧 ∶ 𝑂 and 𝑓 ∶ 𝐴⟨𝑥, 𝑦⟩, 𝑔 ∶

𝐴⟨𝑦, 𝑧⟩, and ℎ ∶ 𝐴⟨𝑥, 𝑧⟩, which can be thought of as asserting the commutativity
of the triangle formed by the arrows 𝑓, 𝑔, and ℎ.

Digression 11.2.14. A key idea in the FOLDS philosophy is that it should
express a logic with restricted equality. This is visible in the FOLDS signatures
ℐ𝒞𝑎𝑡 and ℐ2-𝒞𝑎𝑡, which include binary equality relation symbols on the kinds 𝐴
and 𝐶2, but no similar equality predicates on the kinds 𝑂, 𝐶0, and 𝐶1 on which
these depend. More precisely, the atomic formulae ̇𝐸⟨𝑓, 𝑔⟩ for ℐ𝒞𝑎𝑡 and ̇𝐸⟨𝛼, 𝛽⟩
for ℐ2-𝒞𝑎𝑡 may be used to express the equality of a parallel pair of arrows, since
compatibility requires 𝑓, 𝑔 ∶ 𝐴⟨𝑥, 𝑦⟩ for some 𝑥, 𝑦 ∶ 𝑂, or the equality of parallel
2-cells, since compatibility requires 𝛼, 𝛽 ∶ 𝐶1⟨𝑓, 𝑔⟩ for some 𝑓, 𝑔 ∶ 𝐶1⟨𝑥, 𝑦⟩
and some 𝑥, 𝑦 ∶ 𝑂. This sort of restriction is essential for the main theorem:
that the validity of a sentence expressed in the FOLDS language for a given
signature is invariant under suitably defined equivalences between structures.

In FOLDS, one can quantify either universally or existentially only over
the variables in a specified sort, provided the variables in the predicate under
consideration do not depend on the variable being quantified over.

Definition 11.2.15. Formulae 𝜙 and their sets of free variables var(𝜙) are
defined by simultaneous recursion:

• An atomic formula is a formula. The variables of 𝑅̇⟨𝑥𝑝⟩ are the 𝑥𝑝.

Compound formulae are defined inductively from other formulae via the follow-
ing procedures:

• ⊤,⊥ are formulae, with var(⊤) ≔ var(⊥) ≔ ∅.
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• Formulae may be combined using the sentential connectives ∧, ∨, and →, in
which case the variables combine by unions: e.g., var(𝜙∧𝜓) = var(𝜙)∪var𝜓.

• When 𝜙 is a formula and 𝑥 is a variable so that no variable in var(𝜙) depends
on 𝑥 – though 𝑥 ∈ var(𝜙) is permitted – then ∀𝑥𝜙 and ∃𝑥𝜙 are well-formed
formulas6 whose variables are given by the set

var(∀𝑥𝜙) ≔ var(∃𝑥𝜙) ≔ (var(𝜙) − {𝑥}) ∪ dep(𝑥)

formed by removing 𝑥 from the variables of 𝜙 if it appears and then adding
all the variables on which 𝑥 depends if they do not already appear.

When the set of variables in a formula is empty, we call the formula a sentence.

An evaluation of an ℐ-context Γ in an ℐ-structure Μ is given by a natural
transformation 𝛼∶ Γ → 𝑀, which defines an interpretation of its variables,
sending a variable 𝑥 ∶ 𝐾⟨𝑥𝑝⟩ to an element in the fiber of Μ𝐾 → 𝜕𝐾Μ over
⟨𝛼𝑥𝑝⟩. To interpret a particular formula 𝜙, it is not necessary to have specified an
interpretation of the full context Γ. It suffices to merely specify the interpretation
of its variables var(𝜙) ⊂ Γ, which may be regarded as a context in their own
right (see Exercise 11.2.ii).

Inductively in the complexity of a formula, we define what it means for an
ℐ-structure Μ to satisfy a formula 𝜙 under a given interpretation of its variables
𝛼∶ var(𝜙) → 𝑀, a property we denote by Μ ⊧ 𝜙[𝛼].

Definition 11.2.16. An ℐ-structure Μ satisfies an atomic formula 𝑅̇⟨𝑥𝑝⟩ under
an interpretation 𝛼 if and only if the tuple ⟨𝛼𝑥𝑝⟩ ∈ ∏𝑝∶ 𝑅̇→𝐾𝑝

Μ𝐾𝑝 lies in the
subset Μ𝑅̇, in which case one writes Μ ⊧ 𝑅̇[𝛼].

The sentences ⊤ and ⊥ have no variables so their semantics are independent
of interpretation. Any ℐ-structure satisfies ⊤ and no ℐ-structure satisfies ⊥.

Definition 11.2.17. A ℐ-structure Μ satisfies compound formulas built from 𝜙
and 𝜓 under an interpretation 𝛼∶ var(𝜙) ∪ var(𝜓) → 𝑀 according to the rules:

• Μ ⊧ (𝜙 ∧ 𝜓)[𝛼] if and only if Μ ⊧ 𝜙[𝛼] and Μ ⊧ 𝜓[𝛼]
• Μ ⊧ (𝜙 ∨ 𝜓)[𝛼] if and only if Μ ⊧ 𝜙[𝛼] or Μ ⊧ 𝜓[𝛼]
• Μ ⊧ (𝜙 → 𝜓)[𝛼] if and only if whenever Μ ⊧ 𝜙[𝛼] then also Μ ⊧ 𝜓[𝛼].

Definition 11.2.18. Consider a formula ∀𝑥𝜙 where 𝑥 ∶ 𝐾⟨𝑥𝑝⟩ together with
an interpretation

𝛼∶ var(∀𝑥𝜙) → 𝑀
6 As we demonstrate in examples, the full syntax requires that each quantified variable is declared

with its sort, which expresses the range of the quantification.



11.2 First-Order Logic with Dependent Sorts 441

in an ℐ-structureΜ; note that𝑥 ∉ var(∀𝑥𝜙) so this does not give an interpretation
of the variable 𝑥 itself. We say that Μ satisfies ∀𝑥𝜙 under the interpretation
𝛼 if for all 𝑎 in the fiber of Μ𝐾 → 𝜕𝐾Μ over ⟨𝛼𝑥𝑝⟩, Μ ⊧ 𝜙(𝑎/𝑥)[𝛼]. That is,
Μ ⊧ ∀𝑥𝜙[𝛼] if any 𝑎 with appropriate dependencies can be substituted for 𝑥 in
the interpretation of 𝜙 to yield a formula that Μ satisfies.

Similarly Μ satisfies ∃𝑥𝜙 under the interpretation 𝛼 if there is some 𝑎 in
the fiber of Μ𝐾 → 𝜕𝐾Μ over ⟨𝛼𝑥𝑝⟩, so that Μ ⊧ 𝜙(𝑎/𝑥)[𝛼]. That is, Μ ⊧
∃𝑥𝜙[𝛼] if some 𝑎 with appropriate dependencies can be substituted for 𝑥 in the
interpretation of 𝜙 to yield a formula that Μ satisfies.

Example 11.2.19. In the language for ℐ𝒞𝑎𝑡, in the context given by 𝑥, 𝑦 ∶ 𝑂,
the formula

∃𝑓 ∶ 𝐴⟨𝑥, 𝑦⟩, ∃𝑔 ∶ 𝐴⟨𝑦, 𝑥⟩, ∀1𝑥 ∶ 𝐴⟨𝑥, 𝑥⟩, ∀1𝑦 ∶ 𝐴⟨𝑦, 𝑦⟩,
( ̇𝐼⟨1𝑥⟩ ∧ ̇𝐼⟨1𝑦⟩)→( ̇𝑇⟨𝑓, 𝑔, 1𝑥⟩ ∧ ̇𝑇⟨𝑔, 𝑓, 1𝑦⟩)

asserts the existence of an isomorphism between two objects specified by an
interpretation.

Example 11.2.20. Modulo a change in notation, there is a similar sentence in
the language for ℐ2-𝒞𝑎𝑡 in the context given by 𝑥, 𝑦 ∶ 𝐶0:

∃𝑓 ∶ 𝐶1⟨𝑥, 𝑦⟩, ∃𝑔 ∶ 𝐶1⟨𝑦, 𝑥⟩, ∀1𝑥 ∶ 𝐶1⟨𝑥, 𝑥⟩, ∀1𝑦 ∶ 𝐶1⟨𝑦, 𝑦⟩,
∀𝜇 ∶ 𝐼1⟨1𝑥⟩, ∀𝜈 ∶ 𝐼1⟨1𝑦⟩, ∃𝛼 ∶ 𝑇⟨𝑓, 𝑔, 1𝑥⟩ ∧ ∃𝛽 ∶ 𝑇⟨𝑔, 𝑓, 1𝑦⟩

where “∃𝛼 ∶ 𝑇⟨𝑓, 𝑔, 1𝑥⟩” is shorthand for the formula “∃𝛼 ∶ 𝑇⟨𝑓, 𝑔, 1𝑥⟩.⊤.”
In the naïve ℐ2-𝒞𝑎𝑡-structureΝ𝒞 associated to a 2-category𝒞, the interpretation

again gives an isomorphism between the specified objects, but in the saturated
ℐ2-𝒞𝑎𝑡-structure Μ𝒞 defined in Example 11.2.7, the interpretation now gives an
equivalence. By the construction of Example 11.2.27, formulae in the language
of 2-categories that are interpreted in the ℐ2-𝒞𝑎𝑡-structures Μ𝒞 are invariant
under biequivalence of 2-categories, though this result does not necessarily hold
when they are interpreted in the naïve ℐ2-𝒞𝑎𝑡-structures Ν𝒞 (see Exercise 11.2.vi
and Digression B.1.7).

We now give a criterion under which two ℐ-structures are guaranteed to satisfy
the same formulas.

Definition 11.2.21. A natural transformation 𝜌∶ Μ → Ν of ℐ-structures is
fiberwise surjective if for each 𝐾 ∈ ℐ, either a relation symbol or a kind, the
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map to the pullback

Μ𝐾 Ν𝐾
•

𝜕𝐾Μ 𝜕𝐾Ν

𝜌𝐾

𝑚𝐾 𝑚𝐾⌟

𝜕𝐾𝜌

(11.2.22)

in the “matching square” for 𝐾 is an epimorphism.

In the terminology of §C.5, the fiberwise surjective maps are exactly those
natural transformations that define Reedy epimorphisms, i.e., for which the
relative matching maps (11.2.22) are epimorphisms.

Lemma 11.2.23. Let 𝜌∶ Μ → Ν be fiberwise surjection between ℐ-structures.
Then for each relation symbol 𝑅̇, the matching square is a pullback:

Μ𝑅̇ Ν𝑅̇

𝜕𝑅̇Μ 𝜕𝑅̇Ν

𝑚𝑅̇

𝜌𝑅̇
⌟

𝑚𝑅̇

𝜕𝑅̇𝜌

Proof Since Μ and Ν are ℐ-structures, the matching maps for the relation
symbols of ℐ are monomorphisms (see Exercise 11.2.i). Thus, the induced map
to the pullback is a monomorphism and by the fiberwise surjectivity hypothesis
also an epimorphism. Thus, this map is an isomorphism in the category of sets,
and so the square is a pullback.

Recall the structures constructed in Examples 11.2.6 and 11.2.7.

Lemma 11.2.24.

(i) A surjective equivalence of categories 𝒞 ∼ 𝒟 induces a fiberwise
surjection Μ𝒞 ↠ Μ𝒟 of ℐ𝒞𝑎𝑡-structures.

(ii) A surjective biequivalence of 2-categories 𝒞 ∼ 𝒟 induces a fiberwise
surjection Μ𝒞 ↠ Μ𝒟 of ℐ2-𝒞𝑎𝑡-structures.

Proof The two statements are special cases of a more general result and thus
have a common proof [52]. On both 𝒞𝑎𝑡 and 2-𝒞𝑎𝑡 there is a (cofibration,
trivial fibration) weak factorization systems whose trivial fibrations are the
surjective bi/equivalences referred to in the statement. The structures are defined
by applying the hom bifunctors

(𝒞𝑎𝑡ℐ
op
𝒞𝑎𝑡)op × 𝒞𝑎𝑡 𝒮𝑒𝑡ℐ𝒞𝑎𝑡 (2-𝒞𝑎𝑡ℐ

op
2-𝒞𝑎𝑡)op × 2-𝒞𝑎𝑡 𝒮𝑒𝑡ℐ2-𝒞𝑎𝑡hom hom
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to diagrams 𝐷𝒞𝑎𝑡 and 𝐷2-𝒞𝑎𝑡 that are Reedy cofibrant. By Lemma C.2.11 and
Corollary C.5.16, these are right Leibniz bifunctors with respect to the Reedy
weak factorization systems built from any weak factorization system on 𝒞𝑎𝑡
and 2-𝒞𝑎𝑡 and the (monomorphism, epimorphism) weak factorization system
on 𝒮𝑒𝑡, since they are the right adjoints in a two-variable adjunction involv-
ing the (unenriched) weighted colimit bifunctor. Consequently, the functors
Μ−∶ 𝒞𝑎𝑡 → 𝒮𝑒𝑡ℐ𝒞𝑎𝑡 and Μ−∶ 2-𝒞𝑎𝑡 → 𝒮𝑒𝑡ℐ2-𝒞𝑎𝑡 carry trivial fibrations,
i.e., surjective bi/equivalences, to Reedy epimorphisms, i.e., fiberwise surjec-
tions.

Definition 11.2.25. Let ℐ be a FOLDS signature and let Γ∶ ℐ → 𝒮𝑒𝑡 be a
context with given interpretations 𝛼∶ Γ → Μ and 𝛽∶ Γ → Ν in ℐ-structures
Μ,Ν∶ ℐ → 𝒮𝑒𝑡. The ℐ-structures Μ and Ν are ℐ-equivalent in context Γ,
denoted Μ ≃Γ

ℐ Ν, just when there is a diagram of fiberwise surjections 𝜎 and 𝜌
between ℐ-structures under Γ

Γ

Μ Ν

Ρ

𝛼 𝛽

𝛾

𝜍 𝜌

The relation ℐ-equivalent in context Γ is manifestly reflexive and symmetric.
In fact, it is also transitive, as the reader may verify in Exercise 11.2.v.

Example 11.2.26. Consider an equivalence of categories 𝑓∶ 𝐶 ∼ 𝐷 and form
the iso-comma category of Definition 6.2.10 by the pullback.

𝐷 ⨰
𝐷
𝐶 𝐷𝕀

𝐷 × 𝐶 𝐷 × 𝐷

(𝑞1,𝑞0)
⌟

(𝑞1,𝑞0)

id×𝑓

Since 𝑓 is an equivalence of categories, the functors 𝐷 𝑞1 𝐷 ⨰
𝐷
𝐶 𝑞0 𝐶 are

surjective equivalences. It follows from Lemma 11.2.24 that the corresponding
natural transformations between the naïve ℐ𝒞𝑎𝑡-structures of Example 11.2.6
are fiberwise surjections

Μ𝐷⨰
𝐷
𝐶

Μ𝐶 Μ𝐷

𝑞0 𝑞1

defining an ℐ𝒞𝑎𝑡-equivalence between Μ𝐶 and Μ𝐷.
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Example 11.2.27. Consider a biequivalence of 2-categories 𝐹∶ 𝒞 → 𝒟 and
form the pseudo-comma 2-category 𝒫 whose

• objects are triples (𝑥 ∈ 𝒞, 𝑥′ ∈ 𝒟, 𝑎∶ 𝐹𝑥 ∼ 𝑥′ ∈ 𝒟)with 𝑎 an equivalence
in 𝒟,

• 1-cells (𝑥, 𝑥′, 𝑎) → (𝑦, 𝑦′, 𝑏) are triples

⎛
⎜
⎜
⎜
⎝

𝑥

𝑦
𝑓 ∈ 𝒞,

𝑥′

𝑦′
𝑓′ ∈ 𝒟,

𝐹𝑥 𝑥′

𝐹𝑦 𝑦′

∼𝑎

𝐹𝑓 ≅𝛼 𝑓′

∼
𝑏

∈ 𝒟

⎞
⎟
⎟
⎟
⎠

• 2-cells (𝑓, 𝑓′, 𝛼) ⇒ (𝑔, 𝑔′, 𝛽) are given by a pair (𝛾∶ 𝑓 ⇒ 𝑔 ∈ 𝒞, 𝛿∶ 𝑓′ ⇒
𝑔′ ∈ 𝒟) so that

𝐹𝑥 𝑥′ 𝐹𝑥 𝑥′

𝐹𝑦 𝑦′ 𝐹𝑦 𝑦′

𝐹𝑓 𝐹𝑔𝐹𝛾
⇒

∼𝑎

≅𝛽 𝑔′ = 𝐹𝑓 ≅𝛼

∼𝑎

𝑓′ 𝑔′𝛿
⇒

∼
𝑏

∼
𝑏

The evident projections 𝒞 ← 𝒫 → 𝒟 define surjective biequivalences – 2-func-
tors that are surjective on objects, full on 1-cells, and fully faithful on 2-cells –
which by Lemma 11.2.24 induce fiberwise surjective natural transformations
between the saturated ℐ2-𝒞𝑎𝑡-structures of Example 11.2.7 defining an ℐ2-𝒞𝑎𝑡-
equivalence

Μ𝒫

Μ𝒞 Μ𝒟

𝜍 𝜌

Both of these constructions can be understood as instances of the Brown
factorization C.1.6 applied in the folk model structures on 𝒞𝑎𝑡 and on 2-𝒞𝑎𝑡.
Our interest in these notions is on account of the following theorem of Makkai:

Theorem 11.2.28. If Μ and Ν are ℐ-equivalent in a context Γ

Γ

Μ Ν

Ρ

𝛼 𝛽

𝛾

𝜍 𝜌

then Μ ⊧ 𝜙[𝛼] if and only if Ν ⊧ 𝜙[𝛽] for all formulae 𝜙 with var(𝜙) ⊂ Γ.
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Proof Since Ρ is itself an ℐ-structure with an interpretation 𝛾∶ Γ → Ρ of
the variables defined by the context, it suffices to show that for any fiberwise
surjection 𝜎∶ Ρ → Μ then Ρ and Μ satisfy the same formulas: Ρ ⊧ 𝜙[𝛾] if and
only if Μ ⊧ 𝜙[𝜎𝛾]. This is proven by an induction over the complexity of the
formula 𝜙.

For the base case, consider an atomic formula 𝑅̇⟨𝑥𝑝⟩ with an interpretation
𝑥𝑝 ↦ 𝛾𝑥𝑝 in Ρ. From the pullback of Lemma 11.2.23, ⟨𝛾𝑥𝑝⟩ ∈ 𝜕𝑅̇Ρ lies in Ρ𝑅̇ if
and only if ⟨𝜎𝛾𝑥𝑝⟩ ∈ 𝜕𝑅̇𝑀 lies in Μ𝑅̇. Thus Ρ ⊧ 𝑅̇[𝛾] if and only if Μ ⊧ 𝑅̇[𝜎𝛾].

Next consider the compound formulas 𝜙 ∧ 𝜓, 𝜙 ∨ 𝜓, and 𝜙 → 𝜓 built from 𝜙
and 𝜓. Under the inductive hypothesis, we may assume that Ρ ⊧ 𝜙[𝛾] if and only
ifΜ ⊧ 𝜙[𝜎𝛾] and similarly for 𝜓. Now it follows immediately that Ρ ⊧ (𝜙∧𝜓)[𝛾]
if and only if Μ ⊧ (𝜙 ∧ 𝜓)[𝜎𝛾] and similarly for compound formulas 𝜙 ∨ 𝜓 and
𝜙 → 𝜓.

Finally, consider a formula of the form ∀𝑥𝜙 where 𝑥 ∶ 𝐾⟨𝑥𝑝⟩. The interpreta-
tion 𝛾∶ var(∀𝑥𝜙) → Ρ defines an element in the matching object ⟨𝛾𝑥𝑝⟩ ∈ 𝜕𝐾Ρ.
The fiberwise surjectivity condition tells us that the map from Ρ𝐾 to the pullback
in the matching square for 𝐾 displayed below-right is a surjection:

Ρ𝐾⟨𝛾𝑥𝑝⟩ Ρ𝐾 Μ𝐾

Μ𝐾⟨𝜍𝛾𝑥𝑝⟩ •

1 𝜕𝐾Ρ 𝜕𝐾Μ

⌟
𝜍𝐾

𝑚𝐾
⌟ ⌟

⟨𝛾𝑥𝑝⟩ 𝜕𝐾𝜍

By composing pullbacks, it follows that we get a surjection from the fiber of
Ρ𝐾 → 𝜕𝐾Ρ over ⟨𝛾𝑥𝑝⟩ to the fiber of Μ𝐾 → 𝜕𝐾𝑀 over ⟨𝜎𝛾𝑥𝑝⟩. In particular,
if for all 𝑎 in the fiber of Ρ𝐾 → 𝜕𝐾Ρ, Ρ ⊧ 𝜙(𝑎/𝑥)[𝛾], then by the inductive
hypothesis Μ ⊧ 𝜙(𝜎𝑎/𝑥)[𝜎𝛾]. By fiberwise surjectivity, every element 𝑏 in the
fiber of Μ𝐾 → 𝜕𝐾Μ equals 𝜎𝑎 for some 𝑎 in the fiber of Ρ𝐾 → 𝜕𝐾Ρ, so this
tells us Ρ ⊧ (∀𝑥𝜙)[𝛾] if and only if Μ ⊧ (∀𝑥𝜙)[𝜎𝛾].

Similarly, for ∃𝑥𝜙, Ρ ⊧ (∃𝑥𝜙)[𝛾] if and only if there exists some 𝑎 in the
fiber so that Ρ ⊧ 𝜙(𝑎/𝑥)[𝛾]. But this holds if and only if Μ ⊧ 𝜙(𝜎𝑎/𝑥)[𝜎𝛾] and,
by naturality of 𝜎, 𝜎𝑎 lives in the appropriate fiber. So if Ρ ⊧ (∃𝑥𝜙)[𝛾] then
Μ ⊧ (∃𝑥𝜙)[𝜎𝛾]. Conversely if Μ ⊧ (∃𝑥𝜙)[𝜎𝛾], then there is some 𝑏 in the fiber
of Μ𝐾 ↠ 𝜕𝐾𝑀 over ⟨𝜎𝛾𝑥𝑝⟩ so that Μ ⊧ 𝜙(𝑏/𝑥)[𝜎𝛾]. By fiberwise surjectivity,
there is some 𝑎 in the fiber of Ρ𝐾 ↠ 𝜕𝐾Ρ over ⟨𝛾𝑥𝑝⟩ so that 𝜎𝑎 = 𝑏. By the
inductive hypothesis Ρ ⊧ 𝜙(𝑎/𝑥)[𝛾] if and only if Μ ⊧ 𝜙(𝑏/𝑥)[𝜎𝛾], so we see
that if Μ ⊧ (∃𝑥𝜙)[𝜎𝛾] then Ρ ⊧ (∃𝑥𝜙)[𝛾].

Remark 11.2.29. An observation of Henry [52] provides a nice perspective
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on Makkai’s Theorem 11.2.28. Henry proves that the collection of formulae
for a fixed FOLDS signature ℐ and define the initial functor from the category
of contexts for that signature to boolean algebras, with the property that the
restriction homomorphisms associated to display maps admit both left and right
adjoints (existential and universal quantification) satisfying the Beck–Chevalley
condition. By taking powersets, any ℐ-structure gives rise to a canonical functor
from the category of contexts to boolean algebras, and the unique map from the
initial object sends a formula to the subset of interpretations of its free variables
that satisfy the formula. A map 𝜌 of ℐ-structures defines a natural transformation
between the corresponding boolean algebra valued functors – contravariantly, by
reindexing – and this natural transformation respects the left and right adjoints
if and only if 𝜌 is fiberwise surjective. Thus, by initiality, we see that fiberwise
surjections respect the interpretation of formulas.

Exercises
Exercise 11.2.i. Let ℐ be a FOLDS signature with relation symbol 𝑅̇ ∈ ℐ and
let Μ∶ ℐ → 𝒮𝑒𝑡 be any functor. Prove that the map of Definition 11.2.5 is a
monomorphism if and only if the matching map of Observation C.1.18 is a
monomorphism:

Μ𝑅̇ ∏
𝑝∶ 𝑅̇

≠
→𝐾𝑝

Μ𝐾𝑝

𝜕𝑅̇Μ ≔ lim
𝑝∶ 𝑅̇

≠
→𝐾𝑝

Μ𝐾𝑝
𝑚𝑅̇

Exercise 11.2.ii.

(i) Show that if 𝜙 is any formula then var(𝜙) is closed under dependences:
if 𝑥 ∈ var(𝜙) then dep(𝑥) ⊂ var(𝜙).

(ii) Show that the variables var(𝜙) defined for a particular formula 𝜙 in
context Γ define a subcontext var(𝜙) ⊂ Γ.

Exercise 11.2.iii. An object 𝑠 in a 2-category 𝒞 is biterminal if for every 𝑐 ∈ 𝒞,
the hom-category 𝒞(𝑐, 𝑠) ≃ 𝟙 is a contractible groupoid. Write a sentence in the
language of 2-categories that asserts that the 2-category has a biterminal object.

Exercise 11.2.iv. Connect the result of Lemma 11.2.23 to the statement that
Μ ⊧ 𝑅̇[𝛼] if and only if Ν ⊧ 𝑅̇[𝜌𝛼] for some interpretation 𝛼∶ Γ → Μ.

Exercise 11.2.v. Verify that the relation defined by Definition 11.2.25 is tran-
sitive by composing the spans formed by the fiberwise surjections.
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Exercise 11.2.vi. Use a sentence or formula along the lines considered in
Example 11.2.20 and the result of Theorem 11.2.28 to show that there exist
biequivalent 2-categories 𝒞 and 𝒟 so that the naïve ℐ2-𝒞𝑎𝑡-structures Ν𝒞 and
Ν𝒟 are not ℐ2-𝒞𝑎𝑡-equivalent in an appropriate context.

11.3 A Language for Model Independent ∞-Category Theory

Our aim in this section is to apply Makkai’s Theorem 11.2.28 to prove that state-
ments about ∞-categories that are written in the language of virtual equipments,
defined for a FOLDS signature ℐ𝒱ℰ introduced in Definition 11.3.2, are invariant
under change-of-model. Most of the complexity in the simple inverse category
ℐ𝒱ℰ is present already in the FOLDS signature for virtual double categories,
which we introduce first.

Definition 11.3.1. The FOLDS signature ℐ𝑣𝒟𝑏𝑙𝒞𝑎𝑡 for virtual double categor-
ies has kinds for the objects, vertical arrows, horizontal modules, and 𝑛-ary cells
for each 𝑛 ≥ 0.

𝐶0 𝐶1 𝐶2 ⋯ 𝐶𝑛 ⋯

𝐴 𝑀

𝑂

𝑡𝑡

𝑟ℓ 𝑟ℓ 𝑡𝑠𝑟
ℓ

𝑠2
𝑡𝑠1

𝑡

𝑠1
𝑠𝑛
⋱

𝑡
𝑠 𝑡

𝑠

Each arrow and each module has a source object and target object. Each 𝑛-ary
cell has a left boundary arrow, a right boundary arrow, a target module, and 𝑛
source modules. The source and target objects of this boundary data must be
compatible in the way specified by the composition relations

𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑠1 𝑠 ⋅ 𝑟 = 𝑡 ⋅ 𝑠𝑛 𝑡 ⋅ 𝑠𝑘 = 𝑠 ⋅ 𝑠𝑘+1, 1 ≤ 𝑘 < 𝑛
𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑡 𝑡 ⋅ 𝑟 = 𝑡 ⋅ 𝑡

in the case 𝑛 ≥ 1.7

Two further kinds 𝐼𝐴 and 𝑇 parametrize identity vertical arrows and compo-
sition of vertical arrows with the composition relations from the signature for
7 For nullary cells, the relation 𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑟 replaces the relations involving the absent source

modules.
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1-categories:

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟

Each sort of 𝑛-ary cells supports a binary equality relation:

̇𝐸0 ̇𝐸1 ̇𝐸2 ̇𝐸𝑛

̇𝐼𝐶

𝐶0 𝐶1 𝐶2 ⋯ 𝐶𝑛

𝐼𝐴

𝑇 𝐴 𝑀

𝑂

𝑟ℓ 𝑟ℓ 𝑟ℓ 𝑟ℓ

𝑖
ℓ 𝑟

𝑡𝑡

𝑟ℓ 𝑟ℓ 𝑡𝑠𝑟
ℓ

𝑠2
𝑡𝑠1

𝑡

𝑠1
𝑠𝑛

⋱

𝑖

ℓ
𝑟
𝑐

𝑡
𝑠 𝑡

𝑠

satisfying equations that demand that equal cells must have the same boundary
type:

ℓ ⋅ ℓ = ℓ ⋅ 𝑟 𝑟 ⋅ ℓ = 𝑟 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑡 ⋅ 𝑟 𝑠𝑘 ⋅ ℓ = 𝑠𝑘 ⋅ 𝑟

In addition, in a virtual double category, each module has a specified unary
identity cell whose vertical sources and targets are identity arrows. The relation
symbol ̇𝐼𝐶 satisfies the composition relation

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 ℓ ⋅ 𝑖 = 𝑖 ⋅ ℓ 𝑟 ⋅ 𝑖 = 𝑖 ⋅ 𝑟

which require that the source and target modules coincide and the left and right
vertical arrows are identities.

Finally, for each partition 𝑛1 +⋯ + 𝑛𝑘 = 𝑛 there is a (𝑘 + 4)-ary relation
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symbols ̇𝑇𝑛1,…,𝑛𝑘 with the indicated dependencies:

̇𝑇𝑛1,…,𝑛𝑘

𝐶𝑛1 𝐶𝑛2 ⋯ 𝐶𝑛𝑘 𝐶𝑘 𝐶𝑛

𝑇

𝐴 𝑀

ℓ 𝑟

𝑠1 𝑠2 𝑠𝑘 𝑡
𝑐

⋱

ℓ 𝑟 ℓ 𝑟

⋱
𝑟ℓ

𝑡

𝑠1
𝑠𝑛𝑘⋱

ℓ𝑟
𝑡

𝑠1 𝑠𝑘⋯
ℓ 𝑟

𝑡𝑠1 𝑠𝑛⋱
ℓ𝑟𝑐

satisfying the composition relations

𝑠𝑖 ⋅ 𝑠𝑗 = 𝑠𝑛1+⋯+𝑛𝑗−1+𝑖 ⋅ 𝑐 ℓ ⋅ ℓ = ℓ ⋅ 𝑠1 ℓ ⋅ 𝑟 = 𝑟 ⋅ 𝑠𝑘 𝑟 ⋅ 𝑠𝑗 = ℓ ⋅ 𝑠𝑗+1
𝑡 ⋅ 𝑠𝑗 = 𝑠𝑗 ⋅ 𝑡 𝑟 ⋅ ℓ = ℓ ⋅ 𝑡 𝑟 ⋅ 𝑟 = 𝑟 ⋅ 𝑡
𝑡 ⋅ 𝑡 = 𝑡 ⋅ 𝑐 𝑐 ⋅ ℓ = ℓ ⋅ 𝑐 𝑐 ⋅ 𝑟 = 𝑟 ⋅ 𝑐

Here ̇𝑇𝑛1,…,𝑛𝑘 is the relation that witnesses that a given 𝑛-cell is a composite of
𝑘 specified source cells with arities 𝑛1,… , 𝑛𝑘 into a given target 𝑘-cell. Such
a composition depends also on the specification of left and right commutative
triangles of vertical arrows.

Definition 11.3.2. The FOLDS signature for a virtual equipment ℐ𝒱ℰ extends
the FOLDS signature for virtual double categories with two additional unary re-
lation symbols 𝑈̇ and 𝑅̇ identifying the nullary unit modules and unary restriction
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modules:

̇𝐸0 ̇𝐸1 ̇𝐸2 ̇𝐸𝑛

𝑈̇ ̇𝐼𝐶 𝑅̇

𝐶0 𝐶1 𝐶2 ⋯ 𝐶𝑛

𝐼𝐴

𝑇 𝐴 𝑀

𝑂

𝑟ℓ 𝑟ℓ 𝑟ℓ 𝑟ℓ

𝑜

𝜄
𝑖

ℓ 𝑟
𝜌

𝑡𝑡

𝑟ℓ 𝑟ℓ
𝑡𝑠𝑟

ℓ
𝑠2
𝑡𝑠1

𝑡

𝑠1
𝑠𝑛

⋱

𝑖

ℓ
𝑟
𝑐

𝑡
𝑠 𝑡

𝑠

The left and right vertical arrows of a unit module are identities on the same
object, as expressed by the composition relations

ℓ ⋅ 𝜄 = 𝑖 ⋅ 𝑜 = 𝑟 ⋅ 𝜄.

There are no composition relations imposed on the boundary of the unary
restriction cell. This data comprises the FOLDS signature for virtual equipments
a la Cruttwell and Shulman.

Any virtual equipment defines an ℐ𝒱ℰ-structure in a naïve manner, with the
functor ℐ𝒱ℰ → 𝒮𝑒𝑡 assigning each kind or relation symbol its intended interpre-
tation.8 But as was the case for 2-categories, the objects 𝐼𝐴 and 𝑇 are not relation
symbols in the FOLDS signature for virtual equipments, so the matching maps
associated to these objects need not be monomorphisms. This gives us the flexi-
bility to convert a virtual equipment into an ℐ𝒱ℰ-structure in a more “saturated”
manner. In fact, in analogy with Example 11.2.27 and Exercise 11.2.vi, it is
necessary to “saturate” the ℐ𝒱ℰ-structures associated to virtual equipments in
this manner to prove one of our desired results: that a biequivalence of virtual
equipments gives rise to an ℐ𝒱ℰ-equivalence, in the sense of Definition 11.2.25.
As in Example 11.2.7, it is possible to define the “saturated” ℐ𝒱ℰ-structure
associated to a virtual equipment by defining a corresponding contravariant
functor from ℐ𝒱ℰ to the category of virtual equipments and structure-preserving
functors, but in this case the virtual equipments that appear in the indexing dia-
8 As the virtual equipments of greatest interest are large, the ℐ𝒱ℰ-structures are large as well.
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gram are more complicated to describe, so instead we just describe the structure
directly.

Recall 11.3.3. Recall from Proposition 8.3.18 that any virtual equipment con-
tains a vertical 2-category whose objects are the objects of the virtual equipment,
whose arrows are the vertical arrows, and whose 2-cells are those unary cells

𝐴 𝐴

𝐵 𝐵

𝑔

Hom𝐴

⇓𝛼⃖ 𝑓

Hom𝐵

(11.3.4)

whose horizontal boundary arrows are given by the unit modules. Confusingly,
the “horizontal composition” of 2-cells is captured by the vertical composition of
unary cells in the virtual equipment, while the “vertical composition” of 2-cells
is captured by the horizontal composition operation defined by Definition 8.3.16.
In particular, we describe a unary cell in the vertical 2-category as “invertible”
when it is invertible in the usual sense for a 2-cell in a 2-category, that is for the
horizontal composition operation of unary cells between unit modules in the
virtual equipment; note that the vertical boundary 1-cells of an invertible cell in
the vertical 2-category need not be invertible in any sense.

In fact, the construction described in Definition 8.3.16 generalizes as follows.
Given any cell in the virtual equipment and pair of cells in the vertical 2-category
as displayed

𝐴 𝐴 𝐶 𝐶

𝐵 𝐵 𝐷 𝐷

Hom𝐴

𝑔 ⇓𝛼⃖ 𝑓

𝐸⃗

⇓𝛽 ℎ

Hom𝐶

⇓𝛾⃖ 𝑘

Hom𝐵 𝐹 Hom𝐷

(11.3.5)

there is a unique “horizontal composite” cell with boundary

𝐴 𝐶

𝐵 𝐷

𝑔

𝐸⃗

⇓𝛼⃖∗𝛽∗𝛾⃖ 𝑘

𝐹

(11.3.6)

satisfying the analogue of the pasting equality (8.3.17) defined relative to the
canonical composition cells of Lemma 8.3.10. In what follows, we abuse notation
and write an expression like (11.3.5) to denote the composite cell (11.3.6).

In the virtual equipment𝕄od(𝒦) of modules in an∞-cosmos𝒦, this vertical
2-category is isomorphic to the homotopy 2-category 𝔥𝒦. Since our intention is
to apply the following construction in that context, we borrow notation from the
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homotopy 2-category when it is simpler to read, for instance writing 𝛼∶ 𝑓 ⇒ 𝑔
for a unary cell (11.3.4) in the vertical 2-category whose right boundary is 𝑓
and whose left boundary is 𝑔.

Definition 11.3.7. For any virtual equipment ℂ, there is an ℐ𝒱ℰ-structure Μℂ
in which:

• The setsΜℂ𝑂,Μℂ𝐴,Μℂ𝑀, andΜℂ𝐶𝑛 for each 𝑛 ≥ 0 are given their naïve
interpretations as the sets of objects, vertical arrows, horizontal modules,
and 𝑛-ary cells of ℂ.

• The binary relations ̇𝐸𝑛 encode equality between parallel cells.
• The relation 𝑅̇ encodes all unary cells that are cartesian, satisfying the

universal property that characterizes the restriction cells.
• For any 𝑖 ∶ Μℂ𝐴⟨𝑋, 𝑋⟩, Μℂ𝐼𝐴⟨𝑖⟩ is the set of invertible cells 𝛼∶ id𝑋 ≅ 𝑖 in

the vertical 2-category.
• For any 𝑖 ∶ Μℂ𝐴⟨𝑋, 𝑋⟩, 𝛼 ∶ Μℂ𝐼𝐴⟨𝑖⟩, 𝑗 ∶ Μℂ𝐴⟨𝑌, 𝑌⟩, 𝛽∶ Μℂ𝐼𝐴⟨𝑗⟩,
𝐸 ∶ Μℂ𝑀⟨𝑋, 𝑌⟩, and 𝜈 ∶ Μℂ𝐶1⟨𝑖, 𝑗, 𝐸, 𝐸⟩, the set Μℂ ̇𝐼𝐶⟨𝜈⟩ is a singleton
if the identity cell id𝐸 associated to the module 𝐸 equals the horizontal
composite cell

𝑋 𝑋 𝑌 𝑌 𝑋 𝑌

𝑋 𝑋 𝑌 𝑌 𝑋 𝑌

Hom𝑋

⇓𝛼−1 𝑖

𝐸

⇓𝜈

Hom𝑌

𝑗 ⇓ ⃖𝛽 =

𝐸

⇓id𝐸

Hom𝑋 𝐸 Hom𝑌 𝐸

and is empty otherwise.
• For 𝑖 ∶ Μℂ𝐴⟨𝑋, 𝑋⟩, 𝛼 ∶ Μℂ𝐼𝐴⟨𝑖⟩, 𝐻 ∶ Μℂ𝑀⟨𝑋, 𝑋⟩, and 𝜃 ∶ Μℂ𝐶0⟨𝑖, 𝑖, 𝐻⟩,

the set Μℂ𝑈̇⟨𝑖, 𝜃⟩ is a singleton if the nullary composite cell

𝑋 𝑋 𝑋 𝑋

𝑋 𝑋 𝑋 𝑋

Hom𝑋

⇓𝛼−1 𝑖 ⇓𝜃

Hom𝑋

𝑖 ⇓𝛼⃖

Hom𝑋 𝐻 Hom𝑋

is cocartesian and is empty otherwise.
• For any 𝑓 ∶ Μℂ𝐴⟨𝑋, 𝑌⟩, 𝑔∶ Μℂ𝐴⟨𝑌, 𝑍⟩, and ℎ ∶ Μℂ𝐴⟨𝑋, 𝑍⟩, the set
Μℂ𝑇⟨𝑓, 𝑔, ℎ⟩ is the set of invertible cells 𝛾∶ 𝑔𝑓 ≅ ℎ in the vertical 2-
category.
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• For any 𝑛1 +⋯+ 𝑛𝑘 = 𝑛, cells

𝐴0 𝐴1 ⋯ 𝐴𝑘

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶 𝐷

𝑓0

𝐸⃗1

⇓𝛼1

𝐸⃗2

𝑓1 ⇓𝛼2

𝐸⃗𝑘

⋯ ⇓𝛼𝑘 𝑓𝑘

𝑔

𝐹1 𝐹2

⇓𝛽

𝐹𝑘

ℎ

𝐺

𝐴0 𝐴1 ⋯ 𝐴𝑘

𝐶 𝐷

𝑘

𝐸⃗1 𝐸⃗2

⇓𝜖

𝐸⃗𝑘

ℓ

𝐺

and any pair of isomorphisms 𝛾 ∶ 𝑇⟨𝑓0, 𝑔, 𝑘⟩ and 𝛿∶ 𝑇⟨𝑓𝑘, ℎ, ℓ⟩, the set
Μℂ ̇𝑇𝑛1,…,𝑛𝑘⟨𝛼1,… , 𝛼𝑘, 𝛽, 𝜖, 𝛾, 𝛿⟩ is a singleton if 𝜖 equals the composite

𝐴0 𝐴0 𝐴1 ⋯ 𝐴𝑘 𝐴𝑘

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶 𝐶 𝐷 𝐷

𝑘

Hom𝐴0

⇓𝛾

𝑓0

𝐸⃗1

⇓𝛼1

𝐸⃗2

𝑓1 ⇓𝛼2

𝐸⃗𝑘

⋯ ⇓𝛼𝑘 𝑓𝑘

Hom𝐴𝑘

⇓𝛿−1 ℓ

𝑔

𝐹1 𝐹2

⇓𝛽

𝐹𝑘

ℎ

Hom𝐶 𝐺 Hom𝐷

and is empty otherwise.

We write Μ𝒦∶ ℐ𝒱ℰ → 𝒮𝑒𝑡 for the ℐ𝒱ℰ-structure obtained by applying the
construction of Definition 11.3.7 to the virtual equipment of modules 𝕄od(𝒦).

Remark 11.3.8. Recall that a functor of virtual equipments 𝐹∶ ℂ → 𝔻 is a map
of virtual double categories that preserves all the structure, including unit and
restriction cells. It follows that application of 𝐹 directly defines the components
of a natural transformation 𝐹∶ Μℂ → Μ𝔻 between the corresponding ℐ𝒱ℰ-
structures. By Proposition 11.1.2, a cosmological functor 𝐹∶ 𝒦 → ℒ induces a
functor 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) of virtual equipments, which thus induces a
natural transformation 𝐹∶ Μ𝒦 → Μℒ between ℐ𝒱ℰ-structures.

Proposition 11.3.9. Consider a pair of∞-cosmoi connected by a cosmological
functor 𝐹∶ 𝒦 → ℒ.
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(i) If 𝐹∶ 𝒦 → ℒ is a cosmological biequivalence, then there exists a pair
of fiberwise surjections between the corresponding ℐ𝒱ℰ-structures:

Ρ

Μ𝒦 Μℒ

𝜍 𝜌

(ii) Moreover, if the induced map between ℐ𝒱ℰ-structures preserves the given
interpretations of a context Γ

Γ

Μ𝒦 Μℒ

𝛼 𝛽

𝐹

then the fiberwise surjections constructed in (i) defines an ℐ𝒱ℰ-equiva-
lence in context Γ:

Γ

Μ𝒦 Μℒ

Ρ

𝛼 𝛽

𝛾

𝜍 𝜌

Proof We apply the same strategy used in Examples 11.2.26 and 11.2.27, form-
ing a structure that we call the pseudo-comma virtual equipment ℙ associated to
the functor of virtual equipments 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ).9 The ℐ𝒱ℰ-structure
Ρ is then defined to be Μℙ and 𝜎 and 𝜌 are the evident projections. We then
argue that these maps are fiberwise surjective under the hypothesis that 𝐹 is a
biequivalence of virtual equipments.

The pseudo-comma virtual equipment ℙ associated to 𝐹∶ 𝕄od(𝒦) →
𝕄od(ℒ) has

• objects given by triples (𝐴 ∈ 𝒦,𝐴′ ∈ ℒ, 𝑎∶ 𝐹𝐴 ∼ 𝐴′ ∈ ℒ) where 𝑎 is an
equivalence,

• vertical arrows (𝐴, 𝐴′, 𝑎) → (𝐵, 𝐵′, 𝑏) given by triples

⎛
⎜
⎜
⎜
⎝

𝐴

𝐵

𝑓 ∈ 𝒦,
𝐴′

𝐵′
𝑓′ ∈ ℒ,

𝐹𝐴 𝐴′

𝐹𝐵 𝐵′

∼𝑎

𝐹𝑓 ≅𝛼 𝑓′

∼
𝑏

∈ 𝔥ℒ

⎞
⎟
⎟
⎟
⎠

9 A pseudo-comma virtual equipment can be defined for any functor (or more generally cospan of
functors) between virtual equipments in exactly the same manner, but where it simplifies
notation we refer also to structures in the ∞-cosmoi and their homotopy 2-categories.
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• modules (𝐴, 𝐴′, 𝑎) (𝐵, 𝐵′, 𝑏) given by triples

⎛
⎜
⎜
⎜
⎝

𝐴 𝐵𝐸 ∈ 𝒦, 𝐴′ 𝐵′𝐸′
∈ ℒ,

𝐹𝐴 𝐹𝐵

𝐴′ 𝐵′
𝑎

𝐹𝐸

⇓𝜖 𝑏

𝐸′

∈ 𝕄od(ℒ)

⎞
⎟
⎟
⎟
⎠

where 𝜖 is a cartesian cell,
• 𝑛-ary cells given by a pair of 𝑛-ary cells 𝜇 in 𝒦 and 𝜈 in ℒ so that the

composite cells formed from their boundary data are equal:

𝐹𝐴0 𝐹𝐴0 𝐹𝐴1 ⋯ 𝐹𝐴𝑛

𝐴′0 𝐹𝐵 𝐹𝐶

𝐵′ 𝐵′ 𝐶′

𝐹𝐴0 𝐹𝐴1 ⋯ 𝐹𝐴𝑛 𝐹𝐴𝑛

𝐴′0 𝐴′1 ⋯ 𝐴′𝑛 𝐹𝐶

𝐵′ 𝐶′ 𝐶′

𝑎0

𝐹Hom𝐴0

⇓𝛼⃖

𝐹𝐸1

𝐹𝑓 ⇓𝐹𝜇

𝐹𝐸2 𝐹𝐸𝑛

𝐹𝑔

𝑓′ ⇓𝜖𝑏

𝐹𝐺
𝑐

=

Hom𝐵′ 𝐺′

𝐹𝐸1

⇓𝜖𝑎0 ⇓𝜖𝑎1

𝐹𝐸2

⋯

𝐹𝐸𝑛

⇓𝜖 𝑎𝑛

𝐹Hom𝐴𝑛

⇓ ⃖𝛽

𝐹𝑔

⇓𝜈𝑓′

𝐸′
1 𝐸′

2 𝐸′
𝑛

𝑔′ 𝑐

𝐺′ Hom𝐶′

We argue that ℙ is a virtual double category. Note the objects and vertical
arrows form a category: indeed it is in the underlying 1-category of the pseudo
comma 2-category of Example 11.2.27 for the 2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ. Each
module (𝐸, 𝐸′, 𝜖)∶ (𝐴, 𝐴′, 𝑎) (𝐵, 𝐵′, 𝑏) has an identity cell whose com-
ponents are the identity cells id𝐸 ∈ 𝒦 and id𝐸′ ∈ ℒ. Composition of cells is
inherited from 𝕄od(𝒦) and 𝕄od(ℒ), though we leave it to the reader to verify
that the required pasting equation between the composite cells defined in this
manner by drawing a very large diagram. This makes ℙ into a virtual double
category.

In fact ℙ is a virtual equipment. Each object (𝐴, 𝐴′, 𝑎) admits a unit module



456 Model Independence

(Hom𝐴,Hom𝐴′,Hom𝑎) with a nullary cocartesian cell

(𝐴, 𝐴′, 𝑎) (𝐴, 𝐴′, 𝑎)

(𝐴, 𝐴′, 𝑎) (𝐴, 𝐴′, 𝑎)

(id𝐴,id𝐴′,id𝑎) ⇓(𝜄,𝜄) (id𝐴,id𝐴′,id𝑎)

(Hom𝐴,Hom𝐴′,Hom𝑎)

↭

𝐹𝐴 𝐹𝐴 𝐹𝐴 𝐹𝐴

𝐹𝐴 𝐹𝐴 𝐴′ 𝐴′

𝐴′ 𝐴′ 𝐴′ 𝐴′

⇓𝐹𝜄 𝑎 𝑎

𝑎

𝐹Hom𝐴

⇓Hom𝑎 𝑎

≔
⇓𝜄

Hom𝐴′ Hom𝐴′

whose vertical arrows are both taken to be the identity (id𝐴, id𝐴′, id𝑎) and whose
component cells in 𝒦 and ℒ are the unit cells for 𝐴 and 𝐴′. Since 𝐹 preserves
cocartesian cells, the universal property of 𝐹𝜄 may be used to define a cell Hom𝑎
satisfying the required pasting equality (compare with Definition 8.3.14). This
cell is cocartesian in ℙ since both components define cocartesian cells.

Finally, any diagram comprised of two vertical arrows and a horizontal module

(𝑋, 𝑋 ′, 𝑥) (𝑌 , 𝑌 ′, 𝑦)

(𝐴, 𝐴′, 𝑎) (𝐵, 𝐵′, 𝑏)

(𝑓,𝑓′,𝛼) (𝑔,𝑔′,𝛽)

(𝐸,𝐸′,𝜖)

can be completed to a unary cartesian cell

𝐹𝑋 𝐹𝑋 𝐹𝑌 𝐹𝑋 𝐹𝑌 𝐹𝑌

𝑋 ′ 𝐹𝐴 𝐹𝐵 𝑋 ′ 𝑌 ′ 𝐹𝐵

𝐴′ 𝐴′ 𝐵′ 𝐴′ 𝐵′ 𝐵′

𝑥

𝐹Hom𝑋

𝐹𝑓

𝐹𝐸(𝑔,𝑓)

⇓𝜌 𝐹𝑔 ⇓𝜁𝑥

𝐹𝐸(𝑔,𝑓)

𝑦

𝐹Hom𝑌

𝐹𝑔

𝑓′

⇓𝛼⃖

𝑎

𝐹𝐸

⇓𝜖 𝑏

=
𝑓′

𝐸′(𝑔′,𝑓′)

⇓𝜌′ 𝑔′

⇓ ⃖𝛽

𝑏

Hom𝐴′ 𝐸′ 𝐸′ Hom𝐵′

where 𝜌 and 𝜌′ are the restriction cells in 𝒦 and ℒ, respectively, and the cell 𝜁 is
defined by factoring the left-hand pasting diagram below through the cartesian
cell 𝜌′.

𝐹𝑋 𝐹𝑋 𝐹𝑌 𝐹𝑌 𝐹𝑋 𝐹𝑌

𝑋 ′ 𝐹𝐴 𝐹𝐵 𝑌 ′ 𝑋 ′ 𝑌 ′

𝐴′ 𝐴′ 𝐵′ 𝐵′ 𝐴′ 𝐵′

𝑥

𝐹Hom𝑋

𝐹𝑓

𝐹𝐸(𝑔,𝑓)

⇓𝜌 𝐹𝑔

𝐹Hom𝑌

𝑦 ∃!⇓𝜁𝑥

𝐹𝐸(𝑔,𝑓)

𝑦

𝑓′

⇓𝛼⃖

𝑎

𝐹𝐸

⇓𝜖 𝑏

⇓𝛽−1

𝑔′

=
𝑓′

𝐸′(𝑔′,𝑓′)

⇓𝜌′ 𝑔′

Hom𝐴′ 𝐸′ Hom𝐵′ 𝐸′

Since 𝜖, 𝐹𝜌, and 𝜌′ are cartesian cells in ℒ, 𝜁 is a cartesian cell as well, making
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(𝐸(𝑔, 𝑓), 𝐸′(𝑔′, 𝑓′), 𝜁) into a module inℙ. This makes the virtual double category
ℙ into a virtual equipment so that the evident forgetful functors to 𝕄od(𝒦) and
𝕄od(ℒ) define functors of virtual equipments.

By Remark 11.3.8 we obtain a diagram of ℐ𝒱ℰ-structures and natural trans-
formations

Μℙ

Μ𝒦 Μℒ

𝜍 𝜌

Finally, when 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) is a biequivalence of virtual equipments,
satisfying the properties enumerated in Theorem 11.1.6, the forgetful functors

𝕄od(𝒦) ℙ 𝕄od(ℒ)

are surjective on objects, full on vertical arrows, full on horizontal modules, and
fully faithful on cells, and reflect unit cells and restriction cells. It follows that
the maps 𝜎 and 𝜌 are fiberwise surjective.

Finally, if 𝐹∶ Μ𝒦 → Μℒ strictly preserves the interpretations of a context
Γ in 𝕄od(𝒦) and 𝕄od(ℒ), we claim that it is possible to simultaneously lift
these interpretations along 𝜎 and 𝜌 to an interpretation 𝛾∶ Γ → Ρ. This can
easily be verified inductively in the ℐ𝒱ℰ-structure Γ. For a variable 𝑥 ∶ 𝑂, if
𝛼(𝑥) = 𝐴 and 𝛽(𝑥) = 𝐹𝐴, then define 𝛾(𝑥) ≔ (𝐴, 𝐹𝐴, id𝐹𝐴). The definition of
𝛾 at higher-degree variables is similar, with the missing data chosen to be the
appropriate identities in ℒ.

Combining these results we obtain the desired corollary:

Corollary 11.3.10 (a language for model independent ∞-category theory).
Formulae in the language of virtual equipments are invariant under biequiva-
lence of ∞-cosmoi.

Proof Consider a formula 𝜙 in the language of virtual equipments with com-
patibly defined interpretations of its free variables, meaning that there is a
commutative diagram

var(𝜙)

Μ𝒦 Μℒ

𝛼 𝛽

𝐹

arising from the cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ and the ℐ𝒱ℰ-structures
proscribed by Definition 11.3.7. By Proposition 11.3.9, these ℐ𝒱ℰ-structures
are ℐ𝒱ℰ-equivalent in the context defined by the variables of 𝜙. By Theorem
11.2.28, Μ𝒦 and Μℒ then satisfy the same formulas.
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We conclude with some examples.

Example 11.3.11. In the context of a pair of objects 𝑎, 𝑏 ∶ 𝑂 and an arrow
𝑢 ∶ 𝐴⟨𝑎, 𝑏⟩, the formula

∃𝑓 ∶ 𝐴⟨𝑏, 𝑎⟩, ∀𝑖𝑎 ∶ 𝐴⟨𝑎, 𝑎⟩, ∀𝜔𝑎 ∶ 𝐼𝐴⟨𝑖𝑎⟩, ∀𝑢𝑎 ∶ 𝑀⟨𝑎, 𝑎⟩,
∀𝜄𝑎 ∶ 𝐶0⟨𝑖𝑎, 𝑖𝑎, 𝑢𝑎⟩, 𝑈̇⟨𝜔𝑎, 𝜄𝑎⟩,

∀𝑖𝑏 ∶ 𝐴⟨𝑏, 𝑏⟩, ∀𝜔𝑏 ∶ 𝐼𝐴⟨𝑖𝑏⟩, ∀𝑢𝑏 ∶ 𝑀⟨𝑏, 𝑏⟩, ∀𝜄𝑏 ∶ 𝐶0⟨𝑖𝑏, 𝑖𝑏, 𝑢𝑏⟩, 𝑈̇⟨𝜔𝑏, 𝜄𝑏⟩,
∃𝑚 ∶ 𝑀⟨𝑎, 𝑏⟩, ∃𝜌𝑓 ∶ 𝐶1⟨𝑖𝑎, 𝑓,𝑚, 𝑢𝑎⟩, ∃𝜌ᵆ ∶ 𝐶1⟨𝑢, 𝑖𝑏, 𝑚, 𝑢𝑏⟩, 𝑅̇⟨𝜌𝑓⟩ ∧ 𝑅̇⟨𝜌ᵆ⟩,

which may be paraphrased as “there is an arrow 𝑓 so that the covariant repre-
sentation of 𝑢 is equivalent to the contravariant representation of 𝑓,” asserts the
existence of a left adjoint to 𝑢.

Example 11.3.12. In the context of three objects 𝑎, 𝑏, 𝑐 ∶ 𝑂 and a span of
arrows 𝑘 ∶ 𝐴⟨𝑎, 𝑏⟩ and 𝑓 ∶ 𝐴⟨𝑎, 𝑐⟩, the formula

∃𝑟 ∶ 𝐴⟨𝑏, 𝑐⟩, ∀𝑖𝑎 ∶ 𝐴⟨𝑎, 𝑎⟩, ∀𝜔𝑎 ∶ 𝐼𝐴⟨𝑖𝑎⟩, ∀𝑖𝑏 ∶ 𝐴⟨𝑏, 𝑏⟩, ∀𝜔𝑏 ∶ 𝐼𝐴⟨𝑖𝑏⟩,
∀𝑖𝑐 ∶ 𝐴⟨𝑐, 𝑐⟩, ∀𝜔𝑐 ∶ 𝐼𝐴⟨𝑖𝑐⟩,

∀𝑢𝑏 ∶ 𝑀⟨𝑏, 𝑏⟩, ∀𝜄𝑏 ∶ 𝐶0⟨𝑖𝑏, 𝑖𝑏, 𝑢𝑏⟩, 𝑈̇⟨𝜔𝑏, 𝜄𝑏⟩,
∀𝑢𝑐 ∶ 𝑀⟨𝑐, 𝑐⟩, ∀𝜄𝑐 ∶ 𝐶0⟨𝑖𝑐, 𝑖𝑐, 𝑢𝑐⟩, 𝑈̇⟨𝜔𝑐, 𝜄𝑐⟩,
∀𝑘∗ ∶ 𝑀⟨𝑎, 𝑏⟩, ∀𝑓∗ ∶ 𝑀⟨𝑎, 𝑐⟩, ∀𝑟∗ ∶ 𝑀⟨𝑏, 𝑐⟩,

∀𝜌𝑘 ∶ 𝐶1⟨𝑘, 𝑖𝑏, 𝑘∗, 𝑢𝑏⟩, ∀𝜌𝑓 ∶ 𝐶1⟨𝑓, 𝑖𝑐, 𝑓∗, 𝑢𝑐⟩, ∀𝜌𝑟 ∶ 𝐶1⟨𝑟, 𝑖𝑐, 𝑟∗, 𝑢𝑐⟩,
𝑅̇⟨𝜌𝑘⟩ ∧ 𝑅̇⟨𝜌𝑓⟩ ∧ 𝑅̇⟨𝜌𝑟⟩,

∀𝜏𝑎 ∶ 𝑇⟨𝑖𝑎, 𝑖𝑎, 𝑖𝑎⟩, ∀𝜏𝑐 ∶ 𝑇⟨𝑖𝑐, 𝑖𝑐, 𝑖𝑐⟩, ∀ id𝑘∗ ∶ 𝐶1⟨𝑖𝑎, 𝑖𝑏, 𝑘∗, 𝑘∗⟩, ̇𝐼𝑐⟨𝜔𝑎, 𝜔𝑏, id𝑘∗⟩,
∃𝜈 ∶ 𝐶2⟨𝑖𝑎, 𝑖𝑐, 𝑘∗, 𝑟∗, 𝑓∗⟩,

∀𝑒 ∶ 𝑂, ∀𝑚 ∶ 𝑀⟨𝑏, 𝑒⟩, ∀𝑛 ∶ 𝑀⟨𝑒, 𝑐⟩, ∀𝛼 ∶ 𝐶3⟨𝑖𝑎, 𝑖𝑐, 𝑘∗, 𝑚, 𝑛, 𝑓∗⟩,
(∃𝜇 ∶ 𝐶2⟨𝑖𝑏, 𝑖𝑐, 𝑚, 𝑛, 𝑟∗⟩, ̇𝑇1,2⟨𝜏𝑎, 𝜏𝑐, id𝑘∗, 𝜇, 𝜈, 𝛼⟩) ∧ (∀𝜁, 𝜉 ∶ 𝐶2⟨𝑖𝑏, 𝑖𝑐, 𝑚, 𝑛, 𝑟∗⟩,

̇𝑇1,2⟨𝜏𝑎, 𝜏𝑐, id𝑘∗, 𝜁, 𝜈, 𝛼⟩ ∧ ̇𝑇1,2⟨𝜏𝑎, 𝜏𝑐, id𝑘∗, 𝜉, 𝜈, 𝛼⟩ → ̇𝐸2⟨𝜁, 𝜉⟩)

asserts the existence of a pointwise right extension 𝜈∶ 𝑟𝑘 ⇒ 𝑓.
Here we have taken advantage of a simplification provided in the virtual

equipment of modules. Recall from Theorem 9.3.3 that a natural transformation
𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a pointwise right extension if the corresponding binary cell,
also denoted 𝜈 in the formula above, defines a right extension in the virtual
equipment of modules. By Definition 9.1.2, this means that the binary cell 𝜈
must enjoy a unique factorization property for all cells whose target module is
the covariant representation of 𝑓 and whose source sequence of modules starts
from the covariant representation of 𝑘.
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In the above formula we do not quantify over a compatible sequence of
modules from “𝑏” to “𝑐” of arbitrary length, instead quantifying over a single
intermediate object “𝑒” and a pair of modules “𝑚 ∶ 𝑀⟨𝑏, 𝑒⟩” and “𝑛 ∶ 𝑀⟨𝑒, 𝑐⟩.”
We can make this simplification on account of Remark 8.3.12, which tells us
that any compatible sequence of modules 𝐸1

⨰ ⋯ ⨰ 𝐸ℓ in the source of a cell
can be replaced by a compatible sequence of two modules. Here the object “𝑒”
is the summit of the composite two-sided fibration formed by composing the
spans that encode the modules 𝐸1,… , 𝐸ℓ, while the modules “𝑚” and “𝑛” are,
respectively, the contravariant and covariant representable modules associated
to the legs of that composite span.

Special cases of this statement and its dual define limits and colimits of
diagrams of ∞-categories, as well as many other concepts.

Exercises
Exercise 11.3.i. Express the axioms for a virtual equipment in the language of
virtual equipments defined relative to the FOLDS signature ℐ𝒱ℰ. For instance,
the axiom that asserts that for every module and compatible pair of vertical
arrows there exists a unary restriction cell is expressed by the sentence:

∀𝑥, 𝑦, 𝑎, 𝑏, ∶ 𝑂, ∀𝑓 ∶ 𝐴⟨𝑥, 𝑎⟩, ∀𝑔 ∶ 𝐴⟨𝑦, 𝑏⟩, ∀𝑚 ∶ 𝑀⟨𝑎, 𝑏⟩,
∃𝑚(𝑔, 𝑓) ∶ 𝑀⟨𝑥, 𝑦⟩, ∃𝜌 ∶ 𝐶1⟨𝑓, 𝑔,𝑚(𝑔, 𝑓),𝑚⟩, 𝑅̇⟨𝜌⟩
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Applications of Model Independence

In this chapter, we establish some special properties of a certain class of ∞-cos-
moi we call ∞-cosmoi of (∞, 1)-categories, by which we mean ∞-cosmoi that
are biequivalent to the ∞-cosmos of quasi-categories. By Proposition 10.2.1 an
∞-cosmos 𝒦 is an ∞-cosmos of (∞, 1)-categories if and only if its underlying
quasi-category functor (−)0 ≔ Fun(1, −)∶ 𝒦 → 𝒬𝒞𝑎𝑡 is a biequivalence –
meaning that every quasi-category is equivalent to the underlying quasi-category
of an ∞-category in 𝒦 and that for any 𝐴, 𝐵 ∈ 𝒦 the map on functor spaces
defined by transposing the composition map in 𝒦

Fun(𝐴, 𝐵) Fun(𝐴0, 𝐵0) Fun(𝐴, 𝐵) × Fun(1, 𝐴) Fun(1, 𝐵)∼(−)0 ↭ ∘

is an equivalence of quasi-categories. A few examples of ∞-cosmoi of this form
are established in §E.2.

A secondary aim is to illustrate how the model independence theorem can be
used to combine synthetic and analytic techniques to prove results concerning any
family of biequivalent∞-cosmoi. In what follows we appeal to the explicit model
of (∞, 1)-categories as quasi-categories to supply analytic proofs of certain key
results – for instance, that a functor defines an equivalence of quasi-categories
just when it is fully faithful and essential surjective in a suitable sense. We then
explain how the model independence theorem can be used to transfer these
results to biequivalent ∞-cosmoi, even when we cannot translate the specific
proof used in the quasi-categorical case. We then apply some of our analytically
proven theorems to further develop the synthetic theory of ∞-cosmoi of (∞, 1)-
categories.

Many of the results in this chapter have been alluded to previously in this text
and indeed their proofs could have appeared earlier. The reason for the delay is
that in the presence of the results of Chapters 10 and 11 their conclusions apply
more broadly, to all ∞-cosmoi of (∞, 1)-categories, not just in the quasi-cate-

460
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gorical case. In particular, we discuss some special features of the ∞-cosmos
of quasi-categories, proving in particular that universal properties in this ∞-
cosmos are determined pointwise, again appealing to model independence to
generalize this result to other ∞-cosmoi of (∞, 1)-categories.

To warm up in §12.1, we define opposite (∞, 1)-categories and the ∞-group-
oid core of an (∞, 1)-category. In practice, these notions are easily accessible
in any model of choice, but our aim is to illustrate the general procedure for
transferring ∞-categorical structures between biequivalent ∞-cosmoi in a rela-
tively elementary setting. In §12.2, we establish a large suite of results which
combine to express the pointwise generation of various universal properties in an
∞-cosmos of (∞, 1)-categories. Finally, in §12.3, we cite a more sophisticated
result from the (∞, 1)-categorical literature concerning the exponentiability
of cartesian and cocartesian fibrations and use this to tie up a lose end from
Chapter 9: namely we reduce the existence of pointwise right and left extensions
to the presence of certain limits or colimits. Since the indexing shapes for these
limits and colimits vary with the elements in the domain of the pointwise ex-
tension, this result relies on the pointwise determination of universal properties
established in §12.2. Along the way we also extend the calculus of modules
in ∞-cosmoi of (∞, 1)-categories, showing that the right extensions and right
liftings of Definition 9.1.2 always exist, defining “homs” between modules to
complement their “tensor products.”

12.1 Opposite (∞, 1)-Categories and ∞-Groupoid Cores

The construction of the co-dual of an ∞-cosmos in Definition 1.2.25 makes
use of the construction of the opposite of a simplicial set. Recall that the op-
posite of a simplicial set 𝑋∶ 𝚫op → 𝒮𝑒𝑡 is obtained by precomposing with the
identity-on-objects involution (−)∘∶ 𝚫 → 𝚫 that reverses the ordering of the
elements in each ordinal [𝑛] ∈ 𝚫. Precomposition with (−)∘ defines a functor
(−)op∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 which carries a simplicial set 𝑋 to its opposite simplicial
set 𝑋op. We start by exploring the role played by this operation in the ∞-cosmos
of quasi-categories and then investigate a related operation on other ∞-cosmoi
of ∞-categories.

Lemma 12.1.1. If 𝑋 is a quasi-category, then 𝑋op is a quasi-category.

Proof The lifting problem below-left is solved by the lifting problem below-
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right

Λ𝑘[𝑛] 𝑋op Λ𝑛−𝑘[𝑛] 𝑋

Δ[𝑛] Δ[𝑛]
↭

Definition 12.1.2. For a quasi-category 𝐴, its opposite quasi-category 𝐴op

is the simplicial set defined by “reversing the ordering of the vertices in each
simplex.”

Lemma 12.1.3. The opposite quasi-category construction defines an involutive
cosmological biequivalence (−)op∶ 𝒬𝒞𝑎𝑡 ∼ 𝒬𝒞𝑎𝑡co that acts on functor spaces
via a natural isomorphism

Fun(𝐴, 𝐵) Fun(𝐴op, 𝐵op)op.≃

Proof The isomorphism Fun(𝐴, 𝐵) ≅ Fun(𝐴op, 𝐵op)op is best understood at
the level of simplices: the simplicial maps 𝐴×Δ[𝑛] → 𝐵 that define 𝑛-simplices
in the functor space Fun(𝐴, 𝐵) map via the isomorphism (−)op∶ 𝑠𝒮𝑒𝑡 ≃ 𝑠𝒮𝑒𝑡
to simplicial maps 𝐴op × Δ[𝑛]op → 𝐵op, and these define the 𝑛-simplices in the
functor space Fun(𝐴op, 𝐵op)op.

By an extension of the proof of Lemma 12.1.1, the opposite of an isofibration
is an isofibration. The conical limits in𝒬𝒞𝑎𝑡, being defined pointwise in 𝒮𝑒𝑡, are
preserved by restriction along the functor (−)∘∶ 𝚫 → 𝚫. Simplicial cotensors
are also preserved: for a quasi-category 𝐵 and a simplicial set 𝑋, (𝐵𝑋)op ≅
(𝐵op)𝑋op, which accords with the general construction of the cotensor of 𝐵op ∈
𝒬𝒞𝑎𝑡co with a simplicial set 𝑋 as noted in Definition 1.2.25. This proves that
(−)op∶ 𝒬𝒞𝑎𝑡 → 𝒬𝒞𝑎𝑡co defines a cosmological functor.

Lemma 12.1.3 extends the usual construction of the opposite of a 1-category
and the corresponding 2-functor (−)op∶ 𝒞𝑎𝑡 → 𝒞𝑎𝑡co (see Exercise B.2.iii).
On account of the explicitness of the construction given in Definition 12.1.2,
the opposite of a quasi-category is defined up to isomorphism. By contrast,
without any additional hypotheses, we are only be able to define the opposite of
an ∞-category in a biequivalent ∞-cosmos up to equivalence.1 While at first
this may seem undesirable, it is arguably morally correct to give the definition
in this manner, since from the model independent point of view, the ∞-category
itself ought only be considered up to equivalence.
1 In every model of (∞, 1)-categories that we are aware of, there is in fact a strictly defined

op-involution, and one can verify that these analytically defined opposite ∞-categories are
compatible with the standard change-of-model functors. However, the benefits of this additional
strictness might not be worth the effort in verifying the strict compatibility of the opposite
∞-category construction in each instance.
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Definition 12.1.4. Let 𝐴 be an ∞-category in an ∞-cosmos 𝒦 of (∞, 1)-cate-
gories. Define the opposite ∞-category 𝐴op to be any ∞-category in 𝒦 whose
underlying quasi-category is 𝐴op

0 .

We now argue that Definition 12.1.4 is well-defined up to equivalence:

Proposition 12.1.5. In an ∞-cosmos of (∞, 1)-categories 𝒦, any choices of
opposite ∞-categories assemble into a quasi-pseudofunctor and biequivalence
(−)op∶ 𝒦 ∼ 𝒦co. In particular, for any ∞-categories 𝐴, 𝐵 ∈ 𝒦, there is an
equivalence Fun(𝐴, 𝐵) ≃ Fun(𝐴op, 𝐵op)op that is quasi-pseudonatural in 𝐴 and
in 𝐵.

Proof The quasi-pseudofunctorial biequivalence is defined as the composite
of the zigzag of cosmological biequivalences

𝒦 𝒦co

𝒬𝒞𝑎𝑡 𝒬𝒞𝑎𝑡co

∼(−)0

∼
(−)op

≃ ∼ (−)0

≃
(−)op

We first choose opposite ∞-categories for every 𝐴 ∈ 𝒦 together with specified
adjoint equivalences (𝐴op)0 ≃ (𝐴0)op. Composing with these equivalences, the
biequivalence (−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡 provides local equivalences of quasi-categor-
ies:

Fun(𝐴, 𝐵) Fun(𝐴op, 𝐵op)op

Fun(𝐴0, 𝐵0) Fun((𝐴0)op, (𝐵0)op)op ≃ Fun((𝐴op)0, (𝐵op)0)op

∼

∼

≅ ∼

≃

which compose to define the desired equivalence in such a way that the square
commutes up to a homotopy coherent isomorphism. In order for these equiv-
alences to define the action on functor spaces of a quasi-pseudofunctor, we
follow the construction of Corollary 10.4.17 described in the proof of Propo-
sition 10.4.16 and choose adjoint equivalence inverses to the lower-left-hand
horizontal simplicial natural equivalence, applying Lemma 10.4.15. Lemma
10.4.12 then proves the quasi-pseudonaturality statement.

On account of the equivalence Fun(𝐴, 𝐵) ≃ Fun(𝐴op, 𝐵op)op, a functor be-
tween (∞, 1)-categories 𝑓∶ 𝐴 → 𝐵 has an opposite functor 𝑓op∶ 𝐴op → 𝐵op,
well-defined up to isomorphism once the domain and codomain ∞-categories
have been fixed. Similarly, a natural transformation between parallel functors
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has an opposite

𝐴 𝐵 ⇝ 𝐴op 𝐵op
𝑓

𝑔
⇓𝛼

𝑓op

𝑔op

⇑𝛼op

obtained by applying the pseudofunctor (−)op∶ 𝔥𝒦 ∼ 𝔥𝒦op that underlies the
quasi-pseudofunctor of Proposition 12.1.5. Furthermore:

Lemma 12.1.6. Let 𝒦 be an ∞-cosmos of (∞, 1)-categories.

(i) For any ∞-category 𝐴 and simplicial set 𝑈, (𝐴𝑈)op ≃ (𝐴op)𝑈op.
(ii) For any functors 𝑓∶ 𝐵 → 𝐴 and 𝑔∶ 𝐶 → 𝐴, there is an equivalence

Hom𝐴(𝑓, 𝑔)op ≃ Hom𝐴op(𝑔op, 𝑓op) over 𝐵op × 𝐶op.

Proof We have a quasi-pseudonatural equivalence:

Fun(𝑋, (𝐴𝑈)op) ≃ Fun(𝑋op, 𝐴𝑈)op by 12.1.5
≅ (Fun(𝑋op, 𝐴)𝑈)op by (1.2.7)
≅ (Fun(𝑋op, 𝐴)op)𝑈op by 12.1.3
≃ Fun(𝑋, 𝐴op)𝑈op by 12.1.5
≅ Fun(𝑋, (𝐴op)𝑈op) by (1.2.7).

Hence, by Lemma 10.4.14, (𝐴𝑈)op ≃ (𝐴op)𝑈op.
The second statement is a consequence of a more general result: that any

quasi-pseudofunctorial biequivalence, such as (−)op∶ 𝒦 ∼ 𝒦co established in
Proposition 12.1.5, preserves and reflects comma ∞-categories. Alternatively,
since the quasi-pseudofunctorial biequivalence under consideration here is
defined as a zigzag of cosmological biequivalences, the result follows from the
fact that cosmological biequivalences themselves preserve and reflect comma
∞-categories, as observed in Proposition 10.3.6(vi).

The next result provides another perspective on “appeals to duality” where
facts about colimits of diagrams in an ∞-cosmos 𝒦 were deduced from cor-
responding proofs about limits in 𝒦co, and similarly results about cartesian
fibrations were interpreted in 𝒦co to conclude the corresponding results about
cocartesian fibrations in 𝒦.

Proposition 12.1.7. Let 𝒦 be an ∞-cosmos of (∞, 1)-categories.

(i) A 𝐽-shaped family of diagrams in 𝐴 has a colimit if and only if the
corresponding 𝐽op-shaped family of diagrams in 𝐴op has a limit.
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(ii) A functor 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration if and only if the
functor 𝑝op∶ 𝐸op ↠ 𝐵op defines a cocartesian fibration.2

Note that if 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration, it is always possible to choose a
functor 𝑝op∶ 𝐸op ↠ 𝐵op that is again an isofibration, perhaps by changing the
choice of total space 𝐸op.

Proof By Lemma 12.1.6, a 𝐽-shaped family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 defines
a 𝐽op-shaped family of diagrams 𝑑op∶ 𝐷op → (𝐴op)𝐽op. By Proposition 4.3.1,
𝑑 admits a colimit in 𝐴 if and only if there is an equivalence of comma ∞-
categories

Hom𝐴𝐽(𝑑, Δ) ≃𝐴×𝐷 Hom𝐴(𝑐, 𝐴),

in which case the representing functor 𝑐∶ 𝐷 → 𝐴 defines the colimit functor.
By Lemma 12.1.6, such an equivalence exists if and only if there is an equiv-

alence
Hom(𝐴op)𝐽op(Δ, 𝑑op) ≃𝐷op×𝐴op Hom𝐴op(𝐴op, 𝑐op),

which, by Proposition 4.3.1, characterizes the limit functor 𝑐op∶ 𝐷op → 𝐴op.
The second statement is proven similarly. By Theorem 5.2.8, 𝑝∶ 𝐸 ↠ 𝐵

defines a cartesian fibration if and only if the induced functor 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠
Hom𝐵(𝐵, 𝑝) admits a right adjoint right inverse. By applying the quasi-pseudo-
functorial biequivalence (−)op∶ 𝒦 ∼ 𝒦co, this adjunction exists if and only if
the opposite functor admits a left adjoint right inverse. This functor need not be
isomorphic to 𝑖0 ⋔̂ 𝑝op∶ (𝐸op)𝟚 ↠ Hom𝐵op(𝑝op, 𝐵op), but by Lemma 12.1.6 it
is equivalent to it, which by the equivalence invariance of adjunctions is good
enough (see Exercise B.4.i). By the dual of Theorem 5.2.8, such an adjunction
exists if and only if 𝑝op∶ 𝐸op ↠ 𝐵op is a cocartesian fibration.

We now turn our attention to the construction of the Kan complex core of a
quasi-category and discuss its analogue in other ∞-cosmoi of (∞, 1)-categories.

Definition 12.1.8. The ∞-groupoid core of a quasi-category 𝐴 is the largest
Kan complex core𝐴 ⊂ 𝐴, which may be constructed as the simplicial subset
containing

• all of the vertices of 𝐴,
• only those edges that define isomorphisms in 𝐴 (see Definition 1.1.13),
• every higher simplex whose edges are all isomorphisms.

2 As noted in the introduction to Part III, the homotopy coherent diagram encoded by 𝑝op is not
the same as the homotopy coherent diagram encoded by 𝑝 – a classical observation of Bénabou
extended to the (∞, 1)-categorical context by Barwick, Glasman, and Nardin [7].
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Lemma 12.1.9. The ∞-groupoid core of a quasi-category is a Kan complex,
and indeed is the largest Kan complex contained in the quasi-category 𝐴.

Proof The inclusion core𝐴 ⊂ 𝐴 constructed in Definition 12.1.8 is full on
simplices of all dimensions except dimension one. Thus, to see that core𝐴
is a quasi-category, we need only argue that it admits extensions along the
horn Λ1[2] ↪ Δ[2]. By construction, a horn Λ1[2] → core𝐴 picks outs two
isomorphisms in 𝐴. The filler Δ[2] → 𝐴 witnesses a composition relation in the
homotopy category h(𝐴); thus the composite edge is also an isomorphism, and
by fullness this filler lifts to Δ[2] → core𝐴.

By construction h(core𝐴) is a groupoid; indeed, it is the maximal subgroupoid
contained in h𝐴. So by Corollary 1.1.15, core𝐴 is a Kan complex.

Finally, an intermediate simplicial subset core𝐴 ⊊ 𝐾 ⊂ 𝐴 would necessarily
contain an additional edge 𝑓∶ 𝑥 → 𝑦. If 𝐾 were a Kan complex, then it would
have to admit fillers for Λ0[2]- and Λ2[2]-horns whose 2nd or 0th faces, respec-
tively, were the 1-simplex 𝑓, and whose remaining face is degenerate. The fillers
would construct left and right inverses to 𝑓 in h(𝐴). Hence, 𝑓 is an isomorphism
in 𝐴 and already lives in core𝐴.

The inclusion of the ∞-cosmos of Kan complexes defines a cosmological
embedding 𝒦𝑎𝑛 𝒬𝒞𝑎𝑡 by Proposition 6.1.6. Functors of quasi-categories
preserve isomorphisms, so a functor 𝑓∶ 𝐴 → 𝐵 restricts to 𝑓∶ core𝐴 → core𝐵.
In this way the∞-groupoid core construction acts functorially on the underlying
category of 𝒬𝒞𝑎𝑡 and, as an unenriched functor, is right adjoint to the inclusion.
Note, however, as discussed in Example 1.3.7, that the core construction is not
simplicial, at least not with respect to the usual quasi-categorical enrichment of
𝒬𝒞𝑎𝑡. Indeed, a natural transformation between functors of quasi-categories
only restricts to ∞-groupoid cores if each of its components is invertible.

The ∞-groupoid core does, however, define a simplicial functor with respect
to a new enrichment that we now introduce. An ∞-cosmos is a type of (∞, 2)-
category since it is a category enriched over a model of (∞, 1)-categories. We
now introduce the (∞, 1)-categorical core of an ∞-cosmos. In the following
definition, note that since core(−)∶ 𝒬𝒞𝑎𝑡 → 𝒦𝑎𝑛 is an (unenriched) right
adjoint, it preserves products, so we may apply it to the functor spaces of a
quasi-categorically enriched category to construct a Kan complex enriched
subcategory (see Proposition A.7.3) that we now introduce.

Definition 12.1.10 ((∞, 1)-core of an ∞-cosmos). For an ∞-cosmos 𝒦, write
core∗𝒦 ⊂ 𝒦 for the subcategory with the same objects and with homs defined
to be the ∞-groupoid cores of the functor spaces of 𝒦. We refer to core∗𝒦 as
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the (∞, 1)-core of 𝒦 and think of it as being the core (∞, 1)-category inside
this (∞, 2)-category.

Remark 12.1.11. The (∞, 1)-categorical core is not an ∞-cosmos in the strict
sense axiomatized in Definition 1.2.1. It inherits its class of isofibrations and
the conical limits from the original ∞-cosmos, but simplicial cotensors exist
only weakly: the cotensor of an ∞-category 𝐴 in core∗𝒦 by a simplicial set 𝑈
is constructed by the cotensor in 𝒦 of 𝐴 by a Kan complex replacement 𝑈̃ of 𝑈,
defined by “freely inverting” its edges and adding fillers for horns. This results
in an equivalence core(Fun(𝑋, 𝐴))𝑈 ≃ core(Fun(𝑋, 𝐴𝑈̃)) in place of the usual
isomorphism. Alternatively, Exercise 12.1.iii suggests an alternate approach
to defining the enrichment of an ∞-cosmos in such a way that the (∞, 1)-core
remains an ∞-cosmos.

Lemma 12.1.12. The natural inclusion𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 factors through the inclu-
sion core∗𝒬𝒞𝑎𝑡 ⊂ 𝒬𝒞𝑎𝑡 and this latter functor admits a simplicially enriched
right adjoint left inverse, namely the functor that sends each quasi-category to
its ∞-groupoid core.

𝒦𝑎𝑛 core∗𝒬𝒞𝑎𝑡⊥
core

Proof If 𝐾 and 𝐿 are Kan complexes, then so is Fun(𝐾, 𝐿). Hence the natural
inclusion 𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 factors through the (∞, 1)-categorical core.

The right adjoint core∶ core∗𝒬𝒞𝑎𝑡 → 𝒬𝒞𝑎𝑡 acts on objects by the construc-
tion of Definition 12.1.8. To define its action on functor spaces, we must supply
a canonical map

core(Fun(𝐴, 𝐵)) → Fun(core𝐴, core𝐵),

for any pair of quasi-categories 𝐴 and 𝐵. By Corollary 1.1.22, the isomorphisms
in Fun(𝐴, 𝐵) ≅ 𝐵𝐴 are simplicial maps 𝛼∶ 𝐴 × Δ[1] → 𝐵 whose components
𝛼𝑎∶ Δ[1] → 𝐵, indexed by vertices 𝑎 of 𝐴, define isomorphisms in 𝐵. Com-
bining this observation with Definition 12.1.8, we see that an 𝑛-simplex in
core(Fun(𝐴, 𝐵)) is a simplicial map 𝜙∶ 𝐴 × Δ[𝑛] → 𝐵 with the property that
upon restriction to any vertex of 𝐴 and any edge of Δ[𝑛], the resulting edge
in 𝐵 is an isomorphism. When 𝐴 is restricted to its Kan complex core, the
edges of core𝐴 are also isomorphisms. It follows that 𝜙∶ core𝐴 × Δ[𝑛] → 𝐵
carries every edge of the domain to an isomorphism in 𝐵, and hence factors
through core𝐵 ↪ 𝐵, since this inclusion is full on the invertible edges.3 Thus
3 In the language of marked simplicial sets, a map in core(Fun(𝐴,𝐵)) is a marked map
𝐴♮ ×Δ[𝑛]♯ → 𝐵♮. Upon restriction along core𝐴♯ ↪ 𝐴♮, the domain core𝐴♯ ×Δ[𝑛]♯ is
maximally marked, and hence factors through the maximally marked core core𝐵♯ ↪ 𝐵♮ (see
§D.4).
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the 𝑛-simplex 𝜙 restricts to define an 𝑛-simplex 𝜙∶ core𝐴 × Δ[𝑛] → core𝐵.
This defines the canonical map.

Now for a Kan complex 𝐾 and quasi-category 𝐴, the simplicial natural iso-
morphism

core(Fun(𝐾, 𝐴)) ≅ Fun(𝐾, core𝐴)

is easily verified. The correspondence on vertices expresses the unenriched
adjunction, while the correspondence on higher simplices follows for the reason
just discussed and the isomorphism core(𝐾) ≅ 𝐾.

Corollary 12.1.13. If 𝐴 and 𝐵 are equivalent quasi-categories, then core𝐴
and core𝐵 are equivalent Kan complexes.

Proof An equivalence of quasi-categories is specified by a pair of 0-arrows
together a pair of invertible 1-arrows. As such it is contained in the (∞, 1)-
categorical core core∗𝒬𝒞𝑎𝑡 ↪ 𝒬𝒞𝑎𝑡 and preserved by the simplicial functor
core∶ core∗𝒬𝒞𝑎𝑡 → 𝒦𝑎𝑛.

The core of an ∞-category in a general ∞-cosmos of (∞, 1)-categories can
be defined in a similar manner to Definition 12.1.4, but this notion also has an
up-to-equivalence universal property that we prefer to use as the definition.

Definition 12.1.14. Let 𝒦 be an ∞-cosmos of (∞, 1)-categories and let 𝐴 be
an ∞-category in 𝒦. Its ∞-groupoid core is an ∞-category core𝐴 equipped
with a map 𝜄∶ core𝐴 → 𝐴 so that

• core𝐴 is a discrete ∞-category, meaning that Fun(𝑋, 𝐴) is a Kan complex
for all 𝑋

• if 𝐺 is a discrete ∞-category, then 𝜄 defines an equivalence

Fun(𝐺, core𝐴) core(Fun(𝐺, 𝐴))∼𝜄∘−

In practice, an ∞-cosmos of (∞, 1)-categories frequently comes with an
explicit core functor, but as in the case of opposites, one can also be defined by
transferring the core construction along a suitable change-of-model functor:

Proposition 12.1.15. In an ∞-cosmos of (∞, 1)-categories 𝒦, any choices
of ∞-groupoid cores assemble into a quasi-pseudofunctor core∶ core∗𝒦 →
𝒟𝑖𝑠𝑐(𝒦). In particular, for any ∞-categories 𝐴, 𝐵 ∈ 𝒦, there is an map
core(Fun(𝐴, 𝐵)) → Fun(core𝐴, core𝐵) that is quasi-pseudonatural in 𝐴 and in
𝐵 as objects of core∗𝒦.
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Proof The quasi-pseudofunctor is defined as the composite of the zigzag in
which the backwards map is a cosmological biequivalence by Corollary 10.3.7:

core∗𝒦 𝒟𝑖𝑠𝑐(𝒦)

core∗𝒬𝒞𝑎𝑡 𝒦𝑎𝑛 ≅ 𝒟𝑖𝑠𝑐(𝒬𝒞𝑎𝑡)

∼(−)0

core(−)

≃ ∼ (−)0

core(−)

We leave it to Exercise 12.1.iv to verify that 𝒦 ∼ ℒ descends to a simplicially
enriched biequivalence core∗𝒦 ∼ core∗ℒ. By Proposition 10.4.16 the inverse
to the cosmological biequivalence (−)0∶ 𝒟𝑖𝑠𝑐(𝒦) ∼ 𝒦𝑎𝑛, defines a quasi-
pseudofunctor and biequivalence 𝒦𝑎𝑛 ∼ 𝒟𝑖𝑠𝑐(𝒦), which composes with the
simplicial functor core((−)0)∶ core∗𝒦 → 𝒦𝑎𝑛 to define the quasi-pseudo-
functor core∶ core∗𝒦 → 𝒟𝑖𝑠𝑐(𝒦). By Lemma 10.4.12, the action on homs of
this quasi-pseudofunctor defines a quasi-pseudonatural transformation.

It remains only to verify that the action on objects of the quasi-pseudofunctor
satisfies the conditions of Definition 12.1.14. By construction, core𝐴 is a discrete
∞-category for any 𝐴 ∈ 𝒦. The map 𝜄∶ core𝐴 → 𝐴 is defined by whiskering
the corresponding inclusion of the Kan complex core of quasi-category with
the underlying quasi-category functor and its quasi-pseudofunctorial inverse:

core∗𝒦 core∗𝒬𝒞𝑎𝑡 core∗𝒬𝒞𝑎𝑡 core∗𝒦∼(−)0
core

⇓𝜄 ∼
(−)−10

Now if 𝐺 is a discrete∞-category, then 𝐺0 = Fun(1, 𝐺) is a Kan complex, so by
Lemma 12.1.12 𝜄𝐴0 ∘−∶ Fun(𝐺0, core(𝐴0)) ∼ core(Fun(𝐺0, 𝐴0)) is an equiva-
lence. By construction core𝐴 is defined so that (core𝐴)0 ≃ core(𝐴0). Note that
since (−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 is a biequivalence, this shows that the core of an ∞-
category in an ∞-cosmos of (∞, 1)-categories is well-defined up to equivalence.
Since the simplicial functor (−)0∶ core∗𝒦 → core∗𝒬𝒞𝑎𝑡 is an equivalence
on homs, the functor defined by post-composition with 𝜄𝐴 is equivalent to this
functor

Fun(𝐺, core𝐴) core(Fun(𝐺, 𝐴))

Fun(𝐺0, core𝐴0) core(Fun(𝐺0, 𝐴0))

𝜄𝐴∘−

∼(−)0 ≅ ∼ (−)0

∼
𝜄𝐴0∘−

Thus post-composition with 𝜄𝐴 induces the required equivalence Fun(𝐺, core𝐴)
≃ core(Fun(𝐺, 𝐴)), completing the proof.
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Exercises
Exercise 12.1.i. Prove that the homotopy category of the opposite of an ∞-
category 𝐴 is equivalent to the opposite of the homotopy category of 𝐴.

Exercise 12.1.ii. Prove that a functor between ∞-categories is an equivalence
if and only if its opposite functor is an equivalence.

Exercise 12.1.iii. In consultation with §D.4 and §D.5:

(i) Redefine the notion of an ∞-cosmos from Definition 1.2.1 to be a cat-
egory enriched over marked simplicial sets, whose functor spaces are
naturally marked quasi-categories.

(ii) Describe the construction of the ∞-groupoid core of a naturally marked
quasi-category and of the (∞, 1)-categorical core of an ∞-cosmos with
this enrichment.

(iii) Show that (∞, 1)-categorical cores are cotensored over simplicial sets,
although these cotensors are not preserved by the inclusion core∗𝒦 ↪
𝒦.

(iv) Show that the (∞, 1)-categorical core of an ∞-cosmos is an ∞-cosmos
in the new sense, although the functor core∗𝒦 ↪ 𝒦 is still not cosmo-
logical.

Exercise 12.1.iv. Let 𝐹∶ 𝒦 → ℒ be a cosmological functor. Prove that 𝐹
induces a simplicial functor 𝐹∶ core∗𝒦 → core∗ℒ that is a biequivalence if
the original functor is.

Exercise 12.1.v.

(i) Prove that any adjunction between quasi-categories

𝐵 𝐴
𝑓

⊥
ᵆ

restricts to define an adjoint equivalence between the full sub-quasi-
categories spanned by those elements 𝑏∶ 1 → 𝐵 and 𝑎∶ 1 → 𝐴 for
which the unit and counit components, respectively, are invertible.

(ii) State and prove an analogous result about adjoint equivalences derived
from adjunctions in an arbitrary ∞-cosmos of (∞, 1)-categories.

12.2 Pointwise Universal Properties

In an ∞-cosmos of (∞, 1)-categories, the terminal ∞-category 1 plays a special
role which can be summarized by the slogan that “universal properties are
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detected pointwise.” In this section, we collect together a number of results that
encapsulate this slogan, which are proven through a combination of synthetic
and analytic techniques.

For instance, Corollary 1.1.22 states and Corollary D.4.19 proves that a natu-

ral transformation between functors between quasi-categories 𝑋 𝐴
𝑓

𝑔
⇓𝛼

is a natural isomorphism if and only if it is a pointwise isomorphism, meaning

that each of its components 1 𝑋 𝐴𝑥
𝑓

𝑔
⇓𝛼 is invertible. Conse-

quently:

Lemma 12.2.1. In an ∞-cosmos of (∞, 1)-categories, a natural transformation
is a natural isomorphism if and only if it is a pointwise isomorphism.

Proof Any natural isomorphism is clearly a pointwise isomorphism. For the
converse, we deploy the 2-categorical biequivalence (−)0∶ 𝔥𝒦 ∼ 𝔥𝒬𝒞𝑎𝑡 of

Propositions 10.2.1 and 10.3.1. Suppose 𝑋 𝐴
𝑓

𝑔
⇓𝛼 is a pointwise natural

isomorphism in 𝔥𝒦 and consider the underlying natural transformation between

underlying quasi-categories 𝑋0 𝐴0

𝑓0

𝑔0

⇓𝛼0 . By construction, vertices 𝑥 of

𝑋0 ≅ Fun(1, 𝑋) correspond bijectively to elements of 𝑋, and the components

1 𝑋 𝐴 1 𝑋0 𝐴0
𝑥

𝑓

𝑔
⇓𝛼 ↭ 𝑥

𝑓0

𝑔0

⇓𝛼0

define corresponding arrows in h𝐴 ≅ h(𝐴0). Thus, the underlying natural
transformation 𝛼0 is a pointwise natural isomorphism in 𝔥𝒬𝒞𝑎𝑡 as well, and

Corollary D.4.19 applies to prove that 𝛼0 admits an inverse 𝑋0 𝐴0

𝑔0

𝑓0

⇓𝛼−10 .

By the full and faithfulness of the local equivalence hFun(𝑋, 𝐴) ∼ hFun(𝑋0, 𝐴0)
established in Proposition 10.3.1, this 2-cell lifts to define an inverse natural

transformation 𝑋 𝐴
𝑔

𝑓

⇓𝛼−1 witnessing the invertibility of 𝛼.

It is worth calling attention to a special feature of the cosmological biequiva-
lence (−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 used in the proof of Lemma 12.2.1.



472 Applications of Model Independence

Observation 12.2.2 (on the elements of the underlying quasi-category). By
Corollary 10.3.2(ii), a cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ induces a bi-
jection between isomorphism classes of elements of an ∞-category 𝐴 ∈ 𝒦
and isomorphism classes of elements of 𝐹𝐴 ∈ ℒ, and in fact induces an equiv-
alence of homotopy categories h𝐴 ∼ h𝐹𝐴, the objects of which are exactly
these elements (see Exercise 10.3.i). In particular, any element 𝑥∶ 1 → 𝐹𝐴
is naturally isomorphic to an element 𝐹𝑎∶ 1 → 𝐹𝐴 that is the image of an
element 𝑎∶ 1 → 𝐴. Since “pointwise” ∞-categorical notions – invertibility of
the components of a natural isomorphism, possession of a terminal element
in the fibers of a cocartesian fibration – are invariant under isomorphism, if 𝐴
satisfies some pointwise criterion in 𝒦, then 𝐹𝐴 satisfies the corresponding
pointwise criterion in ℒ.

But in the case of∞-cosmoi of (∞, 1)-categories, Proposition 10.2.1 supplies
a cosmological biequivalence (−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡 that acts bijectively on ele-
ments of ∞-categories. By construction, vertices of 𝐴0 ≅ Fun(1, 𝐴) correspond
bijectively to elements of 𝐴. Consequently, as illustrated by the proof of Lemma
12.2.1, “pointwise” properties may be transferred even more readily.

Using Lemma 12.2.1, we can show that an isofibration in an ∞-cosmos of
(∞, 1)-categories is a discrete object of the slice ∞-cosmos if and only if its
fibers are discrete ∞-categories. It follows that cocartesian, cartesian, or two-
sided fibrations of (∞, 1)-categories are discrete if and only if they have discrete
fibers.

Proposition 12.2.3. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration in an ∞-cosmos 𝒦 of
(∞, 1)-categories. Then 𝑝 is discrete as an object of 𝒦/𝐵 if and only if the fibers
of 𝑝 are discrete ∞-categories in 𝒦.

Proof Any element 𝑏∶ 1 → 𝐵 induces a cosmological functor 𝑏∗∶ 𝒦/𝐵 → 𝒦
which preserves discrete ∞-categories by Remark 1.3.3. So for any ∞-cosmos
𝒦, if 𝑝∶ 𝐸 ↠ 𝐵 is a discrete object in 𝒦/𝐵, then its fibers are discrete ∞-cate-
gories.

For the converse we assume that 𝒦 is an ∞-cosmos of (∞, 1)-categories and
appeal to Lemma 12.2.1. To show that 𝑝∶ 𝐸 ↠ 𝐵 is discrete in 𝒦/𝐵 we must
argue that the quasi-category defined by the pullback

Fun𝐵(𝑓∶ 𝑋 → 𝐵, 𝑝∶ 𝐸 ↠ 𝐵) Fun(𝑋, 𝐸)

1 Fun(𝑋, 𝐵)

⌟
𝑝∗

𝑓

is a Kan complex. By Corollary 1.1.15, it suffices to show that its homotopy
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category is a groupoid, and for this we use the smothering functor

h(Fun𝐵(𝑓∶ 𝑋 → 𝐵, 𝑝∶ 𝐸 ↠ 𝐵)) → 𝟙 ×
hFun(𝑋,𝐵)

hFun(𝑋, 𝐸)

of Lemma 3.1.5, which, in particular, reflects isomorphisms. The arrows of
h(Fun𝐵(𝑓, 𝑝)) are represented by 1-simplices 𝛼∶ 𝑒 → 𝑒′ ∈ Fun(𝑋, 𝐸) with
the property that the whiskered composite 𝑝𝛼 ∈ Fun(𝑋, 𝐵) is the degenerate
1-simplex at 𝑓.4 By Lemma 12.2.1, the natural transformation 𝛼∶ 𝑒 ⇒ 𝑒′ ∈
hFun(𝑋, 𝐸) is invertible if and only if its components 𝛼𝑥 are invertible for every
𝑥∶ 1 → 𝑋. Since the 1-simplex 𝑝𝛼 is degenerate in Fun(𝑋, 𝐵), the 1-simplex
𝑝𝛼𝑥 is degenerate at the vertex 𝑓𝑥 ∈ Fun(1, 𝐵), which says that 𝛼𝑥 lies in the
fiber over 𝑓𝑥∶ 1 → 𝐵. Since the fibers of 𝑝∶ 𝐸 ↠ 𝐵 are discrete, this tells us
that 𝛼𝑥 is invertible, so we conclude by Lemma 12.2.1 that 𝛼 is invertible as
claimed.

Our next series of results shows that universal properties can be detected
pointwise in ∞-cosmoi of (∞, 1)-categories. The key technical ingredient is an
analytical result about quasi-categories in the style of Joyal and Lurie.

Proposition 12.2.4. A cocartesian fibration 𝑞∶ 𝐸 ↠ 𝐴 of quasi-categories
admits a right adjoint right inverse 𝑡∶ 𝐴 → 𝐸 if and only if for each 𝑎∶ 1 → 𝐴
the fiber 𝐸𝑎 has a terminal element.

Proof By Lemma 3.6.9, a right adjoint right inverse to 𝑞 can be interpreted as
defining a terminal element in 𝑞∶ 𝐸 ↠ 𝐴, considered as an object in the sliced
∞-cosmos 𝒬𝒞𝑎𝑡/𝐴. By Lemma 3.6.6(i), this fibered adjunction may be pulled
back along any element 𝑎∶ 1 → 𝐴 to define a terminal element in the fiber 𝐸𝑎.

For the converse, let 𝑡𝑎∶ 1 → 𝐸𝑎 denote a chosen terminal element in the
fiber 𝐸𝑎 over 𝑎∶ 1 → 𝐴. Lemma F.3.1 characterizes those isofibrations between
quasi-categories that admit a right adjoint right inverse in terms of a lifting
property. In this case, it suffices to show that any lifting problem

1 𝜕Δ[𝑛] 𝐸

Δ[𝑛] 𝐴

{𝑛}

𝑡𝑎

𝑦

𝑞

𝑥

for 𝑛 ≥ 1 has a solution. To that end, consider the simplicial map 𝑘∶ Δ[𝑛] ×
Δ[1] → Δ[𝑛] defined on vertices by 𝑘(𝑖, 0) ≔ 𝑖 and 𝑘(𝑖, 1) ≔ 𝑛. The composite
𝑥𝑘∶ Δ[𝑛] ×Δ[1] → 𝐴 restricts to define a map 𝑥𝑘∶ 𝜕Δ[𝑛] ×Δ[1] → 𝐴 which
4 This implies, but is stronger than, the property that the whiskered composite in the homotopy

2-category equals the 2-cell id𝑓 (see §3.6 for a discussion).
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represents a 2-cell whose codomain, defined by evaluating at the vertex {1} of
Δ[1], is constant at 𝑎 and whose domain factors through 𝑞 along 𝑦. This yields
a new lifting problem

𝜕Δ[𝑛] 𝐸

𝜕Δ[𝑛] × Δ[1] 𝐴

𝑦

𝑖0 𝑞𝑧

𝑥𝑘

which Lemma F.4.8 enables us to solve. By Lemma F.4.8, the lift 𝑧 represents a
𝑞-cocartesian lift 𝜁 of the 2-cell 𝜅 represented by the restriction of 𝑥𝑘:

𝜕Δ[𝑛] 𝐸 𝜕Δ[𝑛] 𝐸

1 𝐴 1 𝐴

𝑦

! ⇓𝜅 𝑞 =

𝑦

!

⇓𝜁
ᵆ 𝑞

𝑎 𝑎

By construction, the codomain functor of the 𝑞-cocartesian lift displayed above
right lands in the fiber over 𝑎. Now the component of 𝜅 at the final vertex
{𝑛}∶ 1 → 𝜕Δ[𝑛] is id𝑎, so by Lemma 5.1.6(ii), the component 𝑧{𝑛} representing
the 2-cell 𝜁{𝑛} is an isomorphism. In particular, the element 𝑢{𝑛}∶ 1 → 𝐸
is isomorphic to the terminal element 𝑦{𝑛} = 𝑡𝑎 of 𝐸𝑎, so we may apply the
universal property of Proposition F.1.1(vi) to extend 𝑢 to a simplex:

𝜕Δ[𝑛] 𝐸𝑎

Δ[𝑛]

ᵆ

𝑣

This data defines a new lifting problem

𝜕Δ[𝑛] 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} 𝐸

Δ[𝑛] Δ[𝑛] × Δ[1] 𝐴

𝜄0

𝑦

𝑧∪𝑣

𝑞

𝜄0

𝑥

𝑥𝑘

(12.2.5)

which we solve inductively by choosing lifts of the 𝑛 + 1 (𝑛 + 1)-simplices
in Δ[𝑛] × Δ[1] not present in 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1}, starting from the
𝑛 + 1-simplex that contains the face Δ[𝑛] × {1}. All but the last of these can
be lifted by means of lifting inner horns against the isofibration 𝑞. For the final



12.2 Pointwise Universal Properties 475

simplex, we must solve an outer horn lifting problem

Δ[1] Λ𝑛+1[𝑛 + 1] 𝐸

Δ[𝑛 + 1] 𝐴

{𝑛,𝑛+1}

𝑧{𝑛}

𝑞

but in this case the final edge of the outer horn is the isomorphism 𝑧{𝑛}, so
Proposition 1.1.18 permits its solution as well. Now the lift (12.2.5) restricts
to define the sought-for solution to the original lifting problem, proving that
𝑞∶ 𝐸 ↠ 𝐴 admits a right adjoint right inverse.

Via the cosmological biequivalence (−)op∶ 𝒬𝒞𝑎𝑡 ≃ 𝒬𝒞𝑎𝑡co of Lemma
12.1.3, the proof of Proposition 12.2.4 dualizes to prove that a cartesian fibration
of quasi-categories admits a left adjoint right inverse if and only if each fiber
has an initial element (see Exercise 12.2.i).

The proof of Proposition 12.2.4 relied heavily on “analytic” techniques. Nev-
ertheless its conclusion transfers to any ∞-cosmos that is biequivalent to the
∞-cosmos of quasi-categories.

Proposition 12.2.6. In an ∞-cosmos of (∞, 1)-categories a cocartesian fibra-
tion 𝑞∶ 𝐸 ↠ 𝐴 of admits a right adjoint right inverse 𝑡∶ 𝐴 → 𝐸 if and only if
for each 𝑎∶ 1 → 𝐴 the fiber 𝐸𝑎 has a terminal element.

Proof The argument that the fibers of an isofibration with right adjoint right
inverse admit terminal elements is the same as given in the proof of Proposition
12.2.4. For the converse, suppose 𝑞∶ 𝐸 ↠ 𝐴 is a cocartesian fibration in an ∞-
cosmos 𝒦 of (∞, 1)-categories with the property that for each element 𝑎∶ 1 →
𝐴 of the base, the fiber 𝐸𝑎 has a terminal element. By Proposition 10.2.1, we may
use the underlying quasi-category biequivalence (−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 to conclude
that 𝑞 admits a right adjoint right inverse once we show that 𝑞0∶ 𝐸0 ↠ 𝐴0
satisfies the hypotheses of Proposition 12.2.4.

Cosmological functors preserve cocartesian fibrations, so the underlying
map 𝑞0∶ 𝐸0 ↠ 𝐴0 defines a cocartesian fibration of quasi-categories. By
Observation 12.2.2, elements of the underlying quasi-category 𝐴0 correspond
bijectively to elements of the∞-category 𝐴. By hypothesis, for every 𝑎∶ 1 → 𝐴
the ∞-category 𝐸𝑎 admits a terminal element, so by Proposition 10.1.4 the
underlying quasi-category (𝐸𝑎)0 does as well. In this way, we see that every
fiber of the cocartesian fibration of quasi-categories 𝑞0∶ 𝐸0 ↠ 𝐴0 admits a
terminal element. By Proposition 12.2.4, 𝑞0 admits a right adjoint right inverse.
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Now by Proposition 10.3.6, we may conclude that 𝑞∶ 𝐸 ↠ 𝐴 admits a right
adjoint right inverse in 𝒦, as desired.

An important special case of Proposition 12.2.6 proves a result promised in
the discussion surrounding Proposition 4.1.6: in an ∞-cosmos of (∞, 1)-cate-
gories a functor 𝑓∶ 𝐵 → 𝐴 admits a right adjoint just when for each element
𝑎∶ 1 → 𝐴, the ∞-category Hom𝐴(𝑓, 𝑎) admits a terminal element: namely the
counit component ⌜𝜖𝑎⌝∶ 1 → Hom𝐴(𝑓, 𝑎). In the terminology used by Mac
Lane [81, §III.1], this universal property exhibits ⌜𝜖𝑎⌝ as a “universal arrow”
from the functor 𝑓 to the element 𝑎.

Corollary 12.2.7. In an∞-cosmos of (∞, 1)-categories, a functor 𝑓∶ 𝐵 → 𝐴
admits a right adjoint if and only if for each element 𝑎∶ 1 → 𝐴, the comma
∞-category Hom𝐴(𝑓, 𝑎) admits a terminal element.

Proof Proposition 4.1.6 demonstrates that in any ∞-cosmos, 𝑓∶ 𝐵 → 𝐴
admits a right adjoint if and only if Hom𝐴(𝑓, 𝐴) admits a terminal element over
𝐴, meaning that 𝑝1∶ Hom𝐴(𝑓, 𝐴) ↠ 𝐴 admits a right adjoint right inverse. By
Corollary 5.5.13, this functor is a cocartesian fibration, so Proposition 12.2.6
tells us that 𝑝1 admits a right adjoint right inverse if and only if each fiber
Hom𝐴(𝑓, 𝑎) admits a terminal element.

Proposition 12.2.6 implies that modules between (∞, 1)-categories admit an
analogous “pointwise” representability condition, characterizing those modules
that are covariantly or contravariantly represented by a functor in the sense of
Definition 7.4.7.

Corollary 12.2.8. In an ∞-cosmos of (∞, 1)-categories, a module 𝐴 𝐸 𝐵 is
covariantly represented if and only if for each 𝑎∶ 1 → 𝐴, the module 1 𝐸(1,𝑎) 𝐵
is covariantly represented, which is the case if and only if each ∞-category
𝐸(1, 𝑎) admits a terminal element.

Proof By Proposition 8.4.10, a module𝐴 𝐸 𝐵 encoded by (𝑞, 𝑝)∶ 𝐸 ↠ 𝐴×𝐵
is covariantly represented if and only if its left leg 𝑞∶ 𝐸 ↠ 𝐴 admits a right
adjoint right inverse 𝑟∶ 𝐴 → 𝐸, in which case 𝐸 ≃ Hom𝐵(𝐵, 𝑝𝑟). By Lemma
7.4.3, the left left 𝑞∶ 𝐸 ↠ 𝐴 defines a cocartesian fibration, so by Proposition
12.2.6, 𝑞 admits a right adjoint right inverse if and only if the fiber 𝐸𝑎 over
each element 𝑎∶ 1 → 𝐴 admits a terminal element. For each 𝑎∶ 1 → 𝐴, the
module 1 𝐸(1,𝑎) 𝐵 is given by the pullback along 𝑎 × id∶ 1 × 𝐵 → 𝐴 × 𝐵
and hence is isomorphic to the module 1 𝐸𝑎 𝐵. Applying Proposition 8.4.10
again, this module is covariantly represented by some element if and only if
!∶ 𝐸𝑎 ↠ 1 admits a right adjoint right inverse, which is the case if and only if
the ∞-category 𝐸𝑎 ≅ 𝐸(1, 𝑎) admits a terminal element.
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Our next result concerns absolute lifting diagrams, used in Definition 2.3.8 to
define the limit or colimit of a family of diagrams. There is a certain elegance in
considering families of diagrams, rather than individual diagrams, when it comes
to stating results such as Proposition 2.3.15, but it is also useful to establish
the existence of limits and colimits one diagram at a time. In ∞-cosmoi of
(∞, 1)-categories, this sort of reduction is possible, on account of the following:

Proposition 12.2.9. In an ∞-cosmos of (∞, 1)-categories:

(i) A functor 𝑔∶ 𝐶 → 𝐴 admits an absolute right lifting through a functor
𝑓∶ 𝐵 → 𝐴 if and only if for all 𝑐∶ 1 → 𝐶, the comma ∞-category
Hom𝐴(𝑓, 𝑔𝑐) admits a terminal element.

(ii) A triangle as below-left

𝐵 𝐵

𝐶 𝐴 1 𝐴
⇓𝜌

𝑓
⇓𝜌𝑐

𝑓𝑟

𝑔

𝑟𝑐

𝑔𝑐

displays 𝑟 as an absolute right lifting of 𝑔 through 𝑓 if and only if for
all 𝑐∶ 1 → 𝐶, the restricted triangle as above-right displays 𝑟𝑐 as an
absolute right lifting of 𝑔𝑐 through 𝑓.

(iii) A functor 𝑔∶ 𝐶 → 𝐴 admits an absolute right lifting through a functor
𝑓∶ 𝐵 → 𝐴 if and only if for all 𝑐∶ 1 → 𝐶 there exists an absolute right
lifting of 𝑔𝑐 through 𝑓 as below-left

𝐵 𝐵

1 𝐴 𝐶 𝐴
⇓𝜌𝑐

𝑓
⇓𝜌

𝑓
𝑟𝑐

𝑔𝑐

𝑟

𝑔

in which case the components of the above-right absolute right lifting
of 𝑔 through 𝑓 are isomorphic to the corresponding pointwise absolute
liftings: 𝑟𝑐 ≅ 𝑟𝑐 and 𝜌𝑐 ≅ 𝜌𝑐.

Proof Theorems 3.5.8 and 3.5.12 demonstrate that in any∞-cosmos, a functor
𝑔∶ 𝐶 → 𝐴 admits a right lifting through 𝑓∶ 𝐵 → 𝐴 if and only if the codomain
projection functor 𝑝1∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐶 admits a right adjoint right inverse.
By Corollary 5.5.13 this functor is a cocartesian fibration. Proposition 12.2.6
proves that in an ∞-cosmos of (∞, 1)-categories, 𝑝1∶ Hom𝐴(𝑓, 𝑔) ↠ 𝐶 admits
a right adjoint right inverse if and only if each fiber Hom𝐴(𝑓, 𝑔𝑐) over an element
𝑐∶ 1 → 𝐶 admits a terminal element. This proves the first statement.

Since absolute lifting diagrams are stable under restriction, it is immediately
clear that any absolute right lifting diagram as above-left, restricts to define a
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pointwise absolute right lifting diagram as above-right. For the converse, suppose
(𝑟𝑐, 𝜌𝑐) defines an absolute right lifting of 𝑔𝑐 through 𝑓 for any 𝑐∶ 1 → 𝐶. By
Theorem 3.5.12, it follows that each comma ∞-category Hom𝐴(𝑓, 𝑔𝑐) has a
terminal element and so by (i), 𝑔∶ 𝐶 → 𝐴 must admit an absolute right lifting
(𝑠, 𝜎) through 𝑓∶ 𝐵 → 𝐴. By its universal property, the pair (𝑟, 𝜌) factors
through (𝑠, 𝜎) via a 2-cell 𝜏∶ 𝑟 ⇒ 𝑠 so that 𝜌 = 𝜎⋅𝑓𝜏. Since (𝑟𝑐, 𝜌𝑐) and (𝑠𝑐, 𝜎𝑐)
are both absolute right lifting diagrams, we know that each component 𝜏𝑐 is an
isomorphism. Hence, by Lemma 12.2.1, 𝜏 is an isomorphism, and thus (𝑟, 𝜌) is
also an absolute right lifting diagram, as desired.

The third statement is a convenient summary of the first two. If 𝑔𝑐 admits
an absolute right lifting through 𝑓 then Hom𝐴(𝑓, 𝑔𝑐) has a terminal element
and (i) guarantees the existence of an absolute right lifting of 𝑔 through 𝑓. The
component of (𝑟, 𝜌) at 𝑐 defines a second absolute right lifting of 𝑔𝑐 through 𝑓
inducing the claimed isomorphisms.

As a corollary, we may justify the claim made in Remark 2.3.9.

Corollary 12.2.10. In an ∞-cosmos of (∞, 1)-categories if 𝐴 is an ∞-cate-
gory that admits limits of every diagram 𝑑∶ 1 → 𝐴𝐽 of shape 𝐽 then 𝐴 admits
all limits of shape 𝐽: that is, the constant diagram functor admits a right adjoint

𝐴𝐽 𝐴⊥
lim

Δ

Proof By Proposition 12.2.9(iii), the functor id∶ 𝐴𝐽 → 𝐴𝐽 admits an absolute
right lifting through Δ∶ 𝐴 → 𝐴𝐽 if and only if each diagram 𝑑∶ 1 → 𝐴𝐽 admits
an absolute right lifting through Δ∶ 𝐴 → 𝐴𝐽. By Definition 2.3.8 the latter
condition encodes what it means for 𝐴 to admit a limit of the diagram 𝑑, while
by Lemma 2.3.7 the former condition encodes what it means for Δ∶ 𝐴 → 𝐴𝐽 to
admit a right adjoint.

Another proof of Proposition 12.2.9(ii) is possible. By Theorem 3.5.8, a 2-cell
𝜌∶ 𝑓𝑟 ⇒ 𝑔 defines an absolute right lifting if and only if the induced functor
⌜𝜌⌝∶ Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓, 𝑔) is an equivalence over 𝐶 × 𝐵. As we shall
now discover, equivalences between co/cartesian fibrations or modules can be
detected fiberwise in ∞-cosmoi of (∞, 1)-categories. As was our strategy for
constructing right adjoint right inverses to cocartesian fibrations, we first prove
this result for quasi-categories, using analytic techniques. Alternate analytic
proofs can be found in [78, 3.3.1.5] and [5, 2.9]. We then use model independence
to conclude that the same result holds true in arbitrary ∞-cosmoi of (∞, 1)-
categories.
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Proposition 12.2.11. A cartesian functor

𝐸 𝐹

𝐵

𝑔

𝑝 𝑞

between cocartesian fibrations of quasi-categories is a fibered equivalence if
and only if it is a fiberwise equivalence, meaning that for each 𝑏∶ 1 → 𝐵, the
induced functor between fibers 𝑔𝑏∶ 𝐸𝑏 → 𝐹𝑏 is an equivalence.

Note the subtle difference in terminology between “fibered equivalences” –
equivalences over 𝐵 – and “fiberwise equivalences” – maps inducing equiva-
lences on fibers over elements of 𝐵. This result and Proposition 12.2.12 to follow
show that in fact these two notions coincide for cartesian functors in ∞-cosmoi
of (∞, 1)-categories.

Proof Fibered equivalences are stable under pullback to fibers, so the content
is in the converse implication: that any cartesian functor between cocartesian
fibrations that induces a fiberwise equivalence is necessarily an equivalence.

The cartesian functor 𝑔 can be factored in the slice 𝒬𝒞𝑎𝑡/𝐵 as an equiva-
lence followed by an isofibration. By Corollary 5.3.1, the intermediate object of
that factorization is again a cocartesian fibration and the isofibration from it to
𝑞∶ 𝐹 ↠ 𝐵 is again a cartesian functor. Replacing 𝑝∶ 𝐸 ↠ 𝐵 by the equivalent
cocartesian fibration, it therefore suffices to assume that 𝑔∶ 𝐸 ↠ 𝐵 is an isofibra-
tion and a cartesian functor and postulate that each induced map 𝑔𝑏∶ 𝐸𝑏 ∼ 𝐹𝑏
is a trivial fibration. Under these assumptions, we must show that 𝑔 is itself is a
trivial fibration.

To that end, suppose that we are given a lifting problem

𝜕Δ[𝑛] 𝐸

Δ[𝑛] 𝐹

𝑒

𝑔

𝑓

over 𝑏∶ Δ[𝑛] → 𝐵. Consider the retract diagram

Δ[𝑛] Δ[𝑛] × Δ[1] Δ[𝑛]

𝑖 (𝑖, 0)

(𝑖, 𝑗) {
𝑖 if 𝑗 = 0
𝑛 if 𝑗 = 1

id×{0} 𝑟
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and choose a pointwise 𝑝-cocartesian lift

𝜕Δ[𝑛] × {0} 𝐸

𝜕Δ[𝑛] × Δ[1] 𝐵

𝑒

𝑝
𝜒

𝑏𝑟

as permitted by Lemma F.4.8. Applying 𝑔 we obtain a hollow cylinder

𝜕Δ[𝑛] × Δ[1] 𝐸 𝐹
𝜒 𝑔

and since 𝑔 is a cartesian functor and 𝜒 is pointwise 𝑝-cocartesian it follows that
𝑔𝜒 is pointwise 𝑞-cocartesian. Now by construction the simplex𝑓∶ Δ[𝑛]×{0} →
𝐹 agrees with 𝑔𝜒∶ 𝜕Δ[𝑛]×Δ[1] → 𝐹 on the subset 𝜕Δ[𝑛]× {0} where they are
both defined. It follows that they combine to give a well-defined simplicial map
on the union of their domains and so provide us with a second lifting problem:

Δ[𝑛] × {0} ∪ 𝜕Δ[𝑛] × Δ[1] 𝐹

Δ[𝑛] × Δ[1] 𝐵

𝑓∪𝑔𝜒

𝑞

𝑏𝑟

𝜌

which can again be solved to give a pointwise 𝑞-cocartesian lift 𝜌 by Lemma
F.4.8. Note now that the retraction 𝑟∶ Δ[𝑛] × Δ[1] → Δ[𝑛] was constructed to
map the subset Δ[𝑛] × {1} onto the vertex {𝑛}, from which it follows that the
𝑛-simplex

Δ[𝑛] × {1} Δ[𝑛] × Δ[1] 𝐵𝑏𝑟

is a degenerate image of the final vertex 𝑏𝑛 ≔ 𝑏 ⋅ {𝑛}. Now observe that the
cylinders 𝜒 and 𝜌 were defined to lie over 𝑏𝑟∶ Δ[𝑛] × Δ[1] → 𝐵, so it follows
that the restricted maps

𝜕Δ[𝑛] × {1} 𝜕Δ[𝑛] × Δ[1] 𝐸

Δ[𝑛] × {1} Δ[𝑛] × Δ[1] 𝐹

𝜒

𝜌

land in the fibers 𝐸𝑏𝑛 and 𝐹𝑏𝑛 of 𝑝 and 𝑞, respectively. Thus, 𝜒 and 𝜌 define a
lifting problem

𝜕Δ[𝑛] 𝐸𝑏𝑛

Δ[𝑛] 𝐹𝑏𝑛

𝜒|{1}

∼ 𝑔𝑏𝑛
𝛾

𝜌|{1}
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which we may solve since the map of fibers on the right is, by assumption, a
trivial fibration. Now the upper left triangle tells us that 𝜒 and 𝛾 agree on the
subset 𝜕Δ[𝑛] × {1} where they are both defined. Thus, these maps combine to
give a well-defined simplicial map on the union of their domains depicted as the
upper-horizontal in the lifting problem on the right of the following diagram:

𝜕Δ[𝑛] × {0} Δ[𝑛] × {1} ∪ 𝜕Δ[𝑛] × Δ[1] 𝐸

Δ[𝑛] × {0} Δ[𝑛] × Δ[1] 𝐹

𝑒

𝛾∪𝜒

𝑔

𝑓

𝜌

A standard argument shows that the lifting problem in the right-hand square
can be solved by filling a sequence of inner horns and a single outer horn of
shape Λ𝑛+1[𝑛 + 1] whose final edge is a cocartesian lift of the degeneracy at
𝑏𝑛. Lemma 5.1.6 observes that cocartesian lifts of degenerate simplices are
isomorphisms, so this last horn is actually a “special outer horn” with first edge
invertible. Consequently, by Theorem D.5.1 it can therefore be lifted against the
isofibration 𝑝. This construction fills the sphere at the domain end of the hollow
cylinder, solving the original lifting problem.

Proposition 12.2.12 (fiberwise equivalences of cartesian fibrations). In an
∞-cosmos of (∞, 1)-categories, a cartesian functor

𝐸 𝐹

𝐵

𝑔

𝑝 𝑞

between cocartesian fibrations is a fibered equivalence if and only if it is a
fiberwise equivalence, meaning that for each 𝑏∶ 1 → 𝐵, the induced functor
between fibers 𝑔𝑏∶ 𝐸𝑏 → 𝐹𝑏 is an equivalence.

Proof An equivalence of cocartesian fibrations is necessarily a fiberwise equiv-
alence, so we need only prove the converse. By Propositions 10.2.2 and 10.2.1,
if 𝒦 is an ∞-cosmos of (∞, 1)-categories and 𝐵 is an ∞-category in 𝒦, then
the underlying quasi-category functor induces a cosmological biequivalence
(−)0∶ 𝒦/𝐵

∼ 𝒬𝒞𝑎𝑡/𝐵0. By Corollary 10.3.2, this cosmological biequivalence
reflects equivalences, and by Proposition 10.1.4 (−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡 preserves
cocartesian fibrations and cartesian functors between them. Hence, to show that
a cartesian functor and fiberwise equivalence 𝑔∶ 𝐸 → 𝐹 is an equivalence over
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𝐵, it suffices to show that 𝑔0∶ 𝐸0 → 𝐹0 is an equivalence over 𝐵0, which we do
by verifying that this functor satisfies the hypotheses of Proposition 12.2.11.

By Observation 12.2.2, elements of the underlying quasi-category 𝐵0 corre-
spond bijectively to elements of the∞-category 𝐵, and the cosmological functor
(−)0∶ 𝒦 → 𝒬𝒞𝑎𝑡 preserves both fibers and equivalences. In this way we see
that 𝑔0∶ 𝐸0 → 𝐹0 is a fiberwise equivalence for all 𝑏∶ 1 → 𝐵0. By Proposition
12.2.11 this functor defines a fibered equivalence, and hence 𝑔 does as well.

Corollary 12.2.13. In an∞-cosmos of (∞, 1)-categories, a discrete cartesian
fibration is a trivial fibration if and only if its fibers are contractible.

Proof If 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration, then 𝑝 defines a cartesian
functor

𝐸 𝐵

𝐵

𝑝

𝑝

whose codomain is the identity discrete fibration. The conclusion now arises as
a special case of the result of Proposition 12.2.12.

The result of Proposition 12.2.12 can be extended to modules:

Corollary 12.2.14 (equivalences of modules are determined fiberwise). In an
∞-cosmos of (∞, 1)-categories, a map

𝐸 𝐹

𝐴 × 𝐵

𝑔

(𝑞,𝑝) (𝑠,𝑟)

between modules 𝐸 and 𝐹 from 𝐴 to 𝐵 is an equivalence if and only if it is a
fiberwise equivalence, meaning that for each 𝑎∶ 1 → 𝐴 and 𝑏∶ 1 → 𝐵, the
induced functor between the fibers 𝑔𝑎,𝑏∶ 𝐸(𝑏, 𝑎) → 𝐹(𝑏, 𝑎) is an equivalence.

Proof Recall from Lemma 7.4.3 that the left-hand legs 𝑞∶ 𝐸 ↠ 𝐴 and 𝑠∶ 𝐹 ↠
𝐴 are cocartesian fibrations and the functor 𝑔 defines a cartesian functor between
them. It follows, by Proposition 12.2.12, that 𝑔 is an equivalence if and only
if for each 𝑎∶ 1 → 𝐴, the pullback 𝑔𝑎∶ 𝐸(1, 𝑎) → 𝐹(1, 𝑎) is an equivalence.
Each of these ∞-categories defines a module from 1 to 𝐵, so by Lemma 7.4.3
again, the pulled back projections 𝑝∶ 𝐸(1, 𝑎) ↠ 𝐵 and 𝑟∶ 𝐹(1, 𝑎) ↠ 𝐵 are
cartesian fibrations and 𝑔𝑎 defines a cartesian functor between them. By the
dual of Proposition 12.2.12, this functor is an equivalence if and only if for
each 𝑏∶ 1 → 𝐵, the induced action 𝑔𝑎,𝑏∶ 𝐸(𝑏, 𝑎) → 𝐹(𝑎, 𝑏) on fibers is an
equivalence. This proves the stated result.
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A prototypical special case of this result characterizes units or counits of
adjunctions between (∞, 1)-categories:

Corollary 12.2.15. In an ∞-cosmos of (∞, 1)-categories, a 2-cell 𝜖∶ 𝑓𝑢 ⇒
id𝐴 defines the counit of an adjunction 𝑓 ⊣ 𝑢 if and only if the induced functor
⌜𝜖 ⋅ 𝑓(−)⌝∶ Hom𝐵(𝐵, 𝑢) → Hom𝐴(𝑓, 𝐴) over 𝐴 × 𝐵 defines equivalences of
mapping spaces Hom𝐵(𝑏, 𝑢𝑎) ≃ Hom𝐴(𝑓𝑏, 𝑎) for each each 𝑎∶ 1 → 𝐴 and
𝑏∶ 1 → 𝐵.

Corollary 12.2.14 may also be applied to characterize fully faithful functors
and equivalences between (∞, 1)-categories.

Proposition 12.2.16. In an∞-cosmos of (∞, 1)-categories, a functor 𝑓∶ 𝐴 →
𝐵 is fully faithful if and only if for all elements 𝑎, 𝑎′∶ 1 → 𝐴, its action on
mapping spaces 𝑓𝑎,𝑎′ ∶ Hom𝐴(𝑎, 𝑎′) → Hom𝐵(𝑓𝑎, 𝑓𝑎′) defines an equivalence
of discrete ∞-categories.

Proof Corollary 3.5.6 defines a functor 𝑓∶ 𝐴 → 𝐵 to be fully faithful if and
only if the induced functor𝐴𝟚 → Hom𝐵(𝑓, 𝑓) between modules from𝐴 to𝐴 is an
equivalence. By Corollary 12.2.14, this is the case if and only if this map defines
a fiberwise equivalence, which means exactly that for all elements 𝑎, 𝑎′∶ 1 → 𝐴,
its action on mapping spaces 𝑓𝑎,𝑎′ ∶ Hom𝐴(𝑎, 𝑎′) → Hom𝐵(𝑓𝑎, 𝑓𝑎′) defines an
equivalence of discrete ∞-categories.

We now show that equivalences of (∞, 1)-categories are precisely those func-
tors that are pointwise fully faithful and essentially surjective in a suitable sense.
In [102], Rezk refers to this result as “the fundamental theorem of quasi-category
theory.” Our proof mixes synthetic and analytic techniques:

Theorem 12.2.17 (fundamental theorem of (∞, 1)-category theory). A functor
𝑓∶ 𝐴 → 𝐵 in an ∞-cosmos of (∞, 1)-categories is an equivalence if and only
if it is

(i) fully faithful: in the sense that for all elements 𝑎, 𝑎′∶ 1 → 𝐴, the induced
map

Hom𝐴(𝑎, 𝑎′) → Hom𝐵(𝑓𝑎, 𝑓𝑎′)

is an equivalence and
(ii) essentially surjective in the sense that for all 𝑏∶ 1 → 𝐵 there exists

𝑎∶ 1 → 𝐴 and an isomorphism 𝑓𝑎 ≅ 𝑏 in the homotopy category of 𝐵.

Proof An equivalence of ∞-categories 𝑓∶ 𝐴 ∼ 𝐵 induces an equivalence



484 Applications of Model Independence

of homotopy categories h𝑓∶ h𝐴 ∼ h𝐵 as well as an equivalence 𝐴𝟚 ≃𝐴×𝐴
Hom𝐵(𝑓, 𝑓) between modules from 𝐴 to 𝐴, by Propositions 3.3.3 and 3.4.5:

𝐴𝟚 Hom𝐵(𝑓, 𝑓) 𝐵𝟚

𝐴 × 𝐴 𝐵 × 𝐵
(𝑝1,𝑝0)

∼

∼𝑓𝟚

(𝑝1,𝑝0)
⌟

(𝑝1,𝑝0)

∼
𝑓×𝑓

Essential surjectivity is a consequence of the first equivalence, while fully
faithfulness follows by pulling the second equivalence back along a pair of
elements of 𝐴.

To prove the converse, we start by factoring 𝑓 as an equivalence followed by
an isofibration. Both factors are easily seen to be pointwise fully faithful and
essentially surjective, so it suffices to assume that 𝑓∶ 𝐴 ↠ 𝐵 is an isofibration.
Our task is now to show that 𝑓 is a trivial fibration. In an∞-cosmos𝒦 of (∞, 1)-
categories, the cosmological biequivalence (−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 of Proposition
10.2.1 preserves isofibrations and reflects equivalences. So to show that an
isofibration 𝑓∶ 𝐴 ↠ 𝐵 is a trivial fibration, it suffices to show that the underlying
isofibration 𝑓0∶ 𝐴0 ↠ 𝐵0 is a trivial fibration, i.e., that we can solve lifting
problems of the form

𝜕Δ[𝑛] Fun(1, 𝐴)

Δ[𝑛] Fun(1, 𝐵)

𝑓0 (12.2.18)

for 𝑛 ≥ 0.
In the case 𝑛 = 0, this lifting property asserts that when 𝑓0∶ 𝐴0 ↠ 𝐵0 is

an isofibration, the hypothesis that 𝑓∶ 𝐴 ↠ 𝐵 is essentially surjective in fact
implies that 𝑓0∶ 𝐴0 ↠ 𝐵0 is surjective on vertices. By essential surjectivity, for
any 𝑏∶ 1 → 𝐵, there is some 𝑎∶ 1 → 𝐴 so that 𝑓𝑎 ≅ 𝑏 in h𝐵 ≔ hFun(1, 𝐵) ≔
h(𝐵0). Now Corollary 1.1.16 implies that any isomorphism in the homotopy
category of 𝐵 can be represented by a homotopy coherent isomorphism 𝕀 →
Fun(1, 𝐵). A choice of 𝑎∶ 1 → 𝐴 and a homotopy coherent isomorphism
𝛽∶ 𝕀 → Fun(1, 𝐵) representing 𝑓𝑎 ≅ 𝑏 defines a lifting problem

∅ 𝟙 Fun(1, 𝐴)

𝟙 𝕀 Fun(1, 𝐵)

⌟
𝑎

𝑓0

𝑏

𝛽
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which can be solved by lifting the isomorphism along the isofibration. This
solves the lifting problems (12.2.18) in the case 𝑛 = 0.

By applying Proposition 3.4.5 to the commutative diagram below-left, we see
that the induced map between modules is an isofibration.

𝐴 𝐴 𝐴

𝐴 𝐵 𝐴

𝑓

𝑓 𝑓

⇝

𝐴𝟚

𝐴 𝐴

Hom𝐴(𝑓, 𝑓)

𝑝1 𝑝0

Hom𝑓(𝐴,𝐴)

𝑝0𝑝1

By Proposition 12.2.16 the hypothesis that 𝑓 is pointwise fully faithful, inducing
equivalences between fibers 𝑓𝑎,𝑎′ ∶ Hom𝐴(𝑎, 𝑎′) ∼ Hom𝐵(𝑓𝑎, 𝑓𝑎′), implies
that the induced map Hom𝐴(𝑓, 𝑓)∶ 𝐴𝟚 ∼ Hom𝐵(𝑓, 𝑓) is an equivalence and
hence under present hypotheses a trivial fibration. The cosmological functor
(−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 carries this map to a trivial fibration between quasi-categor-
ies, which then enjoys the lifting property below-left for 𝑛 ≥ 0:

𝜕Δ[𝑛] (𝐴0)𝟚 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×𝜕Δ[1]

Δ[𝑛] × 𝜕Δ[1] 𝐴0

Δ[𝑛] Hom𝐵0(𝑓0, 𝑓0) Δ[𝑛] × Δ[1] 𝐵0

∼ Hom𝑓0(𝐴0,𝐴0) ↭ 𝑓0

Via the description of the comma construction as a weighted limit giving in
Example A.6.14, the lifting property above-left transposes across the Leibniz
version of the weighted limit two-variable adjunction of Definition A.6.5 to the
lifting property displayed above-right, again for 𝑛 ≥ 0.

We have already shown that 𝑓0∶ 𝐴0 ↠ 𝐵0 also possesses the right lifting
property with respect to the inclusion∅ ↪ Δ[0]. Since this map and the Leibniz
product inclusions (𝜕Δ[𝑛] ↪ Δ[𝑛]) ×̂ (𝜕Δ[1] ↪ Δ[1]) generate the class of
monomorphisms of simplicial sets under transfinite composition, pushout, and
retract, it follows now from the fact that the map Hom𝑓0(𝐴0, 𝐴0) is a trivial
fibration that 𝑓0∶ 𝐴0

∼ 𝐵0 is a trivial fibration. Hence 𝑓∶ 𝐴 ∼ 𝐵 is a trivial
fibration, which is what we wanted to show.

Exercises
Exercise 12.2.i. Use Lemma 12.1.3 to prove the duals of Propositions 12.2.4
and 12.2.11.

Exercise 12.2.ii. Use the duals established in Exercise 12.2.i to state and prove
the duals of other results in this section.
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Exercise 12.2.iii. Use Corollary 12.2.14 to give a second proof of Proposition
12.2.9(ii).

12.3 Existence of Pointwise Kan Extensions

The vast and rapidly expanding literature on (∞, 1)-category theory greatly
exceeds the scope of this book. We close with a demonstration that illustrates
how results whose proofs are found elsewhere can be integrated into the “model
independent” framework of∞-cosmoi. In this section, we borrow one result from
our colleagues – concerning the “exponentiability” of cartesian and cocartesian
fibrations between quasi-categories – and extract considerable mileage from it.

The category of simplicial sets, as a category of set-valued presheaves, is
locally cartesian closed, meaning that pullback along any map 𝑓∶ 𝐴 → 𝐵 of
simplicial sets admits a right adjoint, called “pushforward,” as well as a left
adjoint, defined by composition:

𝑠𝒮𝑒𝑡/𝐵 𝑠𝒮𝑒𝑡/𝐴𝑓∗

Π𝑓

⊥

Σ𝑓

⊥
(12.3.1)

For some, but not all, isofibrations 𝑓∶ 𝐴 ↠ 𝐵 between quasi-categories, the
adjunctions restrict to isofibration-preserving functors

𝒬𝒞𝑎𝑡/𝐵 𝒬𝒞𝑎𝑡/𝐴𝑓∗

Π𝑓

⊥

Σ𝑓

⊥

in which case 𝑓∗ and Π𝑓 are both cosmological. Such isofibration 𝑓∶ 𝐴 ↠ 𝐵
are called exponentiable.5

A characterization of the exponentiable functors between quasi-categories
due to Lurie – who calls them “flat fibrations” – appears in [80, §B.3]. A model
independent characterization is given by Ayala and Francis in [5, 2.2.8]. For
our purposes here, we require only that the cocartesian fibrations and cartesian
fibrations between quasi-categories are among the exponentiable functors, and
moreover preserve cartesian and cocartesian fibrations respectively. In fact, as
we note in [114], the resulting pushforward constructions are well-adapted to
the cosmological setting:
5 A famously nonexponentiable functor appears in Exercise 12.3.i.
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Theorem 12.3.2 ([114, 6.2.9–10]). For a cocartesian fibration 𝑞∶ 𝐸 ↠ 𝐵 or
cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories, pullback along 𝑞 or 𝑝
admits a right adjoint, which restrict to the cosmologically embedded∞-cosmoi

𝒬𝒞𝑎𝑡/𝐸 𝒬𝒞𝑎𝑡/𝐵 𝒬𝒞𝑎𝑡/𝐸 𝒬𝒞𝑎𝑡/𝐵

𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵

Π𝑞

⊥
𝑞∗

Π𝑝

⊥
𝑝∗

Π𝑞

⊥
𝑞∗

Π𝑝

⊥
𝑝∗

and moreover all of these functors are cosmological.

Lurie’s proof that cartesian and cocartesian fibrations are exponentiable can
be found in [80, B.3.11, B.4.5]; see also [78, 3.2.2.12] and [80, B.4.2]. A special-
ization of these results to a setting much closer to the case under consideration
here appears as [115, 2.24].

We now extend these results to arbitrary ∞-cosmoi of (∞, 1)-categories.

Theorem 12.3.3. For a cocartesian fibration 𝑞∶ 𝐸 ↠ 𝐵 or cartesian fibration
𝑝∶ 𝐸 ↠ 𝐵 in an ∞-cosmos of (∞, 1)-categories 𝒦, pullback along 𝑞 or 𝑝
admits a quasi-pseudofunctorial right biadjoint, which restrict to the cosmolog-
ically embedded ∞-cosmoi

𝒦/𝐸 𝒦/𝐵 𝒦/𝐸 𝒦/𝐵

𝒞𝑎𝑟𝑡(𝒦)/𝐸 𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐸 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵

Π𝑞

⊥
𝑞∗

Π𝑝

⊥
𝑝∗

Π𝑞

⊥
𝑞∗

Π𝑝

⊥
𝑝∗

The “biadjointness” of the statement – again appropriating a term from weak
2-category theory – refers to a quasi-pseudonatural equivalence:

𝒦/𝐸 𝒦/𝐵
Π𝑝

⊥
𝑝∗

Fun𝐸(𝑝∗(𝑟), 𝑞) ≃ Fun𝐵(𝑟, Π𝑝𝑞)

Proof For a co/cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵, the pushforward quasi-pseudo-
functor Π𝑝∶ 𝒦/𝐸 𝒦/𝐵 is defined as the composite of the pushforward
associated to the underlying co/cartesian fibration 𝑝0∶ 𝐸0 ↠ 𝐵0 between quasi-
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categories with the zigzag of cosmological biequivalences

𝒦/𝐸 𝒦/𝐵

𝒬𝒞𝑎𝑡/𝐸0 𝒬𝒞𝑎𝑡/𝐵0

Π𝑝

∼(−)0 ≃ ∼ (−)0

Π𝑝0

(12.3.4)

Note that both pullback and the pushforward commute up to equivalence with
the sliced underlying quasi-category functors (−)0∶ 𝒦/𝐵

∼ 𝒬𝒞𝑎𝑡/𝐵0.
The composite quasi-pseudofunctor can be understood as a pointwise right

biadjoint on account of the composite equivalences

Fun𝐸(𝑝∗(𝑟), 𝑞) Fun𝐸0((𝑝0)
∗(𝑟0), 𝑞0)

Fun𝐵0(𝑟0, Π𝑝0(𝑞0)) Fun𝐵(𝑟, Π𝑝𝑞)

∼(−)0
≅

∼(−)0

that are quasi-pseudonaturally defined in 𝑞∶ 𝐹 ↠ 𝐸 and 𝑟∶ 𝐺 ↠ 𝐵. This proves
the first statement.

Now let 𝑝∶ 𝐸 ↠ 𝐵 be a cartesian fibration and let 𝑞∶ 𝐹 ↠ 𝐸 be a cocartesian
fibration in 𝒦. Then by Proposition 10.3.6, Π𝑝𝑞 is a cocartesian fibration in 𝒦
if and only if its underlying functor is a cocartesian fibration on quasi-categories.
By the essential commutativity of (12.3.4), this functor is equivalent to Π𝑝0(𝑞0),
which is a cocartesian fibration of quasi-categories by Theorem 12.3.2. Since co-
cartesian fibrations are replete up to equivalence, the preservation result follows.
The proof that pushforward preserves cartesian functors follows similarly.

Finally, Theorem 12.3.2 proves that cartesian functors between cocartesian
fibrations of quasi-categories transpose to cartesian functors under 𝑝∗ ⊣ Π𝑝.
Since cartesian functors are preserved and reflected by cosmological biequiva-
lences, the same holds in any ∞-cosmos of (∞, 1)-categories. Thus, the quasi-
pseudonatural equivalence Fun𝐸(𝑝∗(𝑟), 𝑞) ≃ Fun𝐵(𝑟, Π𝑝𝑞) restricts to define a
quasi-pseudonatural equivalence Funcart

𝐸 (𝑝∗(𝑟), 𝑞) ≃ Funcart
𝐵 (𝑟, Π𝑝𝑞).

Lemma 12.3.5 (Beck–Chevalley). Consider a pullback diagram in an∞-cosmos
of (∞, 1)-categories,

𝐹 𝐸

𝐴 𝐵

𝑞

𝑔

⌟
𝑝

𝑓

and suppose that 𝑝 is a cocartesian fibration or cartesian fibration. Then for all
𝑟∶ 𝐺 ↠ 𝐸, the maps 𝑓∗Π𝑝𝑟 ≃ Π𝑞𝑔∗𝑟 are equivalent over 𝐴.
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Proof Applying the cosmological biequivalence (−)0∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 it suffices
to prove this for quasi-categories, in which case the functors in question have
left adjoints:

𝒬𝒞𝑎𝑡/𝐹0 𝒬𝒞𝑎𝑡/𝐸0 𝑠𝒮𝑒𝑡/𝐹0 𝑠𝒮𝑒𝑡/𝐸0

𝒬𝒞𝑎𝑡/𝐴0 𝒬𝒞𝑎𝑡/𝐵0 𝑠𝒮𝑒𝑡/𝐴0 𝑠𝒮𝑒𝑡/𝐵0

Π𝑞0

𝑔∗0

Π𝑝0 Π𝑞0 ⊢
Σ𝑔0

⊤
𝑔∗0

Π𝑝0⊣

𝑓∗0

𝑞∗0
Σ𝑓0

⊥
𝑓∗0

𝑝∗0

For any map of simplicial sets 𝑎∶ 𝑋 → 𝐴0, by examining the pullback rectangle

• 𝐹0 𝐸0

𝑋 𝐴0 𝐵0

⌟
𝑞0

𝑔0

⌟
𝑝0

𝑎 𝑓0

it is clear that Σ𝑔0𝑞
∗
0𝑎 ≅ 𝑝∗0Σ𝑓0𝑎. Thus, the right adjoints 𝑓∗0 Π𝑝0 ≅ Π𝑞0𝑔

∗
0

also commute up to isomorphism, and conservativity provides the claimed
equivalence in 𝒦.

Now we explain our interest in these results. Recall from Definition 9.1.2 that
a right extension of a module 𝐴 𝐺 𝐶 along a module 𝐴 𝐸 𝐵 consists of a pair
given by a module 𝐵 hom𝐴(𝐸,𝐺) 𝐶 together with a binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

𝐸 hom𝐴(𝐸,𝐹)

⇓𝜖

𝐺

that is universal among the cells in the virtual equipment of modules in a sense
detailed there. Dually, a right lifting of 𝐴 𝐺 𝐶 through 𝐵 𝐹 𝐶 consists of a
pair given by a module 𝐴 hom(𝐹,𝐺)𝐶 𝐵 together with a universal binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

hom(𝐹,𝐺)𝐶 𝐹

⇓𝜖

𝐺

Here we introduce different notation for these notions with the aim of rebranding
them. We refer to the module hom𝐴(𝐸, 𝐺) as the left hom from𝐸 to 𝐹 and refer to
hom(𝐹, 𝐺)𝐶 as the right hom from 𝐹 and 𝐺. Extending the “module” metaphor,
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we think of the left hom as the object of homomorphisms from 𝐸 to 𝐺 that
respect the left 𝐴-actions, while the right hom is the object of homomorphisms
from 𝐹 to 𝐺 that respect the right 𝐶-actions. Our first aim in this section is to
demonstrate that the virtual equipment of modules between quasi-categories has
left and right homs for all suitable pairs of modules. By model independence,
this result extends to any ∞-cosmos of (∞, 1)-categories.

Theorem 12.3.6. The virtual equipment of modules between quasi-categories
is biclosed, admitting left and right homs that satisfy an enriched universal
property: for modules 𝐴 𝐸 𝐵, 𝐵 𝐹 𝐶, and 𝐴 𝐺 𝐶,

Fun𝐴×𝐵(𝐸, hom(𝐹, 𝐺)𝐶) ≅ Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≅ Fun𝐵×𝐶(𝐹, hom𝐴(𝐸, 𝐺)).

Proof The cases of left and right homs are dual so we focus on the former.
Fixing a module 𝐴 𝑞 𝐸 𝑝 𝐵, define hom𝐴(𝐸, 𝐺) to be the image of the module
𝐴 𝐺 𝐶 under the composite right adjoint functor

𝒬𝒞𝑎𝑡/𝐴×𝐶 𝒬𝒞𝑎𝑡/𝐸×𝐶 𝒬𝒞𝑎𝑡/𝐵×𝐶
(𝑞×𝐶)∗
⊥

Σ𝑞×𝐶

Π𝑝×𝐶

⊥
(𝑝×𝐶)∗

Note that the left adjoint carries a two-sided isofibration 𝐵 𝑠 𝐹 𝑟 𝐶 to the
composite two-sided isofibration:

𝐸 ×
𝐵
𝐹

𝐸 𝐹

𝐴 𝐵 𝐶

𝜋1 ⌜ 𝜋0

𝑞 𝑝 𝑠 𝑟

and simplicially enriched adjointness adjointness provides natural equivalences
(or in this case isomorphisms) of quasi-categories

Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≅ Fun𝐵×𝐶(𝐹, hom𝐴(𝐸, 𝐺)).

These equivalences induce bijections on the sets of isomorphism classes of
objects in these quasi-categories. By Proposition 8.1.6, this gives rise to the
universal property required by the right hom in the virtual equipment of modules
(see Exercise 12.3.ii) – at least once we prove that hom𝐴(𝐸, 𝐺) defines a module
when 𝐸 and 𝐺 are modules.

Thus it remains only to show that when 𝐴 𝐸 𝐵 is a module, then the functor

hom𝐴(𝐸, −)∶ 𝒬𝒞𝑎𝑡/𝐴×𝐶 𝒬𝒞𝑎𝑡/𝐸×𝐶 𝒬𝒞𝑎𝑡/𝐵×𝐶
(𝑞×𝐶)∗ Π𝑝×𝐶
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preserves modules. Proposition 7.4.5 tells us that modules are stable under
pullback, so we need only demonstrate thatΠ𝑝×𝐶 carries a module 𝐸 𝑣 𝑀 ᵆ 𝐶
to a module from 𝐵 to 𝐶. Proposition 7.4.2 characterizes modules from 𝐸 to 𝐶
as those two-sided isofibrations (𝑣, 𝑢)∶ 𝑀 ↠ 𝐸 × 𝐶 so that

(i) (𝑣, 𝑢)∶ 𝑀 ↠ 𝐸 × 𝐶 is a cocartesian fibration in 𝒬𝒞𝑎𝑡/𝐶,
(ii) (𝑣, 𝑢)∶ 𝑀 ↠ 𝐸 × 𝐶 is a cartesian fibration in 𝒬𝒞𝑎𝑡/𝐸,
(iii) (𝑣, 𝑢)∶ 𝑀 ↠ 𝐸 × 𝐶 is discrete as an object in 𝒬𝒞𝑎𝑡/𝐸×𝐶.

We will show that Π𝑝×𝐶 preserves each of these properties, thus concluding that
Π𝑝×𝐶𝑀 defines a module from 𝐵 to 𝐶. The preservation of (iii) is automatic:
Theorem 12.3.2 demonstrates that the pushforward is a cosmological functor
and Remark 1.3.3 observes that cosmological functors preserve discrete objects.

For (ii), we must show that Π𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶 is a cartesian fibration in
𝒬𝒞𝑎𝑡/𝐵. To begin, note by Proposition 10.1.4 that the cosmological functor
Π𝑝∶ 𝒬𝒞𝑎𝑡/𝐸 → 𝒬𝒞𝑎𝑡/𝐵 preserves cartesian fibrations,6 so we conclude that
Π𝑝𝑀 ↠ Π𝑝(𝐵 × 𝐶) is a cartesian fibration in 𝒬𝒞𝑎𝑡/𝐵. However, this functor
does not coincide with Π𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶. Rather, as demonstrated by Lemma
12.3.7 below, Π𝑝×𝐶𝑀 ↠ 𝐵×𝐶 is a pullback of Π𝑝𝑀 ↠ Π𝑝(𝐵 ×𝐶) in 𝒬𝒞𝑎𝑡/𝐵,
so by pullback stability of cartesian fibrations, this proves (ii).

For the remaining property (i), recall from Lemma 7.1.1 that to say that
(𝑣, 𝑢)∶ 𝑀 ↠ 𝐸 × 𝐶 defines a cocartesian fibration in 𝒬𝒞𝑎𝑡/𝐶 is equivalently
to say that (𝑣, 𝑢)∶ 𝑀 ↠ 𝐸 × 𝐶 defines a morphism in the sub ∞-cosmos
𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 ⊂ 𝒬𝒞𝑎𝑡/𝐸. By Theorem 12.3.2, pushforward restricts to define
a cosmological functor Π𝑝∶ 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 → 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵, soΠ𝑝𝑀 ↠
Π𝑝(𝐸 ×𝐶) lies in the sub cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵. Since pullbacks are created
by the cosmological embedding 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵 𝒬𝒞𝑎𝑡/𝐵, by Lemma 12.3.7
Π𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶 also lies in the sub cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵. Lemma 7.1.1
now tells us that Π𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶 is a cocartesian fibration in 𝒬𝒞𝑎𝑡/𝐶 as
required.

Lemma 12.3.7. Let 𝑝∶ 𝐸 ↠ 𝐵 be a cartesian fibration or cocartesian fibration
between quasi-categories. Then the image of an isofibration 𝑀 ↠ 𝐸 × 𝐶 under
Π𝑝×𝐶∶ 𝒬𝒞𝑎𝑡/𝐸×𝐶 → 𝒬𝒞𝑎𝑡/𝐵×𝐶 is the left vertical isofibration defined by the

6 This is not an application of Theorem 12.3.3, which in this context would tell us that Π𝑝 carries
a cocartesian fibration over 𝐸 to a cocartesian fibration over 𝐵. Rather, we note that Π𝑝, simply
by virtue of being cosmological, carries cartesian fibrations between isofibration with codomain
𝐸 to cartesian fibrations between isofibrations with codomain 𝐵.
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pullback

Π𝑝×𝐶𝑀 Π𝑝𝑀

𝐵 × 𝐶 Π𝑝(𝐸 × 𝐶)

⌟

𝜂

whose right-hand vertical morphism is the image of the map 𝑀 ↠ 𝐸 × 𝐶 under
Π𝑝∶ 𝒬𝒞𝑎𝑡/𝐸 → 𝒬𝒞𝑎𝑡/𝐵.

The conclusion of Lemma 12.3.7 holds, up to equivalence, in any ∞-cosmos
of (∞, 1)-categories𝒦 (see Exercise 12.3.iii). However, we find it easier to work
with the strict adjunction of Theorem 12.3.2 rather than the weaker adjunctions
of Theorem 12.3.3.

Proof To make sense of the statement note that 𝑝∗ carries 𝜋∶ 𝐵 × 𝐶 ↠ 𝐵
to 𝜋∶ 𝐸 × 𝐶 ↠ 𝐸. Hence the map 𝜂∶ 𝐵 × 𝐶 → Π𝑝(𝐸 × 𝐶) is a component
of the unit of the adjunction 𝑝∗ ⊣ Π𝑝. Now the claim follows directly by
verifying that the displayed pullback has the universal property that defines
Π𝑝×𝐶𝑀 ∈ 𝒬𝒞𝑎𝑡/𝐵×𝐶. A cone over the pullback diagram may be interpreted as
a diagram

𝑋 Π𝑝𝑀

𝐵 × 𝐶 Π𝑝(𝐸 × 𝐶)𝜂

in 𝒬𝒞𝑎𝑡/𝐵, which then transposes to define a commutative square

𝑋 ×𝐵 𝐸 𝑀

𝐸 × 𝐶 𝐸 × 𝐶

in 𝒬𝒞𝑎𝑡/𝐸. In fact, this diagram lies in 𝒬𝒞𝑎𝑡/𝐸×𝐶 and the left-hand vertical map
𝑋 ×𝐵 𝐸 → 𝐸 × 𝐶 is isomorphic to (𝑝 × 𝐶)∗(𝑋 → 𝐵 × 𝐶). Hence, this square
transposes along (𝑝 × 𝐶)∗ ⊣ Π𝑝×𝐶 to a commutative square

𝑋 Π𝑝×𝐶𝑀

𝐵 × 𝐶 𝐵 × 𝐶

which proves the claim.

The result of Theorem 12.3.6 extends to biequivalent ∞-cosmoi:
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Corollary 12.3.8. In an∞-cosmos of (∞, 1)-categories, the virtual equipment
of modules is biclosed, admitting left and right homs that satisfy a weak enriched
universal property: for modules 𝐴 𝐸 𝐵, 𝐵 𝐹 𝐶, and 𝐴 𝐺 𝐶,

Fun𝐴×𝐵(𝐸, hom(𝐹, 𝐺)𝐶) ≃ Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≃ Fun𝐵×𝐶(𝐹, hom𝐴(𝐸, 𝐺)).

There are two strategies for proving this. The first is to prove the model
independence of the ingredients used in the proof of Theorem 12.3.6 (see
Exercise 12.3.iii). A more expedient, though ultimately less informative strategy,
is to simply make use of the biequivalence of virtual equipments, which is the
approach we take here.

Proof Consider modules 𝐴 𝐸 𝐵 and 𝐴 𝐺 𝐶 in an ∞-cosmos of (∞, 1)-cat-
egories. By Theorem 11.1.6, there exists a module 𝐵 𝑅 𝐶 whose underlying
quasi-category is equivalent to the left hom hom𝐴0(𝐸0, 𝐺0) of Theorem 12.3.6,
and binary cell 𝜈∶ 𝐸 ⨰ 𝑅 ⇒ 𝐺whose image under the underlying quasi-category
functor composes with this equivalence to the binary map of modules between
quasi-categories that defines the left hom from 𝐸0 to 𝐺0. It remains only to argue
that this data has the universal property of a right extension in 𝕄od(𝒦), but
this follows from the biequivalence of virtual equipments (−)0∶ 𝕄od(𝒦) ∼

𝕄od(𝒬𝒞𝑎𝑡).

Left and right homs can be used to define modules that encode hypothetical
universal properties in∞-category theory. When the modules so constructed are
covariantly or contravariantly represented by a functor, as appropriate, then this
data “satisfies the universal property,” as we now illustrate. Proposition 9.4.9
observes that the value of a pointwise right extension of a functor 𝑓∶ 𝐴 → 𝐶
along a functor 𝑘∶ 𝐴 → 𝐵 at an element 𝑏∶ 1 → 𝐵 is the limit of the composite
diagram

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶
𝑝1 𝑓

The dual result expresses the value of a pointwise left extension of 𝑓 along 𝑘 at
𝑏 as the colimit of the restriction of the functor 𝑓 along 𝑝0∶ Hom𝐵(𝑘, 𝑏) ↠ 𝐴.

We now prove that in an ∞-cosmos of (∞, 1)-categories, if an ∞-category 𝐶
admits such limits, then the pointwise right extension of 𝑓 along 𝑘 exists. The
dual result reduces the question of the existence of pointwise left extensions to
the existence of certain colimits.

Theorem 12.3.9 (existence of pointwise right extensions). Let 𝑘∶ 𝐴 → 𝐵 be a
functor in an ∞-cosmos of (∞, 1)-categories and let 𝐶 be an ∞-category that
admits Hom𝐵(𝑏, 𝑘)-shaped limits for all elements 𝑏∶ 1 → 𝐵. Then 𝐶 admits
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pointwise right extensions along 𝑘

𝐴 𝐶

𝐵

𝑓

𝑘
ran𝑘𝑓

⇑𝜈

Proof Consider the module Hom𝐵(𝐵, 𝑘) from 𝐴 to 𝐵 covariantly represented
by the functor 𝑘∶ 𝐴 → 𝐵. Corollary 12.3.8 proves that any∞-cosmos of (∞, 1)-
categories admits left and right homs, defining right extensions and right liftings
in the virtual equipment of modules. In particular given any diagram 𝑓∶ 𝐴 → 𝐶,
there exists a right extension in the virtual equipment of modules

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

⇓

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓))

Hom𝐶(𝐶,𝑓)

Now the ∞-category 𝐶 admits a pointwise right Kan extension of 𝑓∶ 𝐴 → 𝐶
along 𝑘∶ 𝐴 → 𝐵 just when the module hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓)) is
covariantly represented by a functor 𝑟∶ 𝐵 → 𝐶. By Corollary 12.2.8, this
module is covariantly represented if and only if its pullbacks along each vertex
𝑏∶ 1 → 𝐵 are covariantly represented, which is the case just when the fiber of
the module hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓)) ↠ 𝐵 × 𝐶 over 𝑏 has a terminal
element.

By Lemma 9.1.4 the fiber hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓))(1, 𝑏) arises as
the the right extension

𝐵 1 𝐶

𝐵 𝐶

Hom𝐵(𝑏,𝐵) hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓))(1,𝑏)

⇓𝜌

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓))

Since Hom𝐵(𝐵, 𝑘) ⊗ Hom𝐵(𝑏, 𝐵) ≃ Hom𝐵(𝑏, 𝑘) by Proposition 8.4.7, Proposi-
tion 9.1.6 allows us to combine these two right extensions into a single one

𝐴 1 𝐶

𝐴 𝐶

Hom𝐵(𝑏,𝑘)

⇓

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓))(1,𝑏)

Hom𝐶(𝐶,𝑓)
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By exactness of the comma square

Hom𝐵(𝑏, 𝑘)

𝐴 1

𝐵

𝑝1 !
𝜙
⇐

𝑘 𝑏

we also have a composition relation Hom𝐴(𝑝1, 𝐴) ⊗ Hom1(1, !) ≃ Hom𝐵(𝑏, 𝑘).
By Lemma 9.1.4, there is a right extension diagram

𝐴 Hom𝐵(𝑏, 𝑘) 𝐶

𝐴 𝐶

Hom𝐴(𝑝1,𝐴)

⇓

Hom𝐶(𝐶,𝑓𝑝1)

Hom𝐶(𝐶,𝑓)

Since Hom𝐶(𝐶, 𝑓) admits a right extension along Hom𝐴(𝑝1, 𝐴)⊗Hom1(1, !), by
Proposition 9.1.6 the right extension of Hom𝐶(𝐶, 𝑓𝑝1) along Hom1(1, !) exists
and is given by

Hom𝐵(𝑏, 𝑘) 1 𝐶

Hom𝐵(𝑏, 𝑘) 𝐶

Hom1(1,!)

⇓

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓))(1,𝑏)

Hom𝐶(𝐶,𝑓𝑝1)

In summary, the fiber of the module hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓)) over
𝑏∶ 1 → 𝐵 is the module defined by the right extension of Hom𝐶(𝐶, 𝑓𝑝1)
along Hom1(1, !). Thus, we see that if this module is represented by an ele-
ment 𝑐∶ 1 → 𝐶, that element defines a pointwise right extension of the diagram

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

1

𝑝1

!

𝑓

𝑐
⇑

By Definition 9.4.7, this exists if and only if the diagram 𝑓𝑝1∶ Hom𝐵(𝑏, 𝑘) ↠ 𝐶
has a limit in 𝐶. As we have assumed that this limit exists in 𝐶, so does the
pointwise right extension of 𝑓 along 𝑘, as claimed.

Recall from Observation 10.3.4 that an∞-cosmos of (∞, 1)-categories admits
weakly defined exponentials.

Corollary 12.3.10. Let 𝑘∶ 𝐴 → 𝐵 be a functor in an∞-cosmos of (∞, 1)-cat-
egories and let 𝐶 be an ∞-category that admits Hom𝐵(𝑏, 𝑘)-shaped limits for
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all elements 𝑏∶ 1 → 𝐵. Then pointwise right extension defines a right adjoint
to the restriction functor:

𝐶𝐴 𝐶𝐵

ran𝑘

⊥
−∘𝑘

Proof By Lemma 2.3.7, to define a right adjoint to restriction it suffices to
define an absolute right lifting of the identity through the functor − ∘ 𝑘∶ 𝐶𝐵 →
𝐶𝐴. By Proposition 12.2.9, to achieve this it suffices to define absolute right
lifting diagrams

𝐶𝐵

1 𝐶𝐴
⇓𝜈

−∘𝑘
ran𝑘𝑓

𝑓

for all elements 𝑓∶ 1 → 𝐶𝐴 of 𝐶𝐴. As our notation suggestions, we will
demonstrate that the pointwise right extension 𝜈∶ ran𝑘𝑓 ∘ 𝑘 ⇒ 𝑓 of Theorem
12.3.9 transposes across the equivalence hFun(𝑋, 𝐶𝐴) ≃ hFun(𝑋 × 𝐴, 𝐶) of
Observation 10.3.4 to define an absolute right lifting diagram.

The universal property that characterizes the absolute right lifting diagram

𝑋 𝐶𝐵 𝑋 𝐶𝐵

𝐷 𝐶𝐴 1 𝐶𝐴

!

𝑒

⇓𝜒 𝐶𝑘 = !

𝑒

⇓∃!𝜁

⇓𝜈
𝐶𝑘

𝑓 𝑓

𝑟

where we have written 𝑟 ≔ ran𝑘𝑓 transposes to

𝐴 × 𝑋 𝐴 𝐶 𝐴 × 𝑋 𝐴 𝐶

𝐵 × 𝑋 𝐵 × 𝑋 𝐵

𝑘×𝑋

𝜋 𝑓

= 𝑘×𝑋

𝜋

⌟
𝑘

𝑓

𝑒

⇑𝜒

𝑒

𝜋

𝑟
⇑𝜈

⇑∃!𝜁

Lemma 9.2.8 proves that the pullback square is exact. Now if 𝜈 is a pointwise
right extension, then by Corollary 9.3.4 so is 𝜈 ⋅ 𝜋. The transposed universal
property of this right extension diagram proves that 𝜈 defines an absolute right
lifting.

The argument just given shows something further. By Corollary 9.3.4, the
pasted composite of a pointwise right extension 𝜈 with an exact square 𝜙 gives
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another pointwise right extension as below-left, which we have just shown
transposes to define an absolute right-lifting diagram below-right:

𝐸 𝐴 𝐶

𝐷 𝐵

𝑝

𝑞 ⇓𝜙 𝑘

𝑓

ℎ

𝑟
⇑𝜈 ↭

𝐶𝐵 𝐶𝐷

1 𝐶𝐴 𝐶𝐸
⇓𝜈

𝐶𝑘

𝐶ℎ

⇓𝐶𝜙 𝐶𝑞𝑟

𝑓 𝐶𝑝

Thus, the absolute right lifting diagrams defined by transposing pointwise right
extension diagrams are stable under pasting with exponentiated exact squares.
In particular, if 𝐶 admits pointwise right extensions along 𝑘∶ 𝐴 → 𝐵 then for
any exact square 𝜙 we have an absolute right lifting diagram

𝐶𝐵 𝐶𝐷

𝐶𝐴 𝐶𝐴 𝐶𝐸
⇓𝜈

𝐶𝑘

𝐶ℎ

⇓𝐶𝜙 𝐶𝑞
ran𝑘

𝐶𝑝

since by Proposition 12.2.9 the universal property of this absolute right lifting
diagram can be checked pointwise at elements 𝑓∶ 1 → 𝐶𝐴. Using this, we can
establish a derivator-style “Beck–Chevalley” result as follows:

Lemma 12.3.11 (Beck–Chevalley). For any exact square

𝐷

𝐶 𝐵

𝐴

𝑞 𝑝

𝜙
⇐

𝑔 𝑓

in an ∞-cosmos of (∞, 1)-categories and any ∞-category 𝐸, the mates 𝜙! and
𝜙! of the induced natural transformation 𝜙∗ are both isomorphisms whenever
these pointwise right and left extensions exist

𝐸𝐴 𝐸𝐴 𝐸𝐴

𝐸𝐶 𝐸𝐵 𝐸𝐶 𝐸𝐵 𝐸𝐶 𝐸𝐵

𝐸𝐷 𝐸𝐷 𝐸𝐷

𝑓∗𝑔∗

𝜙∗
⇐

𝑓∗

⇓𝜙!

𝑔∗

⇑𝜙!

𝑞∗ 𝑝∗

ran𝑔

𝑞∗ 𝑝∗

lan𝑓

ran𝑝 lan𝑞

Proof By Corollary 12.3.10, the pointwise right extensions assemble into
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adjoint functors ran𝑔 and ran𝑝 which define absolute right lifting diagrams

𝐸𝐴 𝐸𝐵 𝐸𝐵

𝐸𝐶 𝐸𝐶 𝐸𝐷 𝐸𝐶 𝐸𝐷 𝐸𝐷
⇓𝜖

𝑔∗

𝑓∗

⇓𝜙∗ 𝑝∗
⇓𝜖

𝑝∗
ran𝑔

𝑞∗ 𝑞∗

ran𝑝

Moreover, the mate 𝜙! of 𝜙∗ defines a factorization of the left-hand diagram
through the right-hand diagram:

𝐸𝐴 𝐸𝐵 𝐸𝐴 𝐸𝐵

𝐸𝐶 𝐸𝐶 𝐸𝐷 𝐸𝐶 𝐸𝐷 𝐸𝐷
⇓𝜖

𝑔∗

𝑓∗

⇓𝜙∗ 𝑝∗ = ⇓𝜙!

𝑓∗

⇓𝜖
𝑝∗

ran𝑔

𝑞∗ 𝑞∗

ran𝑔 ran𝑝

Immediately from the universal property of the absolute right liftings of 𝑞∗

through 𝑝∗ we have that 𝜙! is an isomorphism. The proof for 𝜙! is similar using
the absolute left lifting diagrams arising from the pointwise left extensions
defining lan𝑓 and lan𝑞

Exercises
Exercise 12.3.i. Conclude from the pullback diagram of simplicial sets

𝟙 + 𝟙 Λ1[2]

𝟚 𝟛

⌟

∼

𝑑1

that the functor 𝑑1∶ 𝟚 → 𝟛 is not exponentiable.

Exercise 12.3.ii. Suppose 𝐴 𝐸 𝐵, 𝐴 𝐺 𝐶, and 𝐵 𝑅 𝐶 are modules equipped
with a natural equivalence Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≃ Fun𝐵×𝐶(𝐹, 𝑅) for all two-
sided fibrations 𝐹 from 𝐵 to 𝐶. Extract a binary cell 𝜈∶ 𝐸 ⨰ 𝑅 ⇒ 𝐺 from this
natural equivalence and prove that 𝜈 exhibits 𝑅 as a right extension of 𝐺 along
𝐸.

Exercise 12.3.iii. Adapt Lemma 12.3.7 to a model independent statement that
applies in any ∞-cosmos of (∞, 1)-categories and then prove this result. Then
use this to adapt the proof of Theorem 12.3.6 to directly demonstrate that an
∞-cosmos of (∞, 1)-categories has all left and right homs.
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Appendix A

Basic Concepts of Enriched Category Theory

Enriched category theory exists because enriched categories exist in nature. To
explain, consider the data of a 1-category 𝒞, given by:

• a collection of objects
• for each pair of objects 𝑥, 𝑦 ∈ 𝒞, a set 𝒞(𝑥, 𝑦) of arrows in 𝒞 from 𝑥 to 𝑦
• for each 𝑥 ∈ 𝒞, a specified identity element id𝑥∶ 1 → 𝒞(𝑥, 𝑥), and for each
𝑥, 𝑦, 𝑧 ∈ 𝒞, a specified composition map ∘∶ 𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) → 𝒞(𝑥, 𝑧)
satisfying the associativity and unit1 conditions:

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒞(𝑥, 𝑧) × 𝒞(𝑤, 𝑥)

𝒞(𝑦, 𝑧) × 𝒞(𝑤, 𝑦) 𝒞(𝑤, 𝑧)

𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦) × 𝒞(𝑥, 𝑥)

𝒞(𝑦, 𝑦) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦)

id×∘

∘×id

∘

∘

id

id× id𝑥

id𝑦× id ∘

∘

(A.0.1)

In many mathematical examples of interest, the set 𝒞(𝑥, 𝑦) can be given addi-
tional structure, in which case it would be strange not to take it into account
when performing further categorical constructions.

Perhaps there exists a specified zero arrow 0𝑥,𝑦 ∈ 𝒞(𝑥, 𝑦) in each hom-set,
defining a two-sided ideal for composition: 𝑔 ∘ 0 ∘ 𝑓 = 0. Or extending this,
perhaps each 𝒞(𝑥, 𝑦) is an abelian group and composition is ℤ-bilinear. Or in
another direction, perhaps the set of arrows from 𝑥 to 𝑦 in 𝒞 form the objects of
1 Confusingly, this diagram contains two different sorts of identity arrows: e.g., the top horizontal

arrow is the product of the specified identity element id𝑥∶ 1 → 𝒞(𝑥, 𝑥) with the identity arrow
associated with the object 𝒞(𝑥, 𝑦).
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a 1-category. In this setting, we regard the objects of 𝒞(𝑥, 𝑦) as “1-dimensional”
morphisms from 𝑥 to 𝑦 and the arrows of 𝒞(𝑥, 𝑦) as “2-dimensional” morphisms
from 𝑥 to 𝑦 in 𝒞; here, it is natural to ask that the composition map defines
a functor. Or perhaps the set of arrows from 𝑥 to 𝑦 in 𝒞 form the vertices of
a simplicial set, whose higher simplices now provide arrows in each positive
dimension; here, it is natural to ask that composition defines a simplicial map.
In all of these contexts, one says that the 1-category 𝒞 can be enriched over the
category 𝒱 in which the objects 𝒞(𝑥, 𝑦) and diagrams (A.0.1) live2 – with 𝒱
equal to the category of pointed sets, abelian groups, categories, or simplicial
sets in the examples just described.

An alternate point of view on enriched category theory is often emphasized –
adopted, for instance, in the classic textbook [68] from which we stole the title
of this chapter. To borrow a distinction used by Peter May, the term “enriched”
can be used as a compound noun – enriched categories – or as an adjective –
enriched categories. In the noun form, an enriched category 𝒞 has no preexisting
underlying ordinary category, although we shall see in Definition A.2.2 that
the underlying unenriched 1-category can always be identified a posteriori.
When used as an adjective, an enriched category 𝒞 is perhaps most naturally an
ordinary category, whose hom-sets can be given additional structure.3 While the
noun perspective is arguably more elegant when discussing the general theory
of enriched categories, the adjective perspective dominates when discussing
examples, so we choose to emphasize the adjective form and focus on enriching
unenriched categories here.

Before giving a precise definition of enriched category and the enriched
functors between them in §A.2, in §A.1 we study the category 𝒱 that defines
the base for enrichment in which the hom-objects ultimately live. The primary
examples appearing in this text are 𝒱 = 𝒞𝑎𝑡 and 𝒱 = 𝑠𝒮𝑒𝑡 – as well as the
unenriched case 𝒱 = 𝒮𝑒𝑡 – each of which has the special property of being a
cartesian closed category. Since there are some simplifications in enriching over
a cartesian closed category, we grant ourselves the luxury of working explicitly
with these basis.4

We continue in §A.3 with an introduction to enriched natural transformations
and the enriched Yoneda lemma. These notions allow us to correctly state the
2 To interpret the diagrams (A.0.1) in 𝒱 one needs to specify an interpretation for the monoidal

product “×” and its unit object 1 (which is not displayed in the diagram). In the examples we
consider, this product is the cartesian product and this unit is the terminal object.

3 To quote [84] “Thinking from the two points of view simultaneously, it is essential that the
constructed ordinary category be isomorphic to the ordinary category that one started out with.
Either way, there is a conflict of notation between that preferred by category theorists and that in
common use by ‘working mathematicians’ (to whom [81] is addressed).”

4 More generally, a category can be enriched over a monoidal category [68], a bicategory [17], or
a virtual double category [75], each generalizing the preceding bases for enrichment.
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universal properties, involving an enriched natural isomorphism, that character-
ize cotensors and tensors in §A.4 and conical limits and colimits in §A.5. These
are each special cases of weighted limits and colimits, which are introduced in
§A.6. We conclude in §A.7 with a general theory of “change of base” – the one
part of the theory of enriched categories that is not covered in encyclopedic
detail in [68], the original reference instead being [41] – which allows us to be
more precise about the procedure by which a 2-category may be regarded as
a simplicial category or by which a simplicial category may be quotiented to
define a 2-category, as alluded to in Digression 1.4.2.

A.1 Cartesian Closed Categories

Throughout this text, the base category for enrichment is always taken to be a
complete and cocomplete cartesian closed category:

Definition A.1.1. A category 𝒱 is cartesian closed when it

• admits finite products, or equivalently, a terminal object 1 ∈ 𝒱 and binary
products and

• for each 𝑣 ∈ 𝒱, the functor 𝑣×−∶ 𝒱 → 𝒱 admits a right adjoint (−)𝑣∶ 𝒱 →
𝒱.

Lemma A.1.2. In a cartesian closed category 𝒱, the product bifunctor is the
left adjoint of a two-variable adjunction, this being captured by a commutative
triangle of natural isomorphisms

𝒱(𝑎 × 𝑏, 𝑐)

𝒱(𝑎, 𝑐𝑏) 𝒱(𝑏, 𝑐𝑎)
≅≅

≅
(A.1.3)

Proof The family of functors (−)𝑎∶ 𝒱 → 𝒱 extend to bifunctors

(−)−∶ 𝒱op × 𝒱 → 𝒱

in a unique way so that the isomorphisms defining each adjunction 𝑎×− ⊣ (−)𝑎

𝒱(𝑎 × 𝑏, 𝑐) ≅ 𝒱(𝑏, 𝑐𝑎)

become natural in 𝑎 (as well as 𝑏 and 𝑐). The details are left as Exercise A.1.i
or to [104, 4.3.6]. This defines the natural isomorphism on the right-hand side
of (A.1.3). The natural isomorphism on the left-hand is defined by composing
with the symmetry isomorphism 𝑎 × 𝑏 ≅ 𝑏 × 𝑎. The third natural isomorphism
is taken to be the composite of these two.
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Example A.1.4 (cartesian closed categories).

(i) The category of sets is cartesian closed, with 𝐵𝐴 defined to be the set
of functions from 𝐴 to 𝐵. Transposition across the natural isomorphism
(A.1.3) is referred to as “currying.”

(ii) The category 𝒞𝑎𝑡 of small5 categories is cartesian closed, with 𝐵𝐴

defined to be the category of functors and natural transformations from
𝐴 to 𝐵.

𝒞𝑎𝑡(𝐴, 𝐶𝐵) ≅ 𝒞𝑎𝑡(𝐴 × 𝐵, 𝐶) ≅ 𝒞𝑎𝑡(𝐵, 𝐶𝐴)

identifies natural transformations, which are arrows 𝟚 → 𝐶𝐴 in the
category of functors, with “directed homotopies” 𝐴 × 𝟚 → 𝐶.

(iii) For any small category 𝒞, the category 𝒮𝑒𝑡𝒞
op

is cartesian closed. By
the Yoneda lemma for 𝐹,𝐺 ∈ 𝒮𝑒𝑡𝒞

op
, the value of 𝐺𝐹 at 𝑐 ∈ 𝒞 must be

defined by

𝐺𝐹(𝑐) ≅ 𝒮𝑒𝑡𝒞
op
(𝒞(−, 𝑐), 𝐺𝐹) ≅ 𝒮𝑒𝑡𝒞

op
(𝐹 × 𝒞(−, 𝑐), 𝐺)

to be the set of natural transformations 𝐹 × 𝒞(−, 𝑐) ⇒ 𝐺. As proscribed
by Lemma A.1.2, the action of 𝐺𝐹 on a morphism 𝑓∶ 𝑐 → 𝑐′ ∈ 𝒞
is defined by precomposition with the corresponding natural transfor-
mation 𝑓 ∘ −∶ 𝒞(−, 𝑐) ⇒ 𝒞(−, 𝑐′). This defines the functor 𝐺𝐹. Since
any functor 𝐻 ∈ 𝒮𝑒𝑡𝒞

op
is canonically a colimit of representables, this

definition extends to the required natural isomorphism 𝒮𝑒𝑡𝒞
op
(𝐻, 𝐺𝐹) ≅

𝒮𝑒𝑡𝒞
op
(𝐹 × 𝐻,𝐺).

(iv) In particular taking 𝒞 = 𝚫, the category of simplicial sets 𝑠𝒮𝑒𝑡 ≔ 𝒮𝑒𝑡𝚫
op

is cartesian closed.

The exponential 𝑏𝑎 is frequently referred to as an internal hom. As this name
suggests, the internal hom 𝑏𝑎 can be viewed as a lifting of the hom-set 𝒱(𝑎, 𝑏)
along a functor that we now introduce.

Definition A.1.5. For any cartesian closed category 𝒱, the underlying set
functor is the functor

𝒱 𝒮𝑒𝑡
(−)0≔𝒱(1,−)

represented by the terminal object 1 ∈ 𝒱.

Lemma A.1.6. For any pair of objects 𝑎, 𝑏 ∈ 𝒱 in a cartesian closed category,
the underlying set of the internal hom 𝑏𝑎 is 𝒱(𝑎, 𝑏), i.e.:

(𝑏𝑎)0 ≅ 𝒱(𝑎, 𝑏).
5 In general, the category of categories whose sets of morphisms are bounded by a fixed

inaccessible cardinal is cartesian closed in that Grothendieck universe.
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Proof Combining Definition A.1.5 with (A.1.3):

(𝑏𝑎)0 ≔ 𝒱(1, 𝑏𝑎) ≅ 𝒱(1 × 𝑎, 𝑏) ≅ 𝒱(𝑎, 𝑏)

since there is a natural isomorphism 1 × 𝑎 ≅ 𝑎.

It makes sense to ask whether an isomorphism of underlying sets can be
“enriched” to lie in 𝒱, that is, lifted along the underlying set functor (−)0∶ 𝒱 →
𝒮𝑒𝑡.

Lemma A.1.7. The natural isomorphisms (A.1.3) characterizing the defining
two-variable adjunction of a cartesian closed category lift to 𝒱: for any 𝑎, 𝑏, 𝑐 ∈
𝒱

𝑐𝑎×𝑏

(𝑐𝑏)𝑎 (𝑐𝑎)𝑏
≅≅

≅
(A.1.8)

Proof This follows from Lemma A.1.2, the associativity of finite products,
and the Yoneda lemma. To prove (A.1.8), it suffices to show that 𝑐𝑎×𝑏, (𝑐𝑏)𝑎,
and (𝑐𝑎)𝑏 represent the same functor. By composing the sequence of natural
isomorphisms

𝒱(𝑥, (𝑐𝑏)𝑎) ≅ 𝒱(𝑥 × 𝑎, 𝑐𝑏) ≅ 𝒱((𝑥 × 𝑎) × 𝑏, 𝑐) ≅ 𝒱(𝑥 × (𝑎 × 𝑏), 𝑐)
≅ 𝒱(𝑥, 𝑐𝑎×𝑏)
≅ 𝒱((𝑎 × 𝑏) × 𝑥, 𝑐) ≅ 𝒱(𝑎 × (𝑏 × 𝑥), 𝑐) ≅ 𝒱(𝑏 × 𝑥, 𝑐𝑎)
≅ 𝒱(𝑥, (𝑐𝑎)𝑏),

we see that
𝒱(𝑥, (𝑐𝑏)𝑎) ≅ 𝒱(𝑥, 𝑐𝑎×𝑏) ≅ 𝒱(𝑥, (𝑐𝑎)𝑏).

Remark A.1.9. Note (−)1∶ 𝒱 → 𝒱 is naturally isomorphic to the identity
functor – i.e., 𝑏1 ≅ 𝑏, – since it is right adjoint to a functor −× 1∶ 𝒱 → 𝒱 that
is naturally isomorphic to the identity.

A complete and cocomplete cartesian closed category is a special case of
a complete and cocomplete closed symmetric monoidal category, this being
deemed a cosmos by Jean Bénabou, to signify that such bases are an ideal setting
for enriched category theory. For obvious reasons, we will not use this term here
and instead refer to “complete and cocomplete cartesian closed categories” to
highlight some common features of the categories appearing in Example A.1.4.
6

6 There is a competing 2-categorical notion of (fibrational) “cosmos” due to Street [117] that is
more similar to the notion we consider here, which was the direct inspiration for the terminology
we introduce in Definition 1.2.1.
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Exercises
Exercise A.1.i. Prove that in a cartesian closed category 𝒱, the family of
functors (−)𝑎∶ 𝒱 → 𝒱 extend to bifunctors

(−)−∶ 𝒱op × 𝒱 → 𝒱

in a unique way so that the isomorphism defining each adjunction 𝑎×− ⊣ (−)𝑎

𝒱(𝑎 × 𝑏, 𝑐) ≅ 𝒱(𝑏, 𝑐𝑎)

becomes natural in 𝑎 (as well as 𝑏 and 𝑐).

Exercise A.1.ii. The data of a closed symmetric monoidal category gener-
alizes Definition A.1.1 by replacing finite products by an arbitrary bifunctor
− ⊗ −∶ 𝒱 × 𝒱 → 𝒱, replacing the terminal object by an object 𝐼 ∈ 𝒱, and
requiring the additional specification of natural isomorphisms

𝑎 ⊗ (𝑏 ⊗ 𝑐) ≅
𝛼
(𝑎 ⊗ 𝑏) ⊗ 𝑐 𝐼 ⊗ 𝑎 ≅

𝜆
𝑎 ≅

𝜌
𝑎 ⊗ 𝐼 𝑎 ⊗ 𝑏 ≅

𝛾
𝑏 ⊗ 𝑎

satisfying various coherence axioms [41, 66] (see also [69]). Provide a canonical
construction of these isomorphisms in the special case of a cartesian closed
category and explain why the coherence conditions are automatic.

A.2 Enriched Categories and Enriched Functors

We now briefly switch perspectives and explain the meaning of the noun phrase
“enriched category” before discussing what is required to “enrich” an ordinary
1-category. From here through §A.6, we fix a complete and cocomplete cartesian
closed category (𝒱, ×, 1) to serve as the base for enrichment.

Definition A.2.1. A 𝒱-enriched category or 𝒱-category 𝒞 is given by:

• a collection of objects
• for each pair of objects 𝑥, 𝑦 ∈ 𝒞, an hom-object 𝒞(𝑥, 𝑦) ∈ 𝒱
• for each 𝑥 ∈ 𝒞, a specified identity element encoded by a map id𝑥∶ 1 →
𝒞(𝑥, 𝑥) ∈ 𝒱, and for each 𝑥, 𝑦, 𝑧 ∈ 𝒞, a specified composition map
∘∶ 𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) → 𝒞(𝑥, 𝑧) ∈ 𝒱 satisfying the associativity and unit
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conditions, both commutative diagrams lying in 𝒱:7

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒞(𝑥, 𝑧) × 𝒞(𝑤, 𝑥)

𝒞(𝑦, 𝑧) × 𝒞(𝑤, 𝑦) 𝒞(𝑤, 𝑧)

𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦) × 𝒞(𝑥, 𝑥)

𝒞(𝑦, 𝑦) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦)

id×∘

∘×id

∘

∘

id

id× id𝑥

id𝑦× id ∘

∘

Evidently from the diagrams of (A.0.1), a locally small 1-category defines a
category enriched in 𝒮𝑒𝑡. The underlying set functor of Definition A.1.5 can be
used to define the “underlying category” of an enriched category.

Definition A.2.2. If 𝒞 is a 𝒱-category, its underlying category 𝒞0 is the 1-
category with the same collection of objects and with hom-sets defined by apply-
ing the underlying set functor (−)0∶ 𝒱 → 𝒮𝑒𝑡 to the hom-objects 𝒞(𝑥, 𝑦) ∈ 𝒱.
For the most part, we write “𝒞(𝑥, 𝑦)” for both the hom-object and the hom-
set and use our words to disambiguate, but when necessary “𝒞(𝑥, 𝑦)0” is also
commonly used notation for the hom-set of the underlying category.

Note the identity arrow id𝑥∶ 1 → 𝒞(𝑥, 𝑥) of the 𝒱-category is by definition
an element of the hom-set 𝒞(𝑥, 𝑥)0 ≔ 𝒱(1, 𝒞(𝑥, 𝑥)). The composite of two
arrows 𝑓∶ 1 → 𝒞(𝑥, 𝑦) and 𝑔∶ 1 → 𝒞(𝑦, 𝑧) in the underlying category is
defined to be the arrow constructed as the composite

1 𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑧)
𝑔×𝑓 ∘

In analogy with the discussion around Definition A.1.5, when one speaks of
“enriching” an a priori unenriched category 𝒞 over 𝒱, the task is to define a 𝒱-
enriched category as in Definition A.2.1 whose underlying category recovers 𝒞.
When 𝒱 = 𝒞𝑎𝑡, the task is to define a 2-category whose underlying 1-category
is the one given. When 𝒱 = 𝑠𝒮𝑒𝑡, the task is to define simplicial hom-sets of
𝑛-arrows so that the 0-arrows are the ones given. When a simplicially enriched
category 𝒞 is encoded as a simplicial object 𝒞• in 𝒞𝑎𝑡 as explained in Digression
1.2.4, its underlying category is the category 𝒞0, further justifying the notion
introduced in Definition A.2.2.
7 These diagrams suppress the associativity and unit natural isomorphisms involving the product

bifunctors × and its unit object 1. In a cartesian closed category these are canonical – rather
than given by extra data, as is the case in the more general closed symmetric monoidal category
(see Exercise A.1.ii).
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For example, a cartesian closed category 𝒱 as in Definition A.1.1 can be
enriched to define a 𝒱-category.

Lemma A.2.3. A cartesian closed category 𝒱 defines a 𝒱-category whose:

• objects are the objects of 𝒱,
• hom-object in 𝒱 from 𝑎 to 𝑏 is the internal hom 𝑏𝑎, and
• the identity map id𝑎∶ 1 → 𝑎𝑎 and composition map ∘∶ 𝑐𝑏 × 𝑏𝑎 → 𝑐𝑎 are

defined to be the transposes of

1 × 𝑎 ≃ 𝑎 and 𝑐𝑏 × 𝑏𝑎 × 𝑎 id× ev 𝑐𝑏 × 𝑏 ev 𝑐

the latter defined using the counit ev of the cartesian closure adjunction.

Proof The task is to verify the commutative diagrams of (A.2.1) in 𝒱 and then
observe that Lemma A.1.6 reveals that the underlying category of the𝒱-category
defined by the statement is the 1-category 𝒱. We leave the identity conditions to
the reader and verify associativity.

The definition of the composition map as an adjoint transpose implies that
its adjoint transpose, the top-right composite below, is given by the left-bottom
composite:

𝑐𝑏 × 𝑏𝑎 × 𝑎 𝑐𝑎 × 𝑎

𝑐𝑏 × 𝑏 𝑐

∘×id

id× ev ev

ev

(A.2.4)

The associativity diagram below-left commutes if and only if the transposed
diagram appearing as the outer boundary composite below-right commutes:

𝑑𝑐 × 𝑐𝑏 × 𝑏𝑎 𝑑𝑏 × 𝑏𝑎

𝑑𝑐 × 𝑐𝑎 𝑑𝑎
id×∘

∘×id

∘

∘

↭

𝑑𝑐 × 𝑐𝑏 × 𝑏𝑎 × 𝑎 𝑑𝑏 × 𝑏𝑎 × 𝑎

𝑑𝑐 × 𝑐𝑏 × 𝑏 𝑑𝑏 × 𝑏

𝑑𝑐 × 𝑐𝑎 × 𝑎 𝑑𝑐 × 𝑐 𝑑

∘×id× id

id×∘× id

id× id× ev id× ev

∘×id

id× ev ev

id× ev ev

which follows from bifunctoriality of × and two instances of the commutative
square above.

Definition A.2.5. The free 𝒱-category on a 1-category 𝒞 has the same col-
lection of objects with the hom-objects defined to be coproducts ⨿𝒞(𝑥,𝑦)1 of
the terminal object 1 ∈ 𝒱 indexed by the hom-set 𝒞(𝑥, 𝑦). The identity map
id𝑥∶ 1 → ⨿𝒞(𝑥,𝑥)1 is given by the inclusion of the component indexed by
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the identity arrow, the composition map defined by acting by the composition
function on the indexing sets:

⨿𝒞(𝑦,𝑧)1 × ⨿𝒞(𝑥,𝑦)1 ≅ ⨿𝒞(𝑦,𝑧)×𝒞(𝑥,𝑦)1 ⨿𝒞(𝑥,𝑧)1
⨿∘1

For example, free 𝒞𝑎𝑡-enriched categories are those with no nonidentity
2-cells, while free 𝑠𝒮𝑒𝑡-enriched categories are those with no nondegenerate
arrows in positive dimensions. We use the same notation for the 1-category 𝒞
and the free 𝒱-category it generates, using language to disambiguate.

Definition A.2.6. A 𝒱-enriched functor or 𝒱-functor 𝐹∶ 𝒞 → 𝒟 is given by

• a mapping on objects that carries each 𝑥 ∈ 𝒞 to some 𝐹𝑥 ∈ 𝒟
• for each pair of objects 𝑥, 𝑦 ∈ 𝒞, an internal action on the hom-objects given

by a morphism 𝐹𝑥,𝑦∶ 𝒞(𝑥, 𝑦) → 𝒟(𝐹𝑥, 𝐹𝑦) ∈ 𝒱 so that the 𝒱-functoriality
diagrams commute:

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑧) 1 𝒞(𝑥, 𝑥)

𝒟(𝐹𝑦, 𝐹𝑧) × 𝒟(𝐹𝑥, 𝐹𝑦) 𝒟(𝐹𝑥, 𝐹𝑧) 𝒟(𝐹𝑥, 𝐹𝑥)

𝐹𝑦,𝑧×𝐹𝑥,𝑦

∘

𝐹𝑥,𝑧

id𝑥

id𝐹𝑥
𝐹𝑥,𝑥

∘

A prototypical example is given by the representable functors:

Example A.2.7. For any 𝒱-category 𝒞 and object 𝑐 ∈ 𝒞, the enriched repre-
sentable 𝒱-functor 𝒞(𝑐, −)∶ 𝒞 → 𝒱 is defined on objects by the assignment
𝑥 ∈ 𝒞 ↦ 𝒞(𝑐, 𝑥) ∈ 𝒱 and whose internal action hom-objects is defined to be
the adjoint transpose of the internal composition map for 𝒞.

𝒞(𝑥, 𝑦) 𝒞(𝑐, 𝑦)𝒞(𝑐,𝑥) 𝒞(𝑥, 𝑦) × 𝒞(𝑐, 𝑥) 𝒞(𝑐, 𝑦)
𝒞(𝑐,−)𝑥,𝑦 ↭ ∘

The 𝒱-functoriality diagrams are transposes of associativity and identity di-
agrams in 𝒞. The contravariant enriched representable functors are defined
similarly (see Exercise A.2.iii).

Remark A.2.8. An enriched representable functor can be thought of as a “two-
step” enrichment of the corresponding unenriched representable functor: the
first step enriches the hom-sets to hom-objects in 𝒱 and the second step enriches
the composition function to an internal composition map in 𝒱. To enrich a
1-category 𝒞 to a 𝒱-category with 𝒞 as its underlying 1-category requires more
than simply a lift of the hom bifunctor:

𝒞op × 𝒞 𝒱

𝒮𝑒𝑡
𝒞(−,−)

𝒞(−,−)

≅
(−)0
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In addition, the 𝒱-valued representable 𝒞(−,−)∶ 𝒞op × 𝒞 → 𝒱 must be a
𝒱-bifunctor in the sense of Exercise A.2.iv, which tells us that the composition
map may be defined internally to 𝒱 and the identity and associativity laws hold
there.

Both of the constructions of underlying unenriched categories and free cat-
egories are functorial (see Exercise A.2.v). The relationship between these
constructions is summarized by the following proposition, whose proof is left
as an exercise because it is strengthened by Corollary A.7.6.

Proposition A.2.9. The free 𝒱-category functor defines a fully faithful left
adjoint to the underlying category functor. Consequently, a 𝒱-category is free
just when it is isomorphic to the free category on its underlying category via
the counit of this adjunction.

Proof Exercise A.2.vi.

Exercises
Exercise A.2.i. Verify that the underlying category of an enriched category
described in Definition A.2.2 is indeed a category.

Exercise A.2.ii. Verify the unit condition left to the reader in the proof of
Lemma A.2.3.

Exercise A.2.iii. Define the opposite of a 𝒱-category and dualize Example
A.2.7 to define contravariant enriched representable functors.

Exercise A.2.iv.

(i) Define the cartesian product of two 𝒱-categories.
(ii) Define a multivariable 𝒱-functor.
(iii) Use these notions to show that any 𝒱-category 𝒞 comes equipped with

a canonical 𝒱-bifunctor 𝒞(−,−)∶ 𝒞op × 𝒞 → 𝒱 that restricts to the co-
and contravariant representable functors.

Exercise A.2.v.

(i) Define the underlying functor of an enriched functor.
(ii) Prove that the passage from enriched functors to underlying unenriched

functors is functorial.
(iii) Define the free enriched functor on an unenriched functor.
(iv) Prove the passage from unenriched functors to free enriched functors is

functorial.

Exercise A.2.vi (A.7.6). Prove Proposition A.2.9.
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A.3 Enriched Natural Transformations and the Enriched
Yoneda Lemma

Recall an (unenriched) natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 between parallel
functors 𝐹,𝐺∶ 𝒞 → 𝒟 is given by:

• the data of an arrow 𝛼𝑥 ∈ 𝒟(𝐹𝑥, 𝐺𝑥) for each 𝑥 ∈ 𝒞
• subject to the condition that for each morphism 𝑓 ∈ 𝒞(𝑥, 𝑦), the diagram

𝐹𝑥 𝐺𝑥

𝐹𝑦 𝐺𝑦

𝐹𝑓

𝛼𝑥

𝐺𝑓

𝛼𝑦

(A.3.1)

commutes in 𝒟.

This enriches to the notion of a𝒱-natural transformation whose data is exactly the
same – a family of arrows in the underlying category of𝒟 indexed by the objects
of 𝒞 – but with a stronger 𝒱-naturality condition expressed by internalizing the
naturality condition (A.3.1).

Definition A.3.2. A 𝒱-enriched natural transformation or 𝒱-natural trans-
formation 𝛼∶ 𝐹 ⇒ 𝐺 between 𝒱-enriched functors 𝐹,𝐺∶ 𝒞 → 𝒟 is given
by:

• an arrow 𝛼𝑥∶ 1 → 𝒟(𝐹𝑥, 𝐺𝑥) for each 𝑥 ∈ 𝒞
• so that for each pair of objects 𝑥, 𝑦 ∈ 𝒞, the following 𝒱-naturality square

commutes in 𝒱:

𝒞(𝑥, 𝑦) 𝒟(𝐹𝑦, 𝐺𝑦) × 𝒟(𝐹𝑥, 𝐹𝑦)

𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐹𝑥, 𝐺𝑥) 𝒟(𝐹𝑥, 𝐺𝑦)

𝛼𝑦×𝐹𝑥,𝑦

𝐺𝑥,𝑦×𝛼𝑥 ∘

∘

(A.3.3)

Example A.3.4. An arrow 𝑓∶ 1 → 𝒞(𝑥, 𝑦) in the underlying category of a
𝒱-category 𝒞 defines a 𝒱-natural transformation − ∘ 𝑓∶ 𝒞(𝑦, −) ⇒ 𝒞(𝑥, −)
between the enriched representable functors whose component at 𝑧 ∈ 𝒞 is
defined by evaluating the adjoint transpose of the composition map at 𝑓:

1 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑧)𝒞(𝑦,𝑧)
𝑓 𝒞(−,𝑧)𝑥,𝑦

The required 𝒱-naturality square is obtained by evaluating one component of
the associativity diagram for 𝒞 at 𝑓.

𝒱-natural transformations compose as unenriched natural transformations do:



512 Basic Concepts of Enriched Category Theory

Definition A.3.5. The vertical composite 𝛽 ⋅ 𝛼 of 𝒱-natural transformations
𝛼∶ 𝐹 ⇒ 𝐺 and 𝛽∶ 𝐺 ⇒ 𝐻, both from 𝒞 to 𝒟, has component (𝛽 ⋅ 𝛼)𝑥 at 𝑥 ∈ 𝒞
defined by the composite

1 𝒟(𝐺𝑥,𝐻𝑥) × 𝒟(𝐹𝑥, 𝐺𝑥) 𝒟(𝐹𝑥,𝐻𝑥)
𝛽𝑥×𝛼𝑥 ∘

The horizontal composite 𝛾 ∗ 𝛼 of 𝛼∶ 𝐹 ⇒ 𝐺 from 𝒞 to 𝒟 and 𝛾∶ 𝐻 ⇒ 𝐾
from𝒟 to ℰ has component (𝛾∗𝛼)𝑥 at 𝑥 ∈ 𝒞 defined by the common composite

1 𝒟(𝐹𝑥, 𝐺𝑥) ℰ(𝐾𝐺𝑥,𝐻𝐺𝑥) × ℰ(𝐻𝐹𝑥,𝐻𝐺𝑥)

ℰ(𝐾𝐹𝑥, 𝐾𝐺𝑥) × ℰ(𝐻𝐹𝑥, 𝐾𝐹𝑥) 𝒟(𝐻𝐹𝑥, 𝐾𝐺𝑥)

𝛼𝑥 𝛾𝐺𝑥×𝐻𝐹𝑥,𝐺𝑥

𝐾𝐹𝑥,𝐺𝑥×𝛾𝐹𝑥 ∘

∘

which is well-defined by 𝒱-naturality of 𝛾. The 𝒱-naturality of these construc-
tions is left to Exercise A.3.i.

The data of the underlying natural transformation of a 𝒱-natural trans-
formation is given by the same family of arrows. The unenriched naturality
condition (A.3.1) is obtained by evaluating the enriched naturality condition
(A.3.3) at an underlying arrow 𝑓∶ 1 → 𝒞(𝑥, 𝑦). In particular, the middle four
interchange rule (see Definition B.1.1) for horizontal and vertical composition
of 𝒱-natural transformations follows from the middle four interchange rule for
horizontal and vertical composition of unenriched natural transformations for
the data of the latter determines the data of the former. Consequently, Exercise
A.3.i implies that:

Corollary A.3.6. For any cartesian closed category 𝒱, there is a 2-category
𝒱-𝒞𝑎𝑡 of 𝒱-categories, 𝒱-functors, and 𝒱-natural transformations.

We now turn our attention to the𝒱-enriched Yoneda lemma, which we present
in several forms. One role of the Yoneda lemma is to give a representable
characterization of isomorphic objects in 𝒞. When 𝒞 is a 𝒱-category, this has
several forms. The notion of𝒱-natural isomorphism referred to in the following
result is defined to be a 𝒱-natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 with an inverse
𝛼−1∶ 𝐺 ⇒ 𝐹 for vertical composition.

Lemma A.3.7. For objects 𝑥, 𝑦 in a 𝒱-category 𝒞 the following are equivalent:

(i) 𝑥 and 𝑦 are isomorphic as objects of the underlying category of 𝒞.
(ii) The 𝒮𝑒𝑡-valued unenriched representables 𝒞(𝑥, −), 𝒞(𝑦, −)∶ 𝒞 → 𝒮𝑒𝑡

are naturally isomorphic.
(iii) The 𝒱-valued unenriched representables 𝒞(𝑥, −), 𝒞(𝑦, −)∶ 𝒞 → 𝒱 are

naturally isomorphic.
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(iv) The 𝒱-valued 𝒱-functors 𝒞(𝑥, −), 𝒞(𝑦, −)∶ 𝒞 → 𝒱 are 𝒱-naturally
isomorphic.

Proof Applying the underlying category 2-functor (−)0∶ 𝒱-𝒞𝑎𝑡 → 𝒞𝑎𝑡, the
fourth statement implies the third. The third statement implies the second by
whiskering with the underlying set functor (−)0∶ 𝒱 → 𝒮𝑒𝑡. The second state-
ment implies the first by the unenriched Yoneda lemma; this is still the main
point. Finally, the first statement implies the last by a direct construction: if
𝑓∶ 1 → 𝒞(𝑥, 𝑦) and 𝑔∶ 1 → 𝒞(𝑦, 𝑥) define an isomorphism in the underlying
category of 𝒞, the corresponding representable 𝒱-natural transformations of
Example A.3.4 define a 𝒱-natural isomorphism.

Lemma A.3.7 defines a common notion of isomorphism between two ob-
jects of an enriched category, which turns out to be no different than the usual
unenriched notion of isomorphism. This can be thought of as defining a “cheap”
form of the enriched Yoneda lemma. The full form of the 𝒱-Yoneda lemma
enriches the usual statement – a natural isomorphism between the set of natural
transformations whose domain is a representable functor to the set defined by
evaluating the codomain at the representing object – to an isomorphism in 𝒱.
The first step to make this precise is to enrich the set of𝒱-natural transformations
between a parallel pair of 𝒱-functors to an object of 𝒱.

Definition A.3.8. Let 𝒱 be a complete cartesian closed category and consider
a parallel pair of 𝒱-functors 𝐹,𝐺∶ 𝒞 → 𝒟, with 𝒞 a small 𝒱-category. Then
the 𝒱-object of 𝒱-natural transformations is defined by the equalizer diagram

𝒟𝒞(𝐹, 𝐺) ∏
𝑧∈𝒞

𝒟(𝐹𝑧, 𝐺𝑧) ∏
𝑥,𝑦∈𝒞

𝒟(𝐹𝑥,𝐺𝑦)𝒞(𝑥,𝑦)

where one map to 𝒟(𝐹𝑥,𝐺𝑦)𝒞(𝑥,𝑦) in the equalizer diagram is defined by pro-
jecting to 𝒟(𝐹𝑥,𝐺𝑥), applying the internal action of 𝐺 on arrows, and then
composing, while the other is defined by projecting to 𝒟(𝐹𝑦, 𝐺𝑦), applying the
internal action of 𝐹 on arrows, and then composing:

𝒟(𝐹𝑥,𝐺𝑥) 𝒟(𝐹𝑥, 𝐺𝑦)𝒟(𝐺𝑥,𝐺𝑦)

∏
𝑧∈𝒞

𝒟(𝐹𝑧, 𝐺𝑧) 𝒟(𝐹𝑥, 𝐺𝑦)𝒞(𝑥,𝑦)

𝒟(𝐹𝑦, 𝐺𝑦) 𝒟(𝐹𝑥, 𝐺𝑦)𝒟(𝐹𝑥,𝐹𝑦)

∘
−∘𝐺𝑥,𝑦𝜋

𝜋
∘

−∘𝐹𝑥,𝑦

Lemma A.3.9. The underlying set of the 𝒱-object of 𝒱-natural transformations
𝒱𝒞(𝐹, 𝐺) is the set of 𝒱-natural transformations from 𝐹 to 𝐺.

Proof By its defining universal property, elements of the underlying set of
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𝒱𝒞(𝐹, 𝐺) correspond to maps 𝛼∶ 1 → ∏𝑧∈𝒞 𝒱(𝐹𝑧, 𝐺𝑧) that equalize the
parallel pair of maps described in Definition A.3.8. The map 𝛼 defines the
components of a 𝒱-natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 and the commutativity
condition transposes to (A.3.3).

The Yoneda lemma can be expressed by the slogan “evaluation at the identity
is an isomorphism,” but since in the enriched context the enriched object of
natural transformations is defined via a limit, it is easier to define the map that
induces a natural transformation instead. Given an object 𝑎 ∈ 𝒜 in a small
𝒱-category 𝒜 and a 𝒱-functor 𝐹∶ 𝒜 → 𝒱, the internal action of 𝐹 on arrows
transposes to define a map that equalizes the parallel pair

𝐹𝑎 ∏
𝑧∈𝒜

𝐹𝑧𝒜(𝑎,𝑧) ∏
𝑥,𝑦∈𝒜

𝐹𝑦𝒜(𝑎,𝑥)×𝒜(𝑥,𝑦)
𝐹𝑎,− (A.3.10)

and thus induces a canonical map 𝐹𝑎 → 𝒱𝒜(𝒜(𝑎, −), 𝐹) in 𝒱.

Theorem A.3.11 (enriched Yoneda lemma). For any small𝒱-category𝒜, object
𝑎 ∈ 𝒜, and 𝒱-functor 𝐹∶ 𝒜 → 𝒱, the canonical map defines an isomorphism
in 𝒱

𝐹𝑎 𝒱𝒜(𝒜(𝑎, −), 𝐹)≃

that is 𝒱-natural in both 𝑎 and 𝐹.

Proof To prove the isomorphism, it suffices to verify that (A.3.10) is a limit
cone. To that end consider another cone over the parallel pair

𝑣 ∏
𝑧∈𝒜

𝐹𝑧𝒜(𝑎,𝑧) ∏
𝑥,𝑦∈𝒜

𝐹𝑦𝒜(𝑎,𝑥)×𝒜(𝑥,𝑦)𝜆

and define a candidate factorization by evaluating the transpose of the component
𝜆𝑎 at id𝑎:

𝜆𝑎(id𝑎) ≔ 𝑣 𝒜(𝑎, 𝑎) × 𝑣 𝐹𝑎
id𝑎×𝑣 𝜆𝑎

To see that 𝜆𝑎(id𝑎)∶ 𝑣 → 𝐹𝑎 indeed defines a factorization of 𝜆 through the
limit cone, it suffices to show commutativity at each component 𝐹𝑧𝒜(𝑎,𝑧) of the
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product, which we verify in transposed form:

𝒜(𝑎, 𝑧) × 𝑣

𝒜(𝑎, 𝑧) × 𝒜(𝑎, 𝑎) × 𝑣 𝒜(𝑎, 𝑧) × 𝑣

𝒜(𝑎, 𝑧) × 𝐹𝑎 𝐹𝑧

id× id𝑎×𝑣

id×𝜆𝑎

∘×𝑣

𝜆𝑧

𝐹𝑎,𝑧

The upper triangle commutes by the identity law for 𝒜 while the bottom square
commutes because 𝜆 defines a cone over the parallel pair. Uniqueness of the
factorization 𝜆𝑎(id𝑎) follows from the same diagram by taking 𝑧 = 𝑎 and
evaluating at id𝑎.

The verification of the 𝒱-naturality of 𝐹𝑎 ≅ 𝒱𝒜(𝒜(𝑎, −), 𝐹) is left to the
reader or to [68, §2.4].

Passing to underlying sets:

Corollary A.3.12. For any small 𝒱-category 𝒜, object 𝑎 ∈ 𝒜, and 𝒱-functor
𝐹∶ 𝒜 → 𝒱, there is a natural bijection between 𝒱-natural transformations
𝛼∶ 𝒜(𝑎, −) ⇒ 𝐹 and elements 𝑢∶ 1 → 𝐹𝑎 in the underlying set of 𝐹𝑎 imple-
mented by evaluating the component at 𝑎 ∈ 𝒜 at the identity id𝑎.

This gives a criterion for establishing the representability of a 𝒱-functor
by presenting the minimal data required to establish the defining 𝒱-natural
isomorphism.

Corollary A.3.13. For a 𝒱-functor 𝐹∶ 𝒜op → 𝒱 and an object 𝑎 ∈ 𝒜 the
following are equivalent and define what it means for 𝑎 to represent 𝐹:

(i) There exists an isomorphism 𝒜(𝑥, 𝑎) ≅ 𝐹𝑥 in 𝒱 that is 𝒱-natural in
𝑥 ∈ 𝒜.

(ii) There exists an element 𝑢∶ 1 → 𝐹𝑎 in the underlying set of 𝐹𝑎 so that
the composite map

𝒜(𝑥, 𝑎) 𝒱(𝐹𝑎, 𝐹𝑥) 𝒱(1, 𝐹𝑥) ≅ 𝐹𝑥
𝐹𝑥,𝑎 −∘ᵆ

defines an isomorphism in 𝒱 for all 𝑥 ∈ 𝒜.

Proof By Corollary A.3.12 the element 𝑢∶ 1 → 𝐹𝑎 in the underlying set of 𝐹𝑎
determines a unique 𝒱-natural transformation 𝒜(−, 𝑎) ⇒ 𝐹 whose component
at 𝑥 ∈ 𝒜 is the map of the statement. Thus, the universal element 𝑢 defines a
𝒱-natural isomorphism and not just a 𝒱-natural transformation just when the
map of the statement is an isomorphism.
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Since we have assumed our bases for enrichment to be cartesian closed, the
2-category 𝒱-𝒞𝑎𝑡 admits finite products, allowing us to define multivariable
𝒱-functors (see Exercise A.2.iv). The following result implies that the structures
characterized by 𝒱-natural isomorphisms in §A.4 and §A.5 assemble into 𝒱-
functors.

Proposition A.3.14. Let 𝑀∶ ℬop × 𝒜 → 𝒱 be a 𝒱-functor so that for each
𝑎 ∈ 𝒜, the 𝒱-functor 𝑀(−, 𝑎)∶ ℬop → 𝒱 is represented by some 𝐹𝑎 ∈ ℬ,
meaning there exists a 𝒱-natural isomorphism

ℬ(𝑏, 𝐹𝑎) ≅ 𝑀(𝑏, 𝑎).

Then there is a unique way of extending the mapping 𝑎 ∈ 𝒜 ↦ 𝐹𝑎 ∈ ℬ to a
𝒱-functor 𝐹∶ 𝒜 → ℬ so that the isomorphisms are 𝒱-natural in 𝑎 ∈ 𝒜 as well
as 𝑏 ∈ ℬ.

Proof By the Yoneda lemma in the form of Corollary A.3.12, to define a family
of isomorphisms 𝛼𝑏,𝑎∶ ℬ(𝑏, 𝐹𝑎) ≅ 𝑀(𝑏, 𝑎) for each 𝑎 ∈ 𝒜 that are 𝒱-natural
in 𝑏 ∈ ℬ is to define a family of elements 𝜂𝑎∶ 1 → 𝑀(𝐹𝑎, 𝑎) for each 𝑎 ∈ 𝒜
that satisfy the condition of Corollary A.3.13(ii). By the 𝒱-naturality statement
in the Yoneda lemma, for the isomorphism 𝛼𝑏,𝑎 to be 𝒱-natural in 𝑎 is equivalent
to the family of elements 𝜂𝑎∶ 1 → 𝑀(𝐹𝑎, 𝑎) being “extraordinarily” 𝒱-natural
in 𝑎. What this means is that for any pair of objects 𝑎, 𝑎′ ∈ 𝒜, the outer square
commutes:

𝒜(𝑎′, 𝑎) 𝑀(𝐹𝑎′, 𝑎)𝑀(𝐹𝑎,𝑎)

ℬ(𝐹𝑎′, 𝐹𝑎)

𝑀(𝐹𝑎′, 𝑎)𝑀(𝐹𝑎′,𝑎′) 𝑀(𝐹𝑎′, 𝑎)

𝑀(𝐹𝑎′,−)𝑎′,𝑎

𝐹

𝑀(𝐹−,𝑎)𝑎,𝑎′

−∘𝜂𝑎

≃

𝛼𝐹𝑎′,𝑎

𝑀(−,𝑎)

−∘𝜂𝑎′

As exhibited by the top triangle, the top-horizontal map 𝑀(𝐹−, 𝑎)𝑎′,𝑎 factors
through the internal action of 𝐹 on arrows, which we seek to define, but note
that the composite of the other factor with the right vertical map is the natural
isomorphism 𝛼𝐹𝑎′,𝑎, as exhibited by the right triangle. Thus, there is a unique
way to define 𝐹𝑎′,𝑎 making the extraordinary 𝒱-naturality square commute,
namely, by ensuring that the lower left quadrilateral commutes, which is exactly
the claim. 𝒱-functoriality of these internal action maps for 𝐹 follows from
𝒱-functoriality of 𝑀 in the 𝒜 variable.

We close this section with some applications of the enriched Yoneda lemma.
The correct notions of 𝒱-enriched equivalence or 𝒱-enriched adjunction are
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given by interpreting the standard 2-categorical notions of equivalence and
adjunction in the 2-category𝒱-𝒞𝑎𝑡. For sake of contrast, we present both notions
in an alternate form here and leave it to the reader to apply Theorem A.3.11 to
relate these to the 2-categorical notions.

Definition A.3.15. A pair of 𝒱-categories 𝒞 and 𝒟 are 𝒱-equivalent if there
exists a 𝒱-functor 𝐹∶ 𝒞 → 𝒟 that is

• 𝒱-fully faithful: each 𝐹𝑥,𝑦∶ 𝒞(𝑥, 𝑦) → 𝒟(𝐹𝑥, 𝐹𝑦) is an isomorphism in 𝒱
and

• essentially surjective on objects: each 𝑑 ∈ 𝒟 is isomorphic to 𝐹𝑐 for some
𝑐 ∈ 𝒞.

Definition A.3.16. A𝒱-adjunction is given by a pair of𝒱-functors𝐹∶ ℬ → 𝒜
and 𝑈∶ 𝒜 → ℬ together with isomorphisms

𝒜(𝐹𝑏, 𝑎) ≅ ℬ(𝑏,𝑈𝑎)

that are 𝒱-natural in both 𝑎 ∈ 𝒜 and 𝑏 ∈ ℬ.

Remark A.3.17. By Proposition A.3.14, a 𝒱-functor 𝑈∶ 𝒜 → ℬ admits a 𝒱-
left adjoint if and only if eachℬ(𝑏,𝑈−)∶ 𝒜 → 𝒱 is represented by some object
𝐹𝑏 ∈ 𝒜, in which case the data of the 𝒱-natural isomorphism 𝒜(𝐹𝑏,−) ≅
ℬ(𝑏,𝑈−) equips 𝑏 ∈ ℬ ↦ 𝐹𝑏 ∈ 𝒜 with the structure of a 𝒱-functor. Dual
remarks construct enriched right adjoints to a given 𝒱-functor.

Exercises
Exercise A.3.i. Verify that the vertical and horizontal composites of Definition
A.3.5 are 𝒱-natural.

Exercise A.3.ii. Suppose 𝐹∶ 𝒞 → 𝒟 is a 𝒱-functor. Prove that the map

𝒞(𝑥, 𝑦) 𝒟(𝐹𝑥, 𝐹𝑦)
𝐹𝑥,𝑦

is 𝒱-natural in both 𝑥 and 𝑦.

Exercise A.3.iii. When 𝒱 is complete, show for any pair of 𝒱-categories 𝒞 and
𝒟, with 𝒞 small, that Definition A.3.8 makes 𝒟𝒞 into a 𝒱-category.

Exercise A.3.iv. Verify the 𝒱-naturality statement in Theorem A.3.11.

Exercise A.3.v. Use Corollary A.3.12 to show that the notions of 𝒱-equiva-
lence and 𝒱-adjunction given in Definitions A.3.15 and A.3.16 are equivalent
to the 2-categorical notions in 𝒱-𝒞𝑎𝑡.
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A.4 Tensors and Cotensors

A 𝒱-category 𝒞 admits tensors just when for all 𝑐 ∈ 𝒞, the covariant repre-
sentable functor𝒞(𝑐, −)∶ 𝒞 → 𝒱 admits a left𝒱-adjoint−⊗𝑐∶ 𝒱 → 𝒞. Dually,
a 𝒱-category 𝒞 admits cotensors just when the contravariant representable funct-
or 𝒞(−, 𝑐)∶ 𝒞op → 𝒱 admits a mutual right 𝒱-adjoint 𝑐−∶ 𝒱op → 𝒞. The aim
in this section is to introduce both constructions formally. As we shall discover,
the presence of tensors or cotensors is useful when enriching functors between
the underlying categories of enriched categories.

Definition A.4.1. A 𝒱-category 𝒞 is cotensored if, for all 𝑣 ∈ 𝒱 and 𝑐 ∈ 𝒞,
the 𝒱-functor 𝒞(−, 𝑐)𝑣∶ 𝒞op → 𝒱 is represented by an object 𝑐𝑣 ∈ 𝒞, i.e., there
exists an isomorphism

𝒞(𝑥, 𝑐𝑣) ≅ 𝒞(𝑥, 𝑐)𝑣

in 𝒱 that is 𝒱-natural in 𝑥. By Proposition A.3.14, the cotensor product defines
a unique 𝒱-functor

𝒞 × 𝒱op (−)− 𝒞

making the defining isomorphism 𝒱-natural in all three variables.

Definition A.4.2. Dually, a 𝒱-category 𝒞 is tensored if, for all 𝑣 ∈ 𝒱 and
𝑐 ∈ 𝒞, the 𝒱-functor 𝒞(𝑐, −)𝑣∶ 𝒞 → 𝒱 is represented by an object 𝑣 ⊗ 𝑐 ∈ 𝒞,
i.e., there exists an isomorphism

𝒞(𝑣 ⊗ 𝑐, 𝑥) ≅ 𝒞(𝑐, 𝑥)𝑣

in 𝒱 that is 𝒱-natural in 𝑥. By Proposition A.3.14, the tensor product defines a
unique 𝒱-functor

𝒱 × 𝒞 −⊗− 𝒞

making the defining isomorphism 𝒱-natural in all three variables.

Immediately from these definitions:

Lemma A.4.3. A 𝒱-category 𝒞 is tensored and cotensored if and only if the
𝒱-functor 𝒞(−,−)∶ 𝒞op × 𝒞 → 𝒱 is part of a two-variable 𝒱-adjunction

𝒞(𝑣 × 𝑎, 𝑏)

𝒞(𝑎, 𝑏𝑣) 𝒞(𝑎, 𝑏)𝑣
≅≅

≅

as expressed by the commutative triangle of 𝒱-natural isomorphisms.

The 𝒱-naturality of the defining natural isomorphisms has the following
consequence:
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Lemma A.4.4. In any category 𝒞 that is enriched and cotensored over 𝒱, there
are 𝒱-natural isomorphisms

𝑐1 ≅ 𝑐 and
𝑐ᵆ×𝑣

(𝑐𝑣)ᵆ (𝑐ᵆ)𝑣
≅≅

≅

for 𝑢, 𝑣 ∈ 𝒱 and 𝑐 ∈ 𝒞.
Dually if 𝒞 is enriched and tensored over𝒱, there are𝒱-natural isomorphisms

1 ⊗ 𝑐 ≅ 𝑐 and
(𝑢 × 𝑣) ⊗ 𝑐

𝑢 ⊗ (𝑣 ⊗ 𝑐) 𝑣 ⊗ (𝑢 ⊗ 𝑐)
≅≅

≅

for 𝑢, 𝑣 ∈ 𝒱 and 𝑐 ∈ 𝒞.

There are various coherence relations between these 𝒱-natural isomorphisms
that derive from the coherences of the cartesian closed category 𝒱.

Proof By Lemma A.3.7, to define the displayed isomorphisms, it suffices
to prove that these objects represent the same 𝒱-functors 𝒞op → 𝒱. By the
defining universal property of the cotensor, for any 𝑥 ∈ 𝒞, there are 𝒱-natural
isomorphisms

𝒞(𝑥, 𝑐1) ≅ 𝒞(𝑥, 𝑐)1 ≅ 𝒞(𝑥, 𝑐),

the last isomorphism by Remark A.1.9. Since these isomorphisms are 𝒱-natural
in 𝑐 as well as 𝑥, the isomorphism 𝑐1 ≅ 𝑐 is 𝒱-natural as well.

Similarly, there are 𝒱-natural isomorphisms in each of the three vertices of
the triangle below

𝒞(𝑥, 𝑐ᵆ×𝑣) ≅ 𝒞(𝑥, 𝑐)ᵆ×𝑣

𝒞(𝑥, (𝑐𝑣)ᵆ) ≅ (𝒞(𝑥, 𝑐)𝑣)ᵆ (𝒞(𝑥, 𝑐)ᵆ)𝑣 ≅ 𝒞(𝑥, (𝑐ᵆ)𝑣)
≅≅

≅

with the connecting 𝒱-natural isomorphisms given by Lemma A.1.7. Again the
𝒱-naturality of these isomorphisms in 𝑢, 𝑣, and 𝑐 gives the 𝒱-naturality of the
statement.

Extending Lemma A.2.3:

Lemma A.4.5. A cartesian closed category (𝒱, ×, 1) is enriched, tensored,
and cotensored over itself, with tensors defined by the cartesian product and
cotensors defined by the internal hom8:

𝑣 ⊗ 𝑤 ≔ 𝑣 × 𝑤 and 𝑤𝑣 ≔ 𝑤𝑣.
8 This excuses the abuse of exponential notation for both internal homs and cotensors.
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Proof Lemma A.1.7 establishes the required isomorphisms (A.1.8) in 𝒱. The
proof of their 𝒱-naturality is left to the reader or to [68, §1.8].

Now consider a 𝒱-functor 𝐹∶ 𝒞 → 𝒟. If 𝒞 and 𝒟 are tensored over 𝒱, then
the composite map

𝑣 𝒞(𝑐, 𝑣 ⊗ 𝑐) 𝒟(𝐹𝑐, 𝐹(𝑣 ⊗ 𝑐))
𝜂𝑣 𝐹𝑐,𝑣⊗𝑐

transposes to define a canonical 𝒱-natural transformation 𝜏𝑣,𝑐∶ 𝑣 ⊗ 𝐹𝑐 →
𝐹(𝑣 ⊗ 𝑐). The 𝒱-functor 𝐹 preserves tensors if this map is an isomorphism in
𝒟.

The presence of tensors and cotensors provides a convenient mechanism
for testing whether an a priori unenriched adjunction may be enriched to a
𝒱-adjunction.

Proposition A.4.6. Suppose 𝒜 and ℬ are 𝒱-categories.

(i) If 𝒜 and ℬ are tensored over 𝒱 then a 𝒱-functor 𝐹∶ ℬ → 𝒜 is a left 𝒱-
adjoint if and only if 𝐹 admits an unenriched right adjoint and preserves
tensors.

(ii) If 𝒜 and ℬ are cotensored over 𝒱 then a 𝒱-functor 𝑈∶ 𝒜 → ℬ is a
right 𝒱-adjoint if and only if 𝑈 admits an unenriched left adjoint and
preserves cotensors.

Proof We prove the sufficiency of the conditions in the first of the dual pair
of statements and leave their necessity to Exercise A.4.i. Suppose 𝐹 admits an
unenriched right adjoint 𝑈 with counit 𝜖. By Example A.3.4 and Exercise A.3.ii,
the composite map of hom-objects in 𝒱

ℬ(𝑏,𝑈𝑎) 𝒜(𝐹𝑏, 𝐹𝑈𝑎) 𝒜(𝐹𝑏, 𝑎)
𝐹𝑏,𝑈𝑎 𝜖𝑎∘− (A.4.7)

which lifts the hom-set bijection of the unenriched adjunction, is 𝒱-natural in 𝑏.
Our task is to show that (A.4.7) is an isomorphism in 𝒱. Then by Proposition
A.3.14, there is a unique way to enrich the right adjoint 𝑈 so that this map is
𝒱-natural in 𝑎 as well as 𝑏.

After applying the unenriched representable functor 𝒱(𝑣, −)∶ 𝒱 → 𝒮𝑒𝑡, we
claim that this map fits into a commutative diagram

𝒱(𝑣,ℬ(𝑏, 𝑈𝑎)) 𝒱(𝑣,𝒜(𝐹𝑏, 𝐹𝑈𝑎)) 𝒱(𝑣,𝒜(𝐹𝑏, 𝑎))

ℬ(𝑣 ⊗ 𝑏,𝑈𝑎) 𝒜(𝐹(𝑣 ⊗ 𝑏), 𝑎) 𝒜(𝑣 ⊗ 𝐹𝑏, 𝑎)

𝐹𝑏,𝑈𝑎∘−

≃

(𝜖𝑎∘−)∘−

≃

≃ −∘𝜏𝑣,𝑏

where the three isomorphisms are defined by transposing across the unenriched
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adjunctions. Since this is a diagram of functions between sets, to verify its
commutativity, it suffices to consider an element 𝑓∶ 𝑣 → ℬ(𝑏,𝑈𝑎); the image
under both composites is the composite map

𝑣 ⊗ 𝐹𝑏 𝐵(𝑏, 𝑢𝑎) ⊗ 𝐹𝑏 𝐴(𝐹𝑏, 𝐹𝑈𝑎) ⊗ 𝐹𝑏 𝐹𝑈𝑎 𝑎
𝑓⊗𝐹𝑏 𝐹𝑏,𝑢𝑎⊗𝐹𝑏 ev 𝜖𝑎

in the underlying category of 𝒜. Since 𝐹 preserves tensors, the map 𝜏𝑣,𝑏 is
an isomorphism, and thus, by the unenriched Yoneda lemma, (A.4.7) is an
isomorphism as well.

Exercises
Exercise A.4.i. Prove that enriched left adjoints preserve tensors and define
unenriched left adjoints.

Exercise A.4.ii. Let 𝒥 be a small unenriched category and let 𝒞 be a𝒱-category.
Prove that if 𝒞 is tensored or cotensored then so is 𝒞𝒥.

A.5 Conical Limits and Colimits

Consider a diagram 𝐹∶ 𝒥 → 𝒞 indexed by a 1-category 𝒥 and valued in a
𝒱-category 𝒞. A cone 𝜆 over the diagram 𝐹 with summit ℓ ∈ 𝒞 is a limit cone
if composition with 𝜆 induces a bijection of hom-sets

𝒞(𝑥, ℓ)0 lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗)0≃𝜆∘−

for all 𝑥 ∈ 𝒞. If 𝒱 admits 𝒥-shaped limits, then the composition map lifts to 𝒱,
and it is natural to assert a stronger version of the usual universal property of
a limit cone, demanding that composition with 𝜆 induces an isomorphism of
𝒱-objects and not just of hom-sets. This gives the notion of a conical limit of
a diagram valued in an enriched category. Conical colimits are defined dually
(see Definition A.5.2).

The underlying set functor (−)0 ≔ 𝒱(1, −)∶ 𝒱 → 𝒮𝑒𝑡 preserves limits
and carries isomorphisms in 𝒱 to bijections between sets. Thus, conical limits
necessarily define 1-categorical limits, so we pay particular attention to what is
required to enrich a 1-categorical limit to a conical limit. Our first observation
along these lines is that limits and colimits of diagrams valued in a cartesian
closed category 𝒱 always enrich to define conical limits and conical colimits.

Lemma A.5.1. If 𝒱 is a cartesian closed category, then any 1-categorical limit
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cone 𝜆∶ Δ lim𝐹 ⇒ 𝐹 or 1-categorical colimit cone 𝛾∶ 𝐹 ⇒ Δ colim𝐹 over or
under a diagram 𝐹∶ 𝒥 → 𝒱 give rise to isomorphisms

(lim𝐹)𝑣 ≅ lim
𝑗∈𝒥

(𝐹𝑗𝑣) and 𝑣colim𝐹 ≅ lim
𝑗∈𝒥op

𝑣𝐹𝑗

in 𝒱 that are 𝒱-natural in 𝑣 ∈ 𝒱.

Proof For any 𝑣 ∈ 𝒱, the exponential (−)𝑣∶ 𝒱 → 𝒱 is right adjoint to the
product functor−×𝑣∶ 𝒱 → 𝒱; as such it preserves limits, giving rise to the first
isomorphism of the statement, while 𝑣−∶ 𝒱op → 𝒱, as a mutual right adjoint,
carries colimits to limits, establishing the second.

For the remainder of this section, suppose that 𝒱 is a complete cartesian
closed category, so that the limits in 𝒱 that encode the universal properties of
conical limits and colimits are assumed to exist.

Definition A.5.2. Let 𝒞 be a 𝒱-category and let 𝒥 be a small 1-category. The
conical limit of an unenriched diagram 𝐹∶ 𝒥 → 𝒞 is given by an object ℓ ∈ 𝒞
and a cone 𝜆∶ Δℓ ⇒ 𝐹 inducing a 𝒱-natural9 isomorphism of hom-objects in 𝒱

𝒞(𝑥, ℓ) lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗) ∈ 𝒱≃𝜆∘−

for all 𝑥 ∈ 𝒞. Dually, the conical colimit is given by an object 𝑐 ∈ 𝒞 and a cone
𝛾∶ 𝐹 ⇒ Δ𝑐 inducing a 𝒱-natural isomorphism

𝒞(𝑐, 𝑥) lim𝑗∈𝒥op 𝒞(𝐹𝑗, 𝑥) ∈ 𝒱≃

𝛾∗

for all 𝑥 ∈ 𝒞.

The isomorphisms that characterize conical limits and colimits closely resem-
ble the usual isomorphisms that characterize 1-categorical limits and colimits
except for one very important difference: they postulate isomorphisms in 𝒱
rather than isomorphisms in 𝒮𝑒𝑡. In the case where 𝒱 = 𝑠𝒮𝑒𝑡, the isomorphism
of vertices that underlies this isomorphism of simplicial sets describes the usual
1-categorical universal property. To say that the limit is conical and not merely
1-categorical is to assert that this universal property extends to all positive
dimensions.

Inspecting Definition A.5.2, we see immediately that:
9 For any cone 𝜆∶ Δℓ ⇒ 𝐹, not necessarily a limit cone, composition defines a map
𝜆 ∘ −∶ 𝒞(𝑥, ℓ) → lim𝑗∈𝒥𝒞(𝑥,𝐹𝑗) that is 𝒱-natural in 𝑥 (see Exercise A.5.i). This follows
by essentially the same argument used in Example A.3.4 to demonstrate that arrows in the
underlying category of an enriched category induce enriched natural transformations between
representable functors. So the content of the universal property that characterizes conical limits
is that this 𝒱-natural map is invertible.
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Proposition A.5.3. A 1-categorical limit cone is conical just when it is pre-
served by all 𝒱-valued representable functors 𝒞(𝑥, −)∶ 𝒞 → 𝒱, while a 1-
categorical colimit cone is conical just when it is preserved by all 𝒱-valued
representable functors 𝒞(−, 𝑥)∶ 𝒞op → 𝒱.

The proof of Lemma A.5.1 generalizes to show:

Proposition A.5.4. In an enriched category with tensors all 1-categorical limits
in 𝒞 are conical, while in an enriched category with cotensors all 1-categorical
colimits are conical.

Proof By Proposition A.5.3, to show that a 1-categorical limit in a 𝒱-category
𝒞 is conical, it suffices to show that it is preserved by the 𝒱-valued representable
functors 𝒞(𝑥, −)∶ 𝒞 → 𝒱 for all 𝑥 ∈ 𝒞. If 𝒞 admits tensors, then each of these
functors admits a left adjoint; as right adjoints, they necessarily preserve the
1-categorical limits of the statement.

In analogy with Proposition A.5.3, we have:

Proposition A.5.5. Let 𝒞 be enriched and cotensored over 𝒱. A limit of an
unenriched diagram 𝐹∶ 𝒥 → 𝒞 is a conical limit if and only if it is preserved
by cotensors with all objects 𝑣 ∈ 𝒱.

Proof Cotensors are 𝒱-enriched right adjoints, which preserve conical limits.
The content is that preservation by cotensors suffices to enrich a 1-categorical
limit to a 𝒱-categorical one.

By Proposition A.5.3, a 1-categorical limit cone 𝜆∶ Δℓ ⇒ 𝐹 is conical just
when it is preserved by all 𝒱-valued representable functors 𝒞(𝑥, −)∶ 𝒞 → 𝒱.
To see that the natural map

𝒞(𝑥, ℓ) lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗)
𝜆∘−

is an isomorphism in𝒱we appeal to the unenriched Yoneda lemma and argue that
this map induces an isomorphism upon applying an unenriched representable
functor 𝒱(𝑣, −)∶ 𝒱 → 𝒮𝑒𝑡 for any 𝑣 ∈ 𝒱. To see this invertibility, note that the
induced map of hom-sets fits into a commutative diagram

𝒱(𝑣, 𝒞(𝑥, ℓ)) 𝒞(𝑥, ℓ𝑣)

𝒱(𝑣, lim
𝑗∈𝒥

𝒞(𝑥, 𝐹𝑗)) lim
𝑗∈𝒥

𝒱(𝑣, 𝒞(𝑥, 𝐹𝑗)) lim
𝑗∈𝒥

𝒞(𝑥, 𝐹𝑗𝑣) 𝒞(𝑥, lim
𝑗∈𝒥

(𝐹𝑗𝑣))

(𝜆∘−)∘−

≃

𝜆𝑣∘−

≃ ≃ ≃

where the horizontal isomorphisms express the unenriched universal prop-
erty of cotensors and the fact that unenriched representable functors preserve



524 Basic Concepts of Enriched Category Theory

limits. To say that cotensors preserve the limit ℓ ≅ lim𝑗∈𝒥 𝐹𝑗 means that
ℓ𝑣 ≅ (lim𝑗∈𝒥 𝐹𝑗)𝑣 ≅ lim𝑗∈𝒥(𝐹𝑗𝑣) , so by the Yoneda lemma, the right-vertical
map is an isomorphism, and thus the left-vertical map is as well.

Exercises
Exercise A.5.i. Consider a diagram 𝐹∶ 𝒥 → 𝒞 indexed by a 1-category and
valued in a 𝒱-category and a cone 𝜆∶ Δℓ ⇒ 𝐹. Assuming 𝒱 has 𝒥-shaped limits,
define a canonical map 𝜆∘−∶ 𝒞(𝑥, ℓ) → lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗) and show, by arguing
along the lines of Example A.3.4, that it is 𝒱-natural.

Exercise A.5.ii ([67, p. 306]). Specialize the result of Proposition A.5.4 to
prove the following: in any 2-category 𝒞 that admits tensors with the walking-
arrow category 𝟚, any 1-categorical limits that 𝒞 admits are automatically coni-
cal.10

A.6 Weighted Limits and Colimits

The cotensors of §A.4 and conical limits of §A.5 are both instances of a more
general notion of weighted limit that we now introduce. We continue in the
context of a complete and cocomplete cartesian closed category (𝒱, ×, 1). The
examples we have in mind are (𝑠𝒮𝑒𝑡, ×, 1), its cartesian closed subcategory
(𝒞𝑎𝑡, ×, 𝟙), or its further cartesian closed subcategory (𝒮𝑒𝑡, ×, 1).

Ordinary limits and colimits are objects representing the functor of cones
with a given apex over or under a fixed diagram. Weighted limits and colimits
are defined analogously, except that the cones over or under a diagram might
have exotic “shapes,” which are allowed to vary with the objects indexing the
diagram. More formally, in the 𝒱-enriched context, the weight, defining the
“shape” of a cone over a diagram indexed by 𝒜 or under a diagram indexed by
𝒜op, takes the form of a functor in 𝒱𝒜; note the indexing category 𝒜 may be
𝒱-enriched, unlike the diagrams considered in §A.5.

We develop the general notions of weighted limit and weighted colimit from
three different viewpoints that we introduce in the reverse of the logical order,
because we find this route to be the most intuitive. We first describe the axioms
that characterize the weighted limit and colimit bifunctors, whenever they exist.
We then explain how weighted limits and colimits can be constructed, assuming
10 The statement asserts that the presence of tensors with 𝟚 implies that the universal property of

1-dimensional limits automatically has an additional 2-dimensional aspect, such as illustrated by
the discussion around Proposition 1.4.5.
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certain other limits and colimits exist. We then finally introduce the general
universal property that defines a particular weighted limit or colimit, which
stipulates exactly what is required for the notions just introduced to in fact exist.

Definition A.6.1 (weighted limits and colimits, axiomatically). For a small
𝒱-enriched category 𝒜 and a large 𝒱-enriched category 𝒞, the weighted limit
and weighted colimit bifunctors

lim−−∶ (𝒱𝒜)op × 𝒞𝒜 → 𝒞 and colim−−∶ 𝒱𝒜 × 𝒞𝒜op → 𝒞

are characterized by the following pair of axioms whenever they exist:

(i) Weighted co/limits with representable weights evaluate at the represent-
ing object:

lim𝒜(𝑎,−) 𝐹 ≅ 𝐹𝑎 and colim𝒜(−,𝑎)𝐺 ≅ 𝐺𝑎.

(ii) The weighted co/limit bifunctors are cocontinuous in the weight: for
any diagrams 𝐹 ∈ 𝒞𝒜 and 𝐺 ∈ 𝒞𝒜op, the functor colim−𝐺 preserves
colimits, while the functor lim− 𝐹 carries colimits to limits.11

We interpret axiom (ii) to mean that weights can be “made-to-order”: a weight
constructed as a colimit of representables – as all 𝒱-valued functors are – will
stipulate the expected universal property.

Definition A.6.2 (weighted limits and colimits, constructively). The limit of
𝐹 ∈ 𝒞𝒜 weighted by 𝑊 ∈ 𝒱𝒜 is computed by the functor cotensor product:

lim𝑊 𝐹 ≔ ∫
𝑎∈𝒜

𝐹𝑎𝑊𝑎 ≔ eq( ∏
𝑎∈𝒜

𝐹𝑎𝑊𝑎 ∏
𝑎,𝑏∈𝒜

𝐹𝑏𝒜(𝑎,𝑏)×𝑊𝑎 ) ,

(A.6.3)
where the product and equalizer should be interpreted as conical limits in the
sense of Definition A.5.2. The maps in the equalizer diagram are induced by the
actions 𝒜(𝑎, 𝑏) × 𝑊𝑎 → 𝑊𝑏 and 𝐹𝑎 → 𝐹𝑏𝒜(𝑎,𝑏) of the hom-object 𝒜(𝑎, 𝑏)
on the 𝒱-functors 𝑊 and 𝐹.

Dually, the colimit of 𝐺 ∈ 𝒞𝒜op weighted by 𝑊 ∈ 𝒱𝒜 is computed by the
11 More precisely, as proven in Proposition A.6.10, the weighted colimit functor colim−𝐺

preserves weighted colimits, while the weighted limit functor lim−𝐹 carries weighted colimits
to weighted limits.
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functor tensor product:

colim𝑊𝐺 ≔ ∫
𝑎∈𝒜

𝑊𝑎⊗𝐺𝑎

≔ coeq( ∐
𝑎,𝑏∈𝒜

(𝑊𝑎 × 𝒜(𝑎, 𝑏)) ⊗ 𝐺𝑏 ∐
𝑎∈𝒜

𝑊𝑎⊗𝐺𝑎 ) ,

(A.6.4)

where the coproduct and coequalizer should be interpreted as conical colimits.
One of the maps in the coequalizer diagram is induced by the action 𝒜(𝑎, 𝑏) ⊗
𝐺𝑏 → 𝐺𝑎 of 𝒜(𝑎, 𝑏) on the contravariant 𝒱-functor 𝐺, while the other uses the
covariant action of 𝒜(𝑎, 𝑏) on 𝑊 as before.

Definition A.6.5 (weighed limits and colimits, the universal property). The
limit lim𝑊 𝐹 of the diagram 𝐹 ∈ 𝒞𝒜 weighted by 𝑊 ∈ 𝒱𝒜 and the colimit
colim𝑊𝐺 of 𝐺 ∈ 𝒞𝒜op weighted by𝑊 ∈ 𝒱𝒜 are characterized by the universal
properties:

𝒞(𝑥, lim𝑊 𝐹) ≅ 𝒱𝒜(𝑊, 𝒞(𝑥, 𝐹)) and 𝒞(colim𝑊𝐺, 𝑥) ≅ 𝒱𝒜(𝑊, 𝒞(𝐺, 𝑥)),
(A.6.6)

each of these defining an isomorphism between objects of 𝒱 that is 𝒱-natural in
𝑥.

When the indexing category is not clear from context, we may add it as a
superscript to the notation for the weighted limit and weighted colimit. Propo-
sition A.6.10 shows that these three definitions characterize the same objects.
Along the way to proving it, we obtain results of interest in their own right, that
we record separately.

Lemma A.6.7. A complete cartesian closed category 𝒱 admits all weighted
limits, as defined by the formula of (A.6.3) satisfying the natural isomorphism of
(A.6.6) and the axioms of Definition A.6.1. Explicitly, for a weight 𝑊∶ 𝒜 → 𝒱
and a diagram 𝐹∶ 𝒜 → 𝒱, the weighted limit

lim𝑊 𝐹 ≔ 𝒱𝒜(𝑊, 𝐹),

is the 𝒱-object of 𝒱-natural transformations from 𝑊 to 𝑉.

Proof The 𝒱-functor 𝒱(1, −)∶ 𝒱 → 𝒱 represented by the terminal object is
naturally isomorphic to the identity functor. So taking 𝑥 = 1 in the universal
property of (A.6.6) in the case where the diagram 𝐹 ∈ 𝒱𝒜 is valued in the
𝒱-category 𝒱, we have

lim𝑊 𝐹 ≅ 𝒱𝒜(𝑊, 𝐹).
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Simultaneously, the formula (A.6.3) computes the 𝒱-object 𝒱𝒜(𝑊, 𝐹) of 𝒱-nat-
ural transformations from 𝑊 to 𝐹 introduced in Definition A.3.8. The enriched
Yoneda lemma of Theorem A.3.11 proves the first axiom, while the second
axiom follows from the universal property of (A.6.6).

The 𝒱-object of 𝒱-natural transformations satisfies the natural isomorphism

𝒱(𝑣, 𝒱𝒜(𝑊, 𝐹)) ≅ 𝒱𝒜(𝑊,𝒱(𝑣, 𝐹))

for any 𝑣 ∈ 𝒱. By applying the observation that 𝑊-weighted limits of 𝒱-valued
functors are 𝒱-objects of natural transformations to the functors 𝒞(𝑥, 𝐹−) and
𝒞(𝐺−, 𝑥), we may re-express the natural isomorphism (A.6.6) as:

Corollary A.6.8. The weighted limits and weighted colimits of (A.6.6) are
representably defined as weighted limits in 𝒱: for 𝑊 ∈ 𝒱𝒜 and 𝐹 ∈ 𝒞𝒜

and 𝐺 ∈ 𝒞𝒜op the weighted limit and colimit are characterized by 𝒱-natural
isomorphisms in 𝑥:

𝒞(𝑥, lim𝑊 𝐹) ≅ lim𝑊 𝒞(𝑥, 𝐹) and 𝒞(colim𝑊𝐺, 𝑥) ≅ lim𝑊 𝒞(𝐺, 𝑥)
(A.6.9)

We now unify the Definitions A.6.1, A.6.2, and A.6.5.

Proposition A.6.10. When the limits and colimits of (A.6.3) and (A.6.4) exist
they define objects satisfying the universal properties (A.6.6) or equivalently
(A.6.9). The𝒱-bifunctors defined by these universal properties satisfy the axioms
of Definition A.6.1.

Proof The equivalence of Definitions A.6.2 and A.6.5 – for either weighted
limits or weighted colimits – is a direct consequence of the special case of this
implication for weighted limits valued in 𝒞 = 𝒱 proven as Lemma A.6.7 and
Corollary A.6.8. The limits of (A.6.3) in 𝒞 are also defined representably in
terms of the analogous limits in 𝒱. So the objected defined by (A.6.3) represents
the 𝒱-functor lim𝑊 𝒞(−, 𝐹) that defines the weighted limit lim𝑊 𝐹.

It remains to prove that the weighted limits of Definitions A.6.2 and A.6.5 sat-
isfy the axioms of Definition A.6.1. In the case of a 𝒱-valued diagram 𝐹 ∈ 𝒱𝒜,
axiom (i) is the 𝒱-Yoneda lemma: 𝒱𝒜(𝒜(𝑎, −), 𝐹) ≅ 𝐹𝑎 proven in Theorem
A.3.11. Once again, the general case for 𝐹 ∈ 𝒞𝒜 follows from the special case
for 𝒱-valued diagrams. To demonstrate an isomorphism lim𝒜(𝑎,−) 𝐹 ≅ 𝐹𝑎 in 𝒞
it suffices to produce an isomorphism 𝒞(𝑥, lim𝒜(𝑎,−) 𝐹) ≅ 𝒞(𝑥, 𝐹𝑎) in 𝒱 for all
𝑥 ∈ 𝒞, and we have such a natural isomorphism by applying (A.6.9) and the
observation just made to the functor 𝒞(𝑥, 𝐹−) ∈ 𝒱𝒜.

For the axiom (ii), consider a diagram 𝑊∶ 𝒥op → 𝒱𝒜 of weights and a
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weight 𝑉 ∈ 𝒱𝒥 so that colim𝒥
𝑉𝑊 is an object in 𝒱𝒜. For any 𝐹 ∈ 𝒞𝒜, we will

show that the 𝒱-functor lim𝒜
− 𝐹∶ (𝒱𝒜)op → 𝒞 carries the 𝑉-weighted colimit

of the diagram of weights 𝑊 to the 𝑉-weighted limit of the composite diagram
lim𝒜

𝑊− 𝐹∶ 𝒥 → 𝒞.
The universal property (A.6.6), applied first to the colim𝒥

𝑉𝑊-weighted limit
of the diagram 𝐹 and the object 𝑥, and then to the 𝑉-weighted colimit of the
diagram 𝑊 and the object 𝒞(𝑥, 𝐹), supplies isomorphisms:

𝒞(𝑥, lim𝒜
colim𝒥

𝑉𝑊
𝐹) ≅ 𝒱𝒜(colim𝒥

𝑉𝑊,𝒞(𝑥, 𝐹)) ≅ 𝒱𝒥(𝑉, 𝒱𝒜(𝑊, 𝒞(𝑥, 𝐹))).

Applying (A.6.6) twice more, first for the weights 𝑊𝑗 for each 𝑗 ∈ 𝒥 and then
for the weight 𝑉 and the diagram lim𝒜

𝑊 𝐹∶ 𝒥 → 𝒞, we have

≅ 𝒱𝒥(𝑉, 𝒞(𝑥, lim𝒜
𝑊 𝐹)) ≅ 𝒞(𝑥, lim𝒥

𝑉 lim𝒜
𝑊 𝐹).

By the Yoneda lemma, this proves that

lim𝒜
colim𝒥

𝑉𝑊
𝐹 ≅ lim𝒥

𝑉 lim𝒜
𝑊 𝐹,

i.e., that the weighted limit functor lim𝒜
− 𝐹 is carries a weighted colimit of

weights to the analogous weighted limit of weights.

Remark A.6.11 (for unenriched indexing categories). When the indexing cate-
gory is unenriched, the limit and colimit formulas from Definition A.6.2 simplify
as follows

lim𝑊 𝐹 ≅ eq( ∏
𝑎∈𝒜

𝐹𝑎𝑊𝑎 ∏
𝒜(𝑎,𝑏)

𝐹𝑏𝑊𝑎 )

colim𝑊𝐺 ≅ coeq( ∐
𝒜(𝑎,𝑏)

𝑊𝑎⊗𝐺𝑏 ∐
𝑎∈𝒜

𝑊𝑎⊗𝐺𝑎 )

and in fact, it suffices to consider only nonidentity arrows or even just atomic
arrows.

Example A.6.12 (conical limits and colimits). For any small 𝒱-category 𝒜,
the constant diagram at the terminal object of 𝒱 defines the terminal weight
1 ∈ 𝒱𝒜. For diagrams 𝐹 ∈ 𝒞𝒜 and 𝐺 ∈ 𝒞𝒜op, respectively, limits and colimits
weighted by this weight satisfy the defining universal properties

𝒞(𝑥, lim1 𝐹) ≅ 𝒱𝒜(1, 𝒞(𝑥, 𝐹)) ≅ lim1 𝒞(𝑥, 𝐹) and
𝒞(colim1𝐺, 𝑥) ≅ 𝒱𝒜(1, 𝒞(𝐺, 𝑥)) ≅ lim1 𝒞(𝐺, 𝑥),

which say that lim𝐹 and colim𝐺 represent the functors of 𝒱-enriched conical
cones over 𝐹 or under 𝐺, respectively.
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When 𝒜 is an unenriched category, this recovers the universal property that
characterized the conical limits and conical colimits of Definition A.5.2, so
we extend those terms to refer to general limits and colimits weighted by the
terminal weight; it is common to use the simplified notation lim𝐹 ≔ lim1 𝐹
and colim𝐺 ≔ colim1𝐺 for conical limits and colimits. This explains the
name “conical”: among the weighted limits, the conical limits are the ones
with ordinary cone shapes, involving a single arrow in the underlying category
pointing from the summit to each object in the diagram. Thus, conical limits and
colimits arise as special cases of weighted limits and colimits whose weights
are terminal.

Example A.6.13 (tensors and cotensors). A diagram indexed by the terminal
category 𝟙 and valued in a 𝒱-enriched category 𝒞 is just an object 𝑐 ∈ 𝒞. A
weight for such diagrams is just given by another object 𝑣 ∈ 𝒱. The 𝑣-weighted
limit of the diagram 𝑐 is defined by the universal property

𝒞(𝑥, lim𝟙
𝑣 𝑐) ≅ 𝒞(𝑥, 𝑐)𝑣

that characterizes the cotensor 𝑐𝑣, while the 𝑣-weighted colimit of the diagram
𝑐 is defined by the universal property

𝒞(colim𝟙
𝑣 𝑐, 𝑥) ≅ 𝒞(𝑐, 𝑥)𝑣

that characterizes the tensor 𝑣 ⊗ 𝑐. Thus, cotensors and tensors arise as special
cases of weighted limits and colimits whose indexing categories are terminal.

Example A.6.14 (commas). An ∞-cosmos 𝒦 is, in particular, a category
enriched over simplicial sets. The comma ∞-category is the limit in the ∞-
cosmos 𝒦 of the diagram → 𝒦 given by the cospan

𝐶 𝐴 𝐵
𝑔 𝑓

weighted by the diagram → 𝑠𝒮𝑒𝑡 given by the cospan

𝟙 𝟚 𝟙1 0

Under the simplification of Remark A.6.11, the formula for the weighted limit
reduces to the equalizer of the pair of maps

𝐴𝟚

𝐶 × 𝐴𝟚 × 𝐵 𝐴 × 𝐴
𝐶 × 𝐵

(𝑝1,𝑝0)𝜋

𝜋 𝑔×𝑓

which computes the pullback of (3.4.2). The universal property (A.6.6) provides
a correspondence between functors ⌜𝛼⌝∶ 𝑋 → Hom𝐴(𝑓, 𝑔) in 𝒦 and simplicial
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natural transformations, the data of which is given by the three dashed vertical
maps that fit into two commutative squares:

𝟙 𝟚 𝟙

Fun(𝑋, 𝐶) Fun(𝑋, 𝐴) Fun(𝑋, 𝐵)

1

𝑐 ⌜𝛼⌝

0

𝑏

𝑔∘− 𝑓∘−

Example A.6.15 (Kan extensions as weighted co/limits). The usual colimit or
limit formula that computes the value of a pointwise left or right Kan extension
of an unenriched functor 𝐹∶ 𝐶 → 𝐸 along 𝐾∶ 𝐶 → 𝐷 at an object 𝑑 ∈ 𝐷 can
be succinctly expressed by the weighted colimit or weighted limit

lan𝐾𝐹(𝑑) ∶= colim𝐷(𝐾−,𝑑) 𝐹 and ran𝐾𝐹(𝑑) ∶= lim𝐷(𝑑,𝐾−) 𝐹.

The formulae of Definition A.6.2 give criteria under which weighted limits
or colimits are guaranteed to exist.

Corollary A.6.16. A𝒱-category that admits cotensors and conical limits of all
small unenriched diagram shapes then admits all small weighted limits. Dually,
a 𝒱-category that admits tensors and conical colimits of all small unenriched
diagram shapes then admits all small weighted colimits.

Definition A.6.17. A 𝒱-category is 𝒱-complete if it admits small 𝒱-weighted
limits, or equivalently, by Corollary A.6.16, if it admits cotensors by objects in
𝒱 and small conical limits. Dually, a 𝒱-category is 𝒱-cocomplete if it admits
small 𝒱-weighted colimits, or equivalently, by Corollary A.6.16, if it admits
tensors by objects in 𝒱 and small conical colimits.

Remark A.6.18 (on proving enriched completeness). In practice one often
shows that a 𝒱-category is complete by demonstrating that its underlying cate-
gory is complete and that the 𝒱-category has both cotensors and tensors, the
latter being an instance of a weighted colimit. Then Proposition A.5.4 applies
to establish that the unenriched limits are in fact conical limits.

We conclude with a few results from the general theory of weighted limits
and colimits. Immediately from their defining universal properties, it can be
verified that:

Lemma A.6.19 (weighted limits of restricted diagrams). Consider a 𝒱-functor
𝐾∶ 𝒜 → ℬ, a weight𝑊∶ 𝒜 → 𝒱, and diagrams 𝐹∶ ℬ → 𝒞 and𝐺∶ ℬop → 𝒞.
Then the 𝑊-weighted limit or colimit of the restricted diagram is isomorphic to
the lan𝐾𝑊-weighted limit or colimit of the original diagram:

lim𝒜
𝑊 (𝐹 ∘ 𝐾) ≅ limℬ

lan𝐾𝑊 𝐹 and colim𝒜
𝑊 (𝐺 ∘ 𝐾) ≅ colimℬ

lan𝐾𝑊𝐺.
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Proof Exercise A.6.ii.

Recall from Definition A.3.16 that an enriched adjunction is comprised of
a pair of 𝒱-functors 𝐹∶ ℬ → 𝒜 and 𝑈∶ 𝒜 → ℬ together with a family of
isomorphisms 𝒜(𝐹𝑏, 𝑎) ≅ ℬ(𝑏,𝑈𝑎) that are 𝒱-natural in both variables. The
usual Yoneda-style argument enriches to show:

Proposition A.6.20. Enriched right adjoints preserve weighted limits and
enriched left adjoints preserve weighted colimits.

Proof Exercise A.6.iii.

Exercises
Exercise A.6.i. Taking the base for enrichment 𝒱 to be 𝒮𝑒𝑡, compute the
following weighted limits of a simplicial set 𝑋, regarded as a diagram in 𝒮𝑒𝑡𝚫

op
,

weighted by:

(i) the standard 𝑛-simplex Δ[𝑛] ∈ 𝒮𝑒𝑡𝚫
op

,
(ii) the spine of the 𝑛-simplex, the simplicial subset of Δ[𝑛] obtained by

gluing together the 𝑛 edges from 𝑖 to 𝑖 + 1 into a composable path,
(iii) the 𝑛-simplex boundary 𝜕Δ[𝑛] ∈ 𝒮𝑒𝑡𝚫

op
.12

Exercise A.6.ii. Prove Lemma A.6.19.

Exercise A.6.iii. Prove Proposition A.6.20.

Exercise A.6.iv.

(i) Extend the definitions of weighted limit and colimit to allow the weight
𝑊 to be an enriched profunctor – i.e., a 𝒱-functor 𝑊∶ ℬop ×𝒜 → 𝒱
for small 𝒱-categories 𝒜 and ℬ – in such a way that the weighted limit
and colimit functors have the form

(𝒱ℬop×𝒜)op × 𝒞𝒜 𝒞ℬ and 𝒱ℬop×𝒜 × 𝒞ℬ 𝒞𝒜lim−− colim−−

(ii) Show that the weighted limit and weighted colimit bifunctors from (i)
form two thirds of a two-variable adjunction, with a 𝒱-natural isomorph-
ism

𝒞𝒜(colim𝑊𝐺, 𝐹) ≅ 𝒞ℬ(𝐺, lim𝑊 𝐹)

for 𝑊 ∈ 𝒱ℬop×𝒜, 𝐹 ∈ 𝒞𝒜, and 𝐺 ∈ 𝒞ℬ.
(iii) What is the third bifunctor of the two-variable adjunction of (ii)?

12 The limit of a simplicial object weighted by 𝜕Δ[𝑛] is called the 𝑛th-matching object (see
Definition C.4.14).
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A.7 Change of Base

“Change of base,” first considered by Eilenberg and Kelly in [41], refers to a
systematic procedure by which enrichment over one category 𝒱 is converted into
enrichment over another category 𝒲. Corollary A.3.6 notes that for a cartesian
closed category 𝒱, there is a 2-category 𝒱-𝒞𝑎𝑡 of 𝒱-categories, 𝒱-functors, and
𝒱-natural transformations. The first main result, appearing as Proposition A.7.3,
gives conditions under which a functor 𝑇∶ 𝒱 → 𝒲 between cartesian closed
categories induces a change-of-base 2-functor 𝑇∗∶ 𝒱-𝒞𝑎𝑡 → 𝒲-𝒞𝑎𝑡.

As the context we are working in here is less general than the one considered
by Eilenberg and Kelly – our base categories are cartesian closed while theirs
are closed symmetric monoidal – we take a shortcut which covers all of our
examples and is easier to explain. In general, all that is needed to produce a
change of base 2-functor is a lax monoidal functor between symmetric monoidal
categories, but the lax monoidal functors we encounter between cartesian closed
categories are in fact finite-product-preserving, so we content ourselves with
explicating the results in that case instead.

Recall that a functor 𝑇∶ 𝒱 → 𝒲 between cartesian closed categories pre-
serves finite products just when the natural maps defined for any 𝑢, 𝑣 ∈ 𝒱

𝑇(𝑢 × 𝑣) ≃ 𝑇𝑢 × 𝑇𝑣 and 𝑇1 ≃ 1

are isomorphisms. For example:

Example A.7.1. Since representable functors preserve products, for any carte-
sian closed category 𝒱, the underlying set functor (−)0∶ 𝒱 → 𝒮𝑒𝑡 is product-
preserving

Example A.7.2. In a cartesian closed category 𝒱, finite products distribute over
arbitrary coproducts. In particular, for any sets 𝑋 and 𝑌 there is an isomorphism

⨿𝑋×𝑌1 ≅ (⨿𝑋1) × (⨿𝑌1)

between coproducts of the terminal object 1, which proves that the functor

𝒮𝑒𝑡 𝒱
⨿−1

is finite-product-preserving.

A finite-product-preserving functor may be used to change the base as follows

Proposition A.7.3. A finite-product-preserving functor 𝑇∶ 𝒱 → 𝒲 between
cartesian closed categories induces a change-of-base 2-functor

𝒱-𝒞𝑎𝑡 𝒲-𝒞𝑎𝑡 .𝑇∗



A.7 Change of Base 533

An early observation along these lines was first stated as [41, II.6.3], with
the proof left to the reader. We adopt the same tactic and leave the diagram
chases to the reader or to [31, 4.2.4] and instead just give the construction of
the change-of-base 2-functor, which is the important thing.

Proof Let 𝒞 be a 𝒱-category and define a 𝒲-category 𝑇∗𝒞 to have the same
objects and to have mapping objects 𝑇∗𝒞(𝑥, 𝑦) ≔ 𝑇𝒞(𝑥, 𝑦). The composition
and identity maps are given by the composites

𝑇𝒞(𝑦, 𝑧) × 𝑇𝒞(𝑥, 𝑦) 𝑇(𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦)) 𝑇𝒞(𝑥, 𝑧)

1 𝑇1 𝑇𝒞(𝑥, 𝑥)

≃ 𝑇∘

≃ 𝑇 id𝑥

which make use of the inverses of the natural maps that arise when a finite-
product-preserving functor is applied to a finite product. A straightforward
diagram chase verifies that 𝑇∗𝒞 is a 𝒲-category.

If 𝐹∶ 𝒞 → 𝒟 is a 𝒱-functor, then we define a 𝒲-functor 𝑇∗𝐹∶ 𝑇∗𝒞 → 𝑇∗𝒟
to act on objects by 𝑐 ∈ 𝒞 ↦ 𝐹𝑐 ∈ 𝒟 and with internal action on arrows defined
by

𝑇𝒞(𝑥, 𝑦) 𝑇𝒟(𝐹𝑥, 𝐹𝑦)
𝑇𝐹𝑥,𝑦

Again, a straightforward diagram chase verifies that 𝑇∗𝐹 is 𝒲-functorial. It is
evident from this definition that 𝑇∗(𝐺𝐹) = 𝑇∗𝐺 ⋅ 𝑇∗𝐹.

Finally, let 𝛼∶ 𝐹 ⇒ 𝐺 be a 𝒱-natural transformation between 𝒱-functors
𝐹,𝐺∶ 𝒞 → 𝒟 and define a 𝒲-natural transformation 𝑇∗𝛼∶ 𝑇∗𝐹 ⇒ 𝑇∗𝐺 to
have components

1 𝑇1 𝑇𝒟(𝐹𝑐, 𝐺𝑐)≃ 𝑇𝛼𝑐

Another straightforward diagram chase verifies that 𝑇∗𝛼 is 𝒲-natural.
It remains to verify this assignment is functorial for both horizontal and

vertical composition of enriched natural transformations. Consulting Definition
A.3.5, we see that the component of 𝑇∗(𝛽 ⋅ 𝛼) is defined by the top-horizontal
composite below while the component of the vertical composite of 𝑇∗𝛼 with
𝑇∗𝛽∶ 𝑇∗𝐺 ⇒ 𝑇∗𝐻 is defined by the bottom composite:

1 𝑇1 𝑇(𝒟(𝐺𝑐,𝐻𝑐) × 𝒟(𝐹𝑐, 𝐺𝑐)) 𝑇𝒟(𝐹𝑐,𝐻𝑐)

𝑇1 × 𝑇1 𝑇𝒟(𝐺𝑐,𝐻𝑐) × 𝑇𝒟(𝐹𝑐, 𝐺𝑐)

≃

≃

𝑇(𝛽𝑐×𝛼𝑐) 𝑇∘

≃

𝑇𝛽𝑐×𝑇𝛼𝑐

≃

The square commutates by the naturality of the isomorphism 𝑇(𝑢 × 𝑣) ≅
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𝑇𝑢 × 𝑇𝑣, while the triangle commutes because 1 is terminal, so the inverses
of the displayed isomorphisms form a commutative triangle. The argument for
functoriality of horizontal composites is similar.

Remark A.7.4. In fact, the “change of base” procedure 𝒱 ↦ 𝒱-𝒞𝑎𝑡 is itself
a 2-functor from the 2-category of cartesian closed categories, finite-product-
preserving functors, and natural transformations to the 2-category of 2-catego-
ries, 2-functors, and 2-natural transformations. See [31, §4.3] for a discussion
and proof.

As an immediate consequence of the 2-functoriality of Remark A.7.4:

Proposition A.7.5. Any adjunction between cartesian closed categories whose
left adjoint preserves finite products induces a change-of-base 2-adjunction

𝒱 𝒲 𝒱-𝒞𝑎𝑡 𝒲-𝒞𝑎𝑡
𝐹

⊥
𝑈

⇝
𝐹∗

⊥
𝑈∗

Proof Of course right adjoints always preserve products, so the adjoint pair
of functors 𝐹 ⊣ 𝑈 defines an adjunction in the 2-category of cartesian closed
categories and finite-product-preserving functors described in Remark A.7.4.
The 2-functor 𝒱 ↦ 𝒱-𝒞𝑎𝑡 then carries the adjunction displayed on the left to
the adjunction displayed on the right.

As a special case:

Corollary A.7.6. For any cartesian closed category 𝒱 with coproducts, the
underlying category construction and free category construction define adjoint
2-functors

𝒞𝑎𝑡 𝒱-𝒞𝑎𝑡⊥
(−)0

In light of Proposition A.7.5 and results to follow, an adjunction between
cartesian closed categories whose left adjoint preserves finite products provides
a change-of-base adjunction. While Proposition A.7.5 permits the change of
base along either adjoint of a finite-product-preserving adjunction, the next
series of results reveal that change of base along the right adjoint is somewhat
better behaved.

Lemma A.7.7. Any adjunction comprised of finite-product-preserving functors
between cartesian closed categories

𝒱 𝒲 𝒱 𝑈∗𝒲
𝐹

⊥
𝑈

⇝
𝐹

⊥
𝑈
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defines a 𝒱-enriched adjunction between the 𝒱-categories 𝒱 and 𝑈∗𝒲; i.e.,
there exists a 𝒱-natural isomorphism 𝑈𝒲(𝐹𝑣,𝑤) ≅ 𝒱(𝑣, 𝑈𝑤).

Proof The internal action 𝑈𝑎,𝑏∶ 𝑈𝒲(𝑎, 𝑏) → 𝒱(𝑈𝑎,𝑈𝑏) of the 𝒱-functor
𝑈∶ 𝑈∗𝒲 → 𝒱 is defined by the transpose of the map𝑈 ev∶ 𝑈𝒲(𝑎, 𝑏)×𝑈𝑎 →
𝑈𝑏 defined by applying 𝑈 to the counit of the cartesian closure adjunction of
𝒲. The commutative square (A.2.4) provides the 𝒱-functoriality of this map.

By the 𝒱-functoriality of 𝑈∶ 𝑈∗𝒲 → 𝒱, the map

𝑈𝒲(𝐹𝑣,𝑤) 𝒱(𝑈𝐹𝑣,𝑈𝑤) 𝒱(𝑣, 𝑈𝑤)
𝑈𝐹𝑣,𝑤 −∘𝜂𝑣

is 𝒱-natural in 𝑤 ∈ 𝑈∗𝒲 for all 𝑣 ∈ 𝒱. By Remark A.3.17, to construct a
compatible 𝒱-enrichment of 𝐹, we need only demonstrate that this map in an
isomorphism in 𝒱.

We do this by constructing an explicit inverse, namely

𝒱(𝑣,𝑈𝑤) 𝑈𝐹𝒱(𝑣, 𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝐹𝑈𝑤) 𝑈𝒲(𝐹𝑣,𝑤)
𝜂 𝑈(𝐹𝑣,𝑈𝑤) 𝜖𝑤∘−

where the middle map is defined by applying the unenriched functor 𝑈 to the
action map from the 𝒲-functor 𝐹∶ 𝐹∗𝒱 → 𝒲, which is defined similarly to the
𝒱-functor 𝑈∶ 𝑈∗𝒲 → 𝒱.

The proof that these maps are inverses involves a pair of diagram chases,
the first of which demonstrates that the top-right composite reduces to the
left-bottom composite, which is the identity:

𝒱(𝑣,𝑈𝑤) 𝑈𝐹𝒱(𝑣, 𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝐹𝑈𝑤) 𝑈𝒲(𝐹𝑣,𝑤)

𝒱(𝑈𝐹𝑣,𝑈𝐹𝑈𝑤) 𝒱(𝑈𝐹𝑣,𝑈𝑤)

𝒱(𝑣, 𝑈𝐹𝑈𝑤) 𝒱(𝑣, 𝑈𝑤)

𝜂

𝜂𝑈𝑤∘−

𝑈(𝐹𝑣,𝑈𝑤)

𝑈𝐹𝑣,𝑈𝑤

𝜖𝑤∘−

𝑈𝐹𝑣,𝐹𝑈𝑤 𝑈𝐹𝑣,𝑤

𝑈𝜖𝑤∘−

−∘𝜂𝑣 −∘𝜂𝑣
𝑈𝜖𝑤∘−

The only subtle point is the commutativity of the trapezoidal region, which
expresses the fact that 𝜂∶ id𝒱 ⇒ 𝑈𝐹 is a closed natural transformation between
product-preserving functors between cartesian closed categories. This region
commutes because the transposed diagram does:

𝒱(𝑣,𝑈𝑤) × 𝑣 𝒱(𝑣, 𝑈𝑤) × 𝑣 𝑈𝑤

𝑈𝐹𝒱(𝑣,𝑈𝑤) × 𝑈𝐹𝑣 𝑈𝐹(𝒱(𝑣, 𝑈𝑊) × 𝑣) 𝑈𝐹𝑈𝑤

𝜂×𝜂𝑣 𝜂

ev

𝜂𝑈𝑤

≃ 𝑈𝐹 ev

the right-hand square by naturality, and the left-hand square because any naturally
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transformation between product-preserving functors is automatically a monoidal
natural transformation (see Exercise A.7.i). The other diagram chase is similar.

Proposition A.7.8. Given an adjunction between cartesian closed categories

𝒱 𝒲
𝐹

⊥
𝑈

whose left adjoint preserves finite products then if 𝒞 is co/tensored as a 𝒲-cate-
gory, 𝑈∗𝒞 is co/tensored as 𝒱-category with the co/tensor of 𝑐 ∈ 𝒞 by 𝑣 ∈ 𝒱
defined by

𝑣 ⊗ 𝑐 ≔ 𝐹𝑣 ⊗ 𝑐 and 𝑐𝑣 ≔ 𝑐𝐹𝑣.

Proof Suppose 𝒞 admits cotensors as a𝒲-category. To verify that𝑈∗𝒞 admits
cotensors as a 𝒱-category we must supply an isomorphism

𝑈𝒞(𝑥, 𝑐𝐹𝑣) ≅ (𝑈𝒞(𝑥, 𝑐))𝑣

in 𝒱 that is 𝒱-natural in 𝑥. By the enriched Yoneda lemma, we can extract this
isomorphism from an isomorphism

𝒱(𝑢,𝑈𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝒱(𝑢, (𝑈𝒞(𝑥, 𝑐))𝑣)

that is 𝒱-natural in 𝑢 ∈ 𝒱. To that end, by composing the 𝒱-natural isomor-
phisms of Lemma A.7.7, the enriched natural isomorphisms arising from the
cartesian closed structure on 𝒱 and on 𝑈∗𝒲, and the isomorphisms that charac-
terize the cotensor on 𝒞 and express the fact that 𝐹 preserves binary products,
we have:

𝒱(𝑢,𝑈𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝑈𝒲(𝐹𝑢, 𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝑈𝒲(𝐹𝑢, 𝒞(𝑥, 𝑐)𝐹𝑣)
≅ 𝑈𝒲(𝐹𝑢 × 𝐹𝑣, 𝒞(𝑥, 𝑐)) ≅ 𝑈𝒲(𝐹(𝑢 × 𝑣), 𝒞(𝑥, 𝑐))
≅ 𝒱(𝑢 × 𝑣,𝑈𝒞(𝑥, 𝑐)) ≅ 𝒱(𝑢, (𝑈𝒞(𝑥, 𝑐))𝑣).

This theory of change of base is all well and good from the compound noun
perspective on enriched categories, but an additional concern arises from the
adjectival point of view. If the finite-product-preserving functor 𝑇∶ 𝒱 → 𝒲
commutes with the underlying set functors for 𝒱 and 𝒲 up to natural isomorph-
ism, then by the 2-functoriality of Remark A.7.4, the change-of-base 2-functor
𝑇∗∶ 𝒱-𝒞𝑎𝑡 → 𝒲-𝒞𝑎𝑡 also preserves the underlying categories up to natural
isomorphism. This happens in particular in the following setting.
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Lemma A.7.9. Consider a finite-product-preserving adjunction between carte-
sian closed categories:

𝒱 𝒲
𝐹

⊥
𝑈

Then change of base along the right adjoint respects the underlying categories:

𝒲-𝒞𝑎𝑡 𝒱-𝒞𝑎𝑡

𝒞𝑎𝑡

𝑈∗

(−)0 (−)0

Proof Let 𝒞 be a 𝒲 category. Then the hom-set in the underlying category of
𝑈∗𝒞 from 𝑥 to 𝑦 is isomorphic to the corresponding hom-set

𝑈∗𝒞(𝑥, 𝑦)0≅𝒱(1,𝑈𝒞(𝑥, 𝑦))0≅𝒲(𝐹1, 𝒞(𝑥, 𝑦))0≅𝒲(1, 𝒞(𝑥, 𝑦))0≅𝒞(𝑥, 𝑦)0

in the underlying category of 𝒞 and moreover this isomorphism respects the
composition and identities in the underlying categories. Thus 𝒞0 ≅ 𝑈𝒞0. A
similar argument shows that change of base along𝑈 respects underlying functors
and natural transformations.

We close this chapter by returning to an example previewed in Digression
1.4.2.

Example A.7.10. Both adjoints of the adjunction

𝑠𝒮𝑒𝑡 𝒞𝑎𝑡
h

⊥

of Proposition 1.1.11 preserve finite products. Hence, Proposition A.7.5 induces
a change-of-base adjunction defined by the 2-functors

𝑠𝒮𝑒𝑡-𝒞𝑎𝑡 2-𝒞𝑎𝑡
h∗

⊥

that act identically on objects and act by applying the homotopy category functor
or nerve functor, respectively, on homs. By Lemma A.7.9, the right adjoint,
which builds a simplicially enriched category from a 2-category, respects the
underlying category: the underlying category of objects and 1-cells is identified
with the underlying category of objects and 0-arrows. In this case, the functor
h∶ 𝑠𝒮𝑒𝑡 → 𝒞𝑎𝑡 commutes with the underlying set functors, so in fact both
adjoints preserve underlying categories, as is evident from direct computation.
In particular, the homotopy 2-category of an∞-cosmos has the same underlying
1-category.
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Exercises
Exercise A.7.i. Look up the definition of monoidal functor and monoidal trans-
formation – sometimes referred to as a lax monoidal functor and a lax monoidal
transformation – and show that

(i) any product-preserving functor between categories with finite products
is monoidal, and

(ii) any natural transformation between such functors is a monoidal natural
transformation.

Exercise A.7.ii. Let 𝒱 be a cartesian closed category and suppose 𝒞 is a ten-
sored and cotensored 𝒱-category. By Proposition A.7.8, the underlying category
𝒞0 is tensored and cotensored as an unenriched category. Describe these tensors
and cotensors.



Appendix B

An Introduction to 2-Category Theory

An important special case of enriched category theory arises when the base for
enrichment is the cartesian closed category of categories themselves. Categories
enriched in 𝒞𝑎𝑡 – 2-categories – and categories defined internally to 𝒞𝑎𝑡 –
double categories – were first introduced by Charles Ehresmann. A notable early
expository account appeared in [70], while comprehensive modern treatments
include [73] and [59]. The basic definitions are given in §B.1, which pays
particular attention to the composition of 2-cells in a 2-category by means of
pasting diagrams.

In §B.2, we briefly answer the question: what do 2-categories form? We
define three dimensions of morphisms between 2-categories – the 2-functors, 2-
natural transformations, and modifications – and observe that these collectively
assemble into a 3-category, this being a category enriched over the cartesian
closed category of 2-categories.

There are many aspects of the theory of 2-categories that fall outside the
purview of enriched category theory. We meet some of these in §B.3, where we
develop the calculus of adjunctions and mates in any 2-category, complementing
the results of §2.1, and in §B.4, where we study the special case of right adjoint
right inverse adjunctions. In §B.5, we prove a lemma that produces absolute
lifting diagrams that are preserved by any 2-functor. Finally, in §B.6 we consider
the representability of various 2-categorical structures and comment briefly on
the bicategorical Yoneda lemma.

B.1 2-Categories and the Calculus of Pasting Diagrams

The category 𝒞𝑎𝑡 of small categories is cartesian closed with the exponential
𝐵𝐴 defined to be the category of functors and natural transformations from
𝐴 to 𝐵 and a terminal object given by the terminal category 𝟙. Exploiting the

539
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work in Appendix A, we can concisely define a 2-category to be a category
enriched over this cartesian closed category. Lemma A.2.3 then provides our
first example: since any cartesian closed category is enriched over itself, 𝒞𝑎𝑡
defines an example of 2-category – the prototypical example.

Unpacking Definition A.2.1, we see that a 2-category contains a considerable
amount of structure:

Definition B.1.1 (2-category). A 2-category 𝒞 is a category enriched in 𝒞𝑎𝑡.
Explicitly it has:

• a collection of objects;
• for each pair of objects 𝑎, 𝑏 ∈ 𝒞, a collection of arrows 𝑓∶ 𝑎 → 𝑏, also

known as 1-cells, these being the objects of the hom-category 𝒞(𝑎, 𝑏); and
• for each p air of 1-cells 𝑓, 𝑔∶ 𝑎 → 𝑏, a collection of arrows between arrows

𝑎 𝑏
𝑓

𝑔
⇓𝛼 , called 2-cells,1 these being the morphisms 𝛼∶ 𝑓 ⇒ 𝑔 of

the hom-category 𝒞(𝑎, 𝑏) from 𝑓 to 𝑔

so that:

(i) For each fixed pair of objects 𝑎, 𝑏 ∈ 𝒞, the 1-cells and 2-cells form a
category. In particular:
• A pair of 2-cells as below-left admits a vertical composite as below-

right:

𝑎 𝑏 𝑎 𝑏

𝑓

⇓𝛼
𝑔

ℎ

⇓𝛽
≕

𝑓

ℎ

⇓𝛽⋅𝛼

• Each 1-cell 𝑓∶ 𝑎 → 𝑏 has an identity 2-cell 𝑎 𝑏
𝑓

𝑓

⇓id𝑓 .

(ii) The objects and 1-cells define a category in the ordinary sense; in par-
ticular, each object has an identity arrow id𝑎∶ 𝑎 → 𝑎.

(iii) The objects and 2-cells form a category. In particular:
• A pair of 2-cells as below-left admits a horizontal composite as

1 Implicit in this graphical representation is the requirement that a 2-cell 𝛼 has a domain 1-cell 𝑓
and a codomain 1-cell 𝑔, and these 1-cells have a common domain object 𝑎 and codomain
object 𝑏, the 0-cell source and 0-cell target of 𝛼.
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below-right:

𝑎 𝑏 𝑐 𝑎 𝑐
𝑓

𝑔
⇓𝛼

𝑗

𝑘

⇓𝛾 ≕
𝑗𝑓

𝑘𝑔

⇓𝛾∗𝛼

• The identity 2-cells on identity 1-cells

𝑎 𝑎
id𝑎

id𝑎

⇓idid𝑎

define identities for horizontal composition.
(iv) Finally, the horizontal composition is functorial with respect to the

vertical composition:
• The horizontal composite of identity 2-cells is an identity 2-cell:

𝑎 𝑏 𝑐 𝑎 𝑐
𝑔

𝑔
⇓id𝑔

𝑘

𝑘

⇓id𝑘 =
𝑘𝑔

𝑘𝑔

⇓id𝑘𝑔

• In the situation below, the horizontal composite of the vertical com-
posites coincides with the vertical composite of the horizontal com-
posites, a property referred to as middle-four interchange:

𝑎 𝑏 𝑐

𝑓

⇓𝛼
𝑔

ℎ

⇓𝛽

𝑗

⇓𝛾
𝑘

ℓ
⇓𝛿

(𝛿∗𝛽)⋅(𝛾∗𝛼) = (𝛿⋅𝛾)∗(𝛽⋅𝛼)

A degenerate special case of horizontal composition, in which all but one of
the 2-cells is an identity id𝑓 on its boundary 1-cell 𝑓, is called “whiskering.”

Definition B.1.2 (whiskering). The whiskered composite ℎ𝛼𝑘 of a 2-cell

𝑎 𝑏
𝑓

𝑔

⇓𝛼 with a pair of 1-cells 𝑘∶ 𝑥 → 𝑎 and ℎ∶ 𝑏 → 𝑦 is defined by the

horizontal composite:

𝑥 𝑦 𝑥 𝑎 𝑏 𝑦

𝑥 𝑎 𝑏 𝑦

ℎ𝑓𝑘

ℎ𝑔𝑘

⇓ℎ𝛼𝑘 ≔ 𝑘
𝑓

𝑔
⇓𝛼 ℎ

≔
𝑘

𝑘

⇓id𝑘

𝑓

𝑔
⇓𝛼

ℎ

ℎ

⇓idℎ
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As the following lemma reveals, horizontal composition can be recovered
from vertical composition and whiskering. Our primary interest in this result,
however, has to with a rather prosaic consequence appearing as the final part of
the statement, which is surprisingly frequently apposite

Lemma B.1.3 (naturality of whiskering). For any horizontally composable pair
of 2-cells in a 2-category there is a commutative square in the hom-category
from the domain object to the codomain object formed by the whiskered cells
whose diagonal defines the horizontal composite:

𝒞 ∋ 𝑎 𝑏 𝑐
𝑓

𝑔
⇓𝛼

ℎ

𝑘

⇓𝛽 ⇝
ℎ𝑓 𝑘𝑓

ℎ𝑔 𝑘𝑔

ℎ𝛼

𝛽𝑓

𝛽∗𝛼 𝑘𝛼

𝛽𝑔

∈ 𝒞(𝑎, 𝑐)

In particular, if any three of the four whiskered 2-cells ℎ𝛼, 𝑘𝛼, 𝛽𝑓, and 𝛽𝑔 are
invertible, so is the fourth.

Proof By middle-four interchange:

𝛽𝑔 ⋅ ℎ𝛼 = (𝛽 ∗ id𝑔) ⋅ (idℎ ∗𝛼) = (𝛽 ⋅ idℎ) ∗ (id𝑔 ⋅𝛼) = 𝛽 ∗ 𝛼
= (id𝑘 ⋅𝛽) ∗ (𝛼 ⋅ id𝑓) = (id𝑘 ∗𝛼) ⋅ (𝛽 ∗ id𝑓) = 𝑘𝛼 ⋅ 𝛽𝑓.

The operations of horizontal and vertical composition are special cases of
composition by pasting, an operation first introduced by Bénabou [9]. The main
result, proven in the 2-categorical context by Power [91] is that a well-formed
pasting diagram such as

𝑏 𝑤

𝑎 𝑐 𝑒 𝑦 𝑧

𝑑 𝑥

𝑖

𝑔

⇓𝛾 ⇓𝛼 ℓ

ℎ

⇓𝛽
𝑓

𝑛

𝑝
⇓𝛿

𝑗

𝑘

⇓𝜖 𝑚

𝑞

𝑟

𝑠

𝑡

⇓𝜁

(B.1.4)

has a unique 2-cell composite.2 We leave the formal statement and proof of
this result to the literature and instead describe informally how such pasting
composites should be interpreted.

Digression B.1.5 (how to read a pasting diagram). A pasting diagram in a
2-category 𝒞 represents a unique composite 2-cell, defining a morphism in one
2 This result was generalized to the bicategorical context by Verity [130], in which case the

composite 2-cell is well-defined once its source and target 1-cells are specified (see also [58]).
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of the hom-categories between a pair of objects. To identify these objects, look
at the underlying directed graph of objects and 1-cells in the pasting diagram. If
the pasting diagram is well-formed, that graph will have a unique source object
𝑎 and a unique target object 𝑧. This indicates that the pasting diagram defines
a 2-cell in the hom-category 𝒞(𝑎, 𝑧). The object 𝑎 is its source 0-cell and the
object 𝑧 is its target 0-cell.

The next step is to identify the source 1-cell and the target 1-cell of the pasting
diagram. These will both be objects of 𝒞(𝑎, 𝑧), i.e., 1-cells in the 2-category
from 𝑎 to 𝑧. Again if the pasting diagram is well-formed, the source 1-cell will
be the unique composable path of 1-cells none of which occur as part of the
codomain of any 2-cell in the pasting diagram. In the diagram (B.1.4), these
are the 1-cells whose labels appear above the arrow, and their composite is ℎ𝑔𝑓.
Dually, the target 1-cell will be the unique composable path of 1-cells, none
of which occur as part of the domain of any 2-cell in the pasting diagram. In
(B.1.4), these are the 1-cells whose labels appear below the diagram, and their
composite is 𝑡𝑟𝑝.

The final step is to represent the pasting diagram as a vertical composite
of 2-cells from 𝑎 to 𝑧, each of which is a whiskered composite of one of the
displayed “atomic” 2-cells. The source and target of the whiskered atomic 2-cells
trace composable paths from 𝑎 to 𝑧 through the directed graph underlying the
pasting diagram that differ only by substituting the source of the atomic 2-cell
for its target. Each 2-cell in the pasting diagram will label precisely one of the
2-cells of this composite. The expressions of these vertical 2-cell composites
are not necessarily unique and may not necessarily pass through every possible
composable path of 1-cells, though there will be some vertical composite of
2-cells that does pass through each path of 1-cells.

To start, pick any 2-cell in the pasting diagram whose 1-cell source can be
found as a subsequence of the source 1-cell; in the (B.1.4), either 𝛼 or 𝛽 can be
chosen first. Whisker it so that it defines a 2-cell from the source 1-cell ℎ𝑔𝑓 to
another path of composable 1-cells from 𝑎 to 𝑧 through the pasting diagram.
Then this whiskered composite forms the first step in the sequence of composable
2-cells. Remove this part of the pasting diagram and repeat until you arrive at
the target 1-cell. In the example above, there are four possible ways to express
the composite pasted cell (B.1.4) as vertical composites of whiskered 2-cells,
represented by the four paths through the following commutative diagram in the
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category 𝒞(𝑎, 𝑧):

ℎ𝑔𝑓 ℎ𝑘𝑗𝑖𝑓 ℎ𝑘𝑗𝑛 ℎ𝑘𝑞𝑝

𝑚ℓ𝑔𝑓 𝑚ℓ𝑘𝑗𝑖𝑎 𝑚ℓ𝑘𝑗𝑛 𝑚ℓ𝑘𝑞𝑝 𝑚𝑠𝑟𝑝 𝑡𝑟𝑝

ℎ𝛼𝑓

𝛽𝑔𝑓

ℎ𝑘𝑗𝛾

𝛽𝑘𝑗𝑖𝑓 𝛽𝑘𝑗𝑛

ℎ𝑘𝛿

𝛽𝑘𝑞𝑝

𝑚ℓ𝛼𝑎 𝑚ℓ𝑘𝑗𝛾 𝑚ℓ𝑘𝛿

𝑚𝜖𝑝 𝜁𝑟𝑝

A 2-category has four duals, including itself, each of which have the same
objects, 1-cells, and 2-cells, but swapping the domains and codomains in some
dimension.

Definition B.1.6 (op and co duals). Let 𝒞 be a 2-category.

• Its op-dual 𝒞op is the 2-category with 𝒞op(𝑎, 𝑏) ≔ 𝒞(𝑏, 𝑎). This reverses
the direction of the 1-cells but not the 2-cells.

• Its co-dual 𝒞co is the 2-category with 𝒞co(𝑎, 𝑏) ≔ 𝒞(𝑎, 𝑏)op. This reverses
the direction of the 2-cells but not the 1-cells.

• Its coop-dual 𝒞coop is the 2-category with 𝒞coop(𝑎, 𝑏) ≔ 𝒞(𝑏, 𝑎)op. This
reverses the direction of both the 2-cells and the 1-cells.

Recall from Definition 1.4.6 that an equivalence in a 2-category is given by

• a pair of objects 𝑎 and 𝑏
• a pair of 1-cells 𝑓∶ 𝑎 → 𝑏 and 𝑔∶ 𝑏 → 𝑎
• a pair of invertible 2-cells3

𝑎 𝑎 and 𝑏 𝑏
𝑔𝑓

≅⇓𝛼

𝑓𝑔

≅⇓𝛽

Digression B.1.7 (notions of sameness inside a 2-category). From the point
of view of 2-category theory, the most natural notion of “sameness” for two
objects of a 2-category is equivalence: 𝑎 and 𝑏 are to be regarded as the same if
there exists an equivalence between them.

The most natural notion of “sameness” for a parallel pair of morphisms in a
2-category is isomorphism: ℎ, 𝑘∶ 𝑎 → 𝑏 are to be regarded as the same if there
exists an invertible 2-cell 𝛾∶ ℎ ≅ 𝑘.

The most natural notion of “sameness” for a pair of 2-cells with common
boundary is equality. Because a 2-category lacks any higher dimensional mor-
phisms to mediate between 2-cells, there is no weaker notion available.
3 The default meaning of “invertibility” for 2-cells is invertibility for vertical composition. Note

the boundary 1-cells of an invertible 2-cell need not be invertible.
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In Digression 1.2.4, we saw that the data of a simplicial category could be
expressed as a diagram of a particular type valued in 𝒞𝑎𝑡. A small 2-category
can be similarly encoded – in fact in two different ways – as a category defined
internally to the category of categories.

Definition B.1.8 (internal category). Let ℰ be any category with pullbacks.
An internal category in ℰ is given by the data

𝐶1 ×
𝐶0
𝐶1

𝐶1 𝐶1

𝐶0

𝜋ℓ 𝜋𝑟⌜

𝑑 𝑐

𝐶1 ×
𝐶0
𝐶1 𝐶1 𝐶0∘

𝑑

𝑐
𝑖

subject to commutative diagrams that define the domains and codomains of
composites and identities

𝐶1 𝐶1 ×
𝐶0
𝐶1 𝐶1 𝐶0

𝐶0 𝐶1 𝐶0 𝐶0 𝐶1 𝐶0

𝑐 ∘

𝜋ℓ 𝜋𝑟

𝑑 𝑖

𝑐 𝑑 𝑐 𝑑

and encode the fact that composition is associative and unital.

𝐶1 ×
𝐶0
𝐶1 ×

𝐶0
𝐶1 𝐶1 ×

𝐶0
𝐶1 𝐶1 𝐶1 ×

𝐶0
𝐶1 𝐶1

𝐶1 ×
𝐶0
𝐶1 𝐶1 𝐶1

∘×id

id×∘ ∘

(id,𝑖)

∘

(𝑖,id)

∘

An internal category in 𝒮𝑒𝑡 is an ordinary small category. An internal category
in 𝒞𝑎𝑡 defines a double category:

Definition B.1.9 (double category). A double category 𝒞 is an internal cate-
gory

𝐶ℎ,𝑠 ×
𝐶𝑜,𝑣

𝐶ℎ,𝑠 𝐶ℎ,𝑠 𝐶𝑜,𝑣∘

𝑑

𝑐
𝑖

in 𝒞𝑎𝑡. Explicitly it has:

• a category 𝐶𝑜,𝑣 of objects and vertical arrows;
• a category 𝐶ℎ,𝑠 of horizontal arrows and squares;
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• functors 𝑐, 𝑑∶ 𝐶ℎ,𝑠 → 𝐶𝑜,𝑣 that assign a co/domain object to each horizontal
arrow and a co/domain vertical arrow to each square;

• a functor 𝑖∶ 𝐶𝑜,𝑣 → 𝐶ℎ,𝑠 that assigns a horizontal identity arrow to each
object and an identity square to each vertical arrow; and

• a composition functor ∘∶ 𝐶ℎ,𝑠 ×𝐶𝑜,𝑣 𝐶ℎ,𝑠 → 𝐶ℎ,𝑠 that defines horizontal
composition of horizontal arrows and squares that is functorial with respect
to vertical composition in each variable

satisfying the axioms imposed by the commutative diagrams of an internal
category.

A 2-category can be realized as a special case of this construction in the
following two ways.

Digression B.1.10 (2-categories as category objects). A 2-category may be
defined to be an internal category in 𝒞𝑎𝑡

𝐶1,2 ×
𝐶0
𝐶1,2 𝐶1,2 𝐶0∘

𝑑

𝑐
𝑖

in which the category 𝐶0 is a set, namely the set of objects of the 2-category.
The 1- and 2-cells occur as the objects and arrows of the category 𝐶1,2. The
functors 𝑑, 𝑐∶ 𝐶1,2 → 𝐶0 send 1- and 2-cells to their domain and codomain
0-cells. The functor 𝑖∶ 𝐶0 → 𝐶1,2 sends each object to its identity 1-cell. The
action of the functor ∘∶ 𝐶1,2 ×𝐶0 𝐶1,2 → 𝐶1,2 on objects defines composition
of 1-cells and the action on morphisms defines the horizontal composition on
2-cells. Vertical composition on 2-cells is the composition inside the category
𝐶1,2. Functoriality of this map encodes middle-four interchange.4

Dually, a 2-category may be defined to be an internal category in 𝒞𝑎𝑡

𝐶0,2 ×
𝐶0,1

𝐶0,2 𝐶0,2 𝐶0,1∘

𝑑

𝑐
𝑖

in which the categories 𝐶0,1 and 𝐶0,2 have the same set of objects and all four
functors are identity-on-objects. Here the common set of objects defines the
objects of the 2-category and the arrows of 𝐶0,1 and 𝐶0,2 define the 1- and
2-cells, respectively. The functors 𝑑, 𝑐∶ 𝐶0,2 → 𝐶0,1 define the domain and
codomain 1-cells for a 2-cell, which the functor ∘∶ 𝐶0,2 ×𝐶0,1 𝐶0,2 → 𝐶0,2
encodes vertical composition of 2-cells. The composition inside the category
𝐶0,2 defines horizontal composition of 2-cells. Functoriality of this map encodes
middle-four interchange.
4 This definition motivates the Segal category model of (∞, 1)-categories described in Definition

E.2.4.
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Exercises
Exercise B.1.i. Relate the structures itemized in Definition B.1.1 to the struc-
tures itemized in Definition A.2.1 in the case where the base for enrichment is
𝒞𝑎𝑡.

Exercise B.1.ii. Define a duality involution on double categories that exchanges
the two expressions of a 2-category as an internal category appearing in Digres-
sion B.1.10.

B.2 The 3-Category of 2-Categories

Ordinary 1-categories form the objects of a 2-category of categories, func-
tors, and natural transformations. Similarly, 2-categories form the objects of a
3-category of 2-categories, 2-functors, 2-natural transformations, and modifica-
tions. In this section, we briefly introduce all of these notions.

Recall from Definition B.1.1, that a 2-category is a category enriched in
𝒞𝑎𝑡. Similarly, 2-functors and 2-natural transformations are precisely the 𝒞𝑎𝑡-
enriched functors and 𝒞𝑎𝑡-enriched natural transformations of Appendix A.
By Corollary A.3.6, 2-categories, 2-functors, and 2-natural transformations
assemble into a 2-category. The 3-dimensional cells between 2-categories –
the modifications – are defined using the 2-cells of a 2-category, like the 2-
dimensional cells between 1-categories – the natural transformations – are
defined using the 1-cells in a 1-category.

Definition B.2.1. A 2-functor 𝐹∶ 𝒞 → 𝒟 between 2-categories is given by:

• a mapping on objects 𝒞 ∋ 𝑥 ↦ 𝐹𝑥 ∈ 𝒟;
• a functorial mapping on 1-cells 𝒞 ∋ 𝑓∶ 𝑥 → 𝑦 ↦ 𝐹𝑓∶ 𝐹𝑥 → 𝐹𝑦 ∈ 𝒟

respecting domains and codomains; and
• a mapping on 2-cells

𝒞 ∋ 𝑥 𝑦 𝐹𝑥 𝐹𝑦
𝑓

𝑔
⇓𝛼 ↦

𝐹𝑓

𝐹𝑔

⇓𝐹𝛼 ∈ 𝒟

that respects 0- and 1-cell sources and targets that is functorial for both
horizontal and vertical composition and horizontal and vertical identities.

Definition B.2.2. A 2-natural transformation 𝒞 𝒟
𝐹

𝐺

⇓𝜙 between a

parallel pair of 2-functors 𝐹 and 𝐺 is given by a family of 1-cells (𝜙𝑐∶ 𝐹𝑐 →
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𝐺𝑐)𝑐∈𝒞 in 𝒟 indexed by the objects of 𝒞 that are natural with respect to the
1-cells 𝑓∶ 𝑥 → 𝑦 in 𝒞, in the sense that the square

𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦

𝜙𝑥

𝐹𝑓

𝜙𝑦

𝐺𝑓

commutes in 𝒟, and also natural with respect to the 2-cells 𝑥 𝑦
𝑓

𝑔
⇓𝛼 in

𝒞, in the sense that the whiskered composites 𝜙𝑦 ⋅ 𝐹𝛼 and 𝐺𝛼 ⋅ 𝜙𝑥 are equal:

𝐹𝑥 𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦 𝐺𝑦

𝜙𝑥

𝐹𝑓

𝐹𝑔

⇓𝐹𝛼

𝜙𝑦𝐺𝑓

𝐺𝑔

⇓𝐺𝛼

=

The 3-dimensional morphisms between 2-categories are outside the purview
of 𝒞𝑎𝑡-enriched category theory:

Definition B.2.3. A modification Ξ∶ 𝜙 ⇛ 𝜓

𝒞 𝒟Ξ
⇛

𝐹

𝐺

𝜙 𝜓

between parallel 2-natural transformations is given by a family of 2-cells in 𝒟

𝐹𝑐 𝐺𝑐
𝜙𝑐

𝜓𝑐

⇓Ξ𝑐

indexed by the objects 𝑐 ∈ 𝒞 with the property that for any 1-cell 𝑓∶ 𝑥 → 𝑦
in 𝒞, the whiskered composites Ξ𝑦 ⋅ 𝐹𝑓 = 𝐺𝑓 ⋅ Ξ𝑥 are equal in 𝒟 and for any
2-cell 𝛼∶ 𝑓 ⇒ 𝑔 in 𝒟, the horizontal composites are equal in 𝒟:

𝐹𝑥 𝐹𝑦 𝐺𝑦
𝐹𝑓

𝐹𝑔

⇓𝐹𝛼

𝜙𝑦

𝜓𝑦

⇓Ξ𝑦 = 𝐹𝑥 𝐺𝑥 𝐺𝑦
𝜙𝑥

𝜓𝑥

⇓Ξ𝑥

𝐺𝑓

𝐺𝑔

⇓𝐺𝛼
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The category of 2-categories is cartesian closed, with internal homℬ𝒜 defined
to be the 2-category of 2-functors, 2-natural transformations, and modifications.
So now we can define a 3-category to be a category enriched in 2-categories.

Corollary B.2.4. There is a 3-category 2-𝒞𝑎𝑡 of 2-categories, 2-functors,
2-natural transformations, and modifications.

Proof Lemma A.2.3 proves that any cartesian closed category is enriched over
itself. Thus 2-𝒞𝑎𝑡 defines a 3-category.

Exercises
Exercise B.2.i. Relate the structures itemized in Definitions B.2.1 and B.2.2
to the structures itemized in Definition A.2.6 and A.3.2 in the case where the
base for enrichment is 𝒞𝑎𝑡.

Exercise B.2.ii. For the reader who has a large writing surface, unpack the
definition of a 3-category just given.

Exercise B.2.iii.

(i) Show that the functor that sends a 1-category to its opposite defines an in-
volutive 2-functor (−)op∶ 𝒞𝑎𝑡co → 𝒞𝑎𝑡 on the 2-category of categories,
functors, and natural transformations.

(ii) Similarly the functors that send a 2-category to one of its three duals can
be understood as involutions of the 3-category of 2-categories, 2-functors,
2-natural transformations, and modifications. What is the variance of
each of these mappings?

B.3 Adjunctions and Mates

As discussed in Chapter 2, any 2-category has an internally defined notion of
adjunction, comprised of:

• a pair of objects 𝑎 and 𝑏,
• a pair of 1-cells 𝑢∶ 𝑎 → 𝑏 and 𝑓∶ 𝑏 → 𝑎,
• and a pair of 2-cells 𝜂∶ 1𝑏 ⇒ 𝑢𝑓 and 𝜖∶ 𝑓𝑢 ⇒ 1𝑎, called the unit and

counit respectively,

so that the triangle equalities hold:

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
⇓𝜖 𝑓 ⇓𝜂 = =

𝑓
⇓𝜂 ⇓𝜖

𝑓 = = 𝑓𝑓ᵆ
ᵆ ᵆ ᵆ ᵆ
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The 1-cell 𝑓 is called the left adjoint and 𝑢 is called the right adjoint, a
relationship that is denoted symbolically in text by writing 𝑓 ⊣ 𝑢 or in a
displayed diagram such as

𝑎 𝑏
ᵆ
⊥
𝑓

(B.3.1)

The basic 2-category theory of adjunctions is developed in §2.1, whose results
specialize to prove theorems about adjunctions between ∞-categories. Here we
extend that theory in a complementary direction by developing the calculus of
mates, which generalize the more familiar adjoint transposes.

In the presence of an adjunction as in (B.3.1), certain 2-cells with codomain 𝑎
“transpose” into 2-cells with codomain 𝑏; op-dually, certain 2-cells with domain
𝑎 “transpose” into 2-cells with domain 𝑏: for any 1-cells𝑤 𝑥 𝑏,𝑤 𝑦 𝑎, 𝑏 ℎ 𝑧,
and 𝑎 𝑘 𝑧

𝑓𝑥 𝑦𝛼 ↭ 𝑥 𝑢𝑦
𝛽

ℎ𝑢 𝑘
𝛾

↭ ℎ 𝑘𝑓𝛿

(B.3.2)
Both of these transposition operations admit a common generalization due to
Kelly and Street [70] referred to as the “mates correspondence” which describes
a duality between 2-cells induced by a pair of adjunctions.

Definition B.3.3 (mates). Given any pair of adjunctions and functors

𝑏 𝑏′

𝑎 𝑎′

𝑘

𝑓 ⊣ 𝑓′ ⊣ᵆ

ℎ

ᵆ′

there is a bijection between 2-cells as below-left and 2-cells as below-right

𝑏 𝑏′ 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′
𝑓

𝑘

⇙𝛼 𝑓′ ↭

𝑘

⇘𝛽

ℎ ℎ

ᵆ ᵆ′ (B.3.4)

implemented by pasting with the units and counits of the adjunctions:

𝑏 𝑏′ 𝑏 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′ 𝑎′
𝑓

𝑘

⇙𝛼 𝑓′ ≔ 𝑓

𝑘

⇘𝛽
𝑓′

⇘𝜖′

ℎ

⇘𝜂

ℎ

ᵆ ᵆ′
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𝑏 𝑏′ 𝑏 𝑏′ 𝑏′

𝑎 𝑎′ 𝑎 𝑎 𝑎′

𝑘

⇘𝛽 ≔
⇙𝜖

𝑓

𝑘

⇙𝛼 𝑓′

ℎ

ᵆ ᵆ′
ᵆ

ℎ

ᵆ′
⇙𝜂′

Corresponding 2-cells (B.3.4) under this bijection are referred to as mates.

Example B.3.5. The mates correspondence specializes to define a bijection
between 2-cells between a parallel pair of left adjoints and 2-cells pointing in
the opposite direction between their right adjoints that Mac Lane refers to as
conjugates [81, §IV.7]:

𝑏 𝑏 𝑏 𝑏

𝑎 𝑎 𝑎 𝑎
𝑓 ⇙𝛼 𝑓′ ↭ ⇘𝛽ᵆ ᵆ′

The mates correspondence is respected by horizontal and vertical composition
of squares (B.3.4) in the sense made precise by the following result:

Theorem B.3.6 (double-functoriality of the mates correspondence). For any
2-category, there is a double isomorphism 𝕃adj ≅ ℝadj between the double
categories whose

• objects and horizontal morphisms are the objects and 1-cells
• vertical morphisms are fully specified adjunctions (𝑓, 𝑢, 𝜂, 𝜖) pointing in the

direction of the left adjoint5

• cells in 𝕃adj are 2-cells of the form displayed below-left, while cells in ℝadj
are 2-cells of the form displayed below-right:

𝑏 𝑏′ 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′
𝑓

𝑘

⇙𝛼 𝑓′

𝑘

⇘𝛽

ℎ ℎ

ᵆ ᵆ′

that acts as the identity on objects and on horizontal and vertical morphisms
and acts on cells by taking mates.6

Proof The horizontal and vertical functoriality of the mates correspondence
can be verified by a pasting diagram chase (or see [70, 2.2]).
5 The composition of vertical morphisms makes use of the construction given in the proof of

Proposition 2.1.9.
6 The isomorphism of double categories can be regarded as defining a component of a 2-natural

isomorphism between 2-functors 𝕃adj,ℝadj∶ 2-𝒞𝑎𝑡 → 𝐷𝑏𝑙-𝒞𝑎𝑡 from 2-𝒞𝑎𝑡 to the
2-category of double categories, double functors, and horizontal natural transformations.
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Warning B.3.7 (mates of isomorphisms need not be isomorphisms). In general
it is possible for one of the 2-cells in a mate pair (B.3.4) to be invertible without
the other being so. For instance, the unit and counit of an adjunction 𝑓 ⊣ 𝑢 are
each mates with both the identity cells id𝑓 and idᵆ, depending on which way
these 2-cells are arranged to fit in squares (see Exercise B.3.i). However if both
horizontal 1-cells ℎ and 𝑘 are equivalences, or if both adjunctions 𝑓 ⊣ 𝑢 and
𝑓′ ⊣ 𝑢′ are adjoint equivalences, then 𝛼∶ 𝑓′𝑘 ⇒ ℎ𝑓 is invertible if and only if
its mate 𝛽∶ 𝑘𝑢 ⇒ 𝑢′ℎ is invertible.

Elaborating upon Warning B.3.7 we have:

Proposition B.3.8 (equivalence invariance of adjointness). Suppose given an
essentially commutative square whose horizontal arrows are equivalences:

𝑏 𝑏′ 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′

∼𝑘

𝑓 ≅⇙𝛼 𝑓′ ⇝

∼𝑘

≅⇘ᵆ′ℎ𝜖⋅ᵆ′𝛼ᵆ⋅𝜂′ᵆ ⊢

∼
ℎ

ᵆ′⊣ ᵆ

∼
ℎ

ᵆ′

Then 𝑓 admits a right adjoint 𝑢 if and only 𝑓′ admits a right adjoint 𝑢′, in which
case the mate of the isomorphism 𝛼 is an isomorphism.

Proof Proposition 2.1.12 may be used to choose inverse adjoint equivalences
𝑘′ ⊣ 𝑘 and ℎ ⊣ ℎ′. If 𝑓 is a left adjoint, then by Proposition 2.1.9, 𝑓′ ≅ ℎ𝑓𝑘′

is isomorphic to a left adjoint, and so by Proposition 2.1.10, 𝑓′ is left adjoint
to 𝑘𝑢ℎ′. If 𝑓′ ⊣ 𝑢′ is defined to be the composite adjunction as in the previous
paragraph, the mate of 𝛼 works out to be the whiskered composite of ℎ′ℎ ≅
id𝑎 with 𝑘𝑢. By Proposition 2.1.10, any other choice of right adjoint to 𝑓′ is
isomorphic to this one, so the mate of 𝛼 is still an isomorphism.

Exercise B.3.ii suggests a new proof that any pair of left adjoints 𝑓′ ⊣ 𝑢 and
𝑓 ⊣ 𝑢 to a common 1-cell are isomorphic (see Proposition 2.1.10) by applying
the double isomorphism 𝕃adj ≅ ℝadj. A more complicated argument along the
same lines can be used to prove:

Lemma B.3.9. Suppose given a triple of adjoint functors ℓ ⊣ 𝑖 ⊣ 𝑟. Then the
counit of ℓ ⊣ 𝑖 is invertible if and only if the unit of 𝑖 ⊣ 𝑟 is invertible.

Proof Let 𝑖∶ 𝑎 → 𝑏 and write 𝜖∶ ℓ𝑖 ⇒ id𝑎 for the counit of ℓ ⊣ 𝑖 and
𝜂∶ id𝑎 ⇒ 𝑟𝑖 for the unit of 𝑖 ⊣ 𝑟. If 𝜖 admits an inverse isomorphism 𝜖−1∶ ℓ𝑖 ⇒
id𝑎, then the vertical composite in 𝕃adj displayed below-left admits an inverse
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cell for horizontal composition in 𝕃adj displayed below-right:

𝑎 𝑎

𝑎 𝑏

𝑎 𝑎

⇙id𝑖 𝑖

𝑖

⇙𝜖 ℓ

𝑎 𝑎

𝑎 𝑎
ℓ𝑖 ⇙𝜖−1

Applying the horizontal functoriality of the double isomorphism 𝕃adj ≅ ℝadj,
the mates of these cells must also compose horizontally in ℝadj to identities.7

Applying the vertical functoriality of the double isomorphism 𝕃adj ≅ ℝadj, the
mate of the vertical composite equals the composite

𝑎 𝑎

𝑎 𝑏

𝑎 𝑎

𝑖

𝑟⇘𝜂

𝑖⇘id𝑖

in ℝadj, and thus the mate of 𝜖−1 must define the inverse of 𝜂 . In summary, we
see that the counit of ℓ ⊣ 𝑖 is an isomorphism if and only if the unit of 𝑖 ⊣ 𝑟 is
an isomorphism, in which case its inverse isomorphism 𝜂−1∶ 𝑟𝑖 ⇒ id𝑎 is the
conjugate of 𝜖−1∶ id𝑎 ⇒ ℓ𝑖 via the composite adjunction ℓ𝑖 ⊣ 𝑟𝑖:

𝑎 𝑎

𝑎 𝑎
ℓ𝑖 ⇙𝜖−1 ↭

𝑎 𝑎

𝑎 𝑎
⇘𝜂−1𝑟𝑖

Exercises
Exercise B.3.i.

(i) Explain how the bijections (B.3.2) may be realized as special cases of
the mates correspondence.

(ii) By choosing a suitable pair of adjunctions and functors, explain how the
unit of an adjunction 𝑓 ⊣ 𝑢 is mates with idᵆ.

(iii) By choosing a suitable pair of adjunctions and functors, explain how the
unit of an adjunction 𝑓 ⊣ 𝑢 is mates with id𝑓.

7 Since the horizontal morphisms in the cells in question are all identities, the concern raised in
Warning B.3.7 does not apply.
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Exercise B.3.ii. Consider two adjunctions 𝑓 ⊣ 𝑢 and 𝑓′ ⊣ 𝑢 as vertical
morphisms in 𝕃adj ≅ ℝadj and apply the double functoriality of the mates
correspondence to prove that 𝑓 ≅ 𝑓′.

Exercise B.3.iii. Consider a 2-cell

𝑏 𝑏′

𝑎 𝑎′

𝑟

𝑓 ⇙𝛼 𝑓′

𝑟′

in which the vertical 1-cells admit right adjoints 𝑓 ⊣ 𝑢 and 𝑓′ ⊣ 𝑢′ and the
horizontal 1-cells admit left adjoints ℓ ⊣ 𝑟 and ℓ′ ⊣ 𝑟′. Show that the mate of
𝛼 with respect to the vertical adjunctions defines an isomorphism 𝑟𝑢 ≅ 𝑢′𝑟′ if
and only if the mate of 𝛼 with respect to the horizontal adjunctions defines an
isomorphism ℓ′𝑓′ ≅ 𝑓ℓ – and these isomorphisms are themselves mates in the
sense of Example B.3.5 with respect to the composite adjunctions.

Exercise B.3.iv. Show that any 2-functor 𝐹∶ 𝒞 → 𝒟 preserves equivalences,
adjunctions, and mates.

B.4 Right Adjoint Right Inverse Adjunctions

An important class of adjunctions are those whose counits are invertible.

Definition B.4.1. A 1-cell 𝑓∶ 𝑏 → 𝑎 in a 2-category admits a right adjoint
right inverse if it admits a right adjoint 𝑢∶ 𝑎 → 𝑏 so that the counit of the
adjunction 𝑓 ⊣ 𝑢 is an isomorphism. In this situation, 𝑓 is left adjoint left
inverse to 𝑢.

The co-dual defines the class left adjoint right inverse or right adjoint left
inverse adjunctions with invertible unit.

When the counit of 𝑓 ⊣ 𝑢 is an isomorphism, the whiskered composites 𝑓𝜂
and 𝜂𝑢 of the unit must also be isomorphisms. Indeed, to construct an adjunction
of this form it suffices to give 2-cells with these properties, as demonstrated by
the following 2-categorical lemma.

Lemma B.4.2. Suppose we are given a pair of 1-cells 𝑢∶ 𝑎 → 𝑏 and 𝑓∶ 𝑏 → 𝑎
and a 2-isomorphism 𝑓𝑢 ≅ id𝑎 in a 2-category. If there exists a 2-cell 𝜂′∶ id𝑏 ⇒
𝑢𝑓 with the property that 𝑓𝜂′ and 𝜂′𝑢 are 2-isomorphisms, then 𝑓 is left adjoint
to 𝑢. Furthermore, in the special case where 𝑢 is a section of 𝑓, then 𝑓 is left
adjoint to 𝑢 with the counit of the adjunction an identity.
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Since 𝑓𝜂′ and 𝜂′𝑢 are isomorphisms and 𝑓𝑢 ≅ id𝑎, the “triangle equality
composites” of Lemma 2.1.11 are invertible, so from that result we can conclude
that 𝑓 ⊣ 𝑢. Indeed, from the construction given in that proof, we see that we can
take the specified isomorphism 𝑓𝑢 ≅ id𝑎 to be the counit of the adjunction, so
in particular when 𝑢 is a section of 𝑓 this counit may be taken to be the identity.
The direct proof given below compiles out the argument just sketched.

Proof Let 𝜖∶ 𝑓𝑢 ⇒ id𝑎 be the isomorphism, taken to be the identity in the case
where 𝑢 is a section of 𝑓. We will define an adjunction 𝑓 ⊣ 𝑢 with counit 𝜖 by
modifying 𝜂′∶ id𝑏 ⇒ 𝑢𝑓. The “triangle identity composite” 𝜃 ≔ 𝑢𝜖⋅𝜂′𝑢∶ 𝑢 ⇒
𝑢 defines an automorphism of 𝑢. Define

𝜂 ≔ id𝑏 𝑢𝑓 𝑢𝑓 ≔ id𝑏 𝑢𝑓 𝑢𝑓𝑢𝑓 𝑢𝑓.
𝜂′ 𝜃−1𝑓 𝜂′ (ᵆ𝜖𝑓)−1 (𝜂′ᵆ𝑓)−1

Immediately, 𝑢𝜖 ⋅ 𝜂𝑢 = idᵆ, as is verified by the calculation:

𝑢 𝑢𝑓𝑢 𝑢𝑓𝑢

𝑢 𝑢

𝜂ᵆ

𝜃

𝜂′ᵆ 𝜃−1𝑓ᵆ
ᵆ𝜖 ᵆ𝜖

𝜃−1

The other triangle identity composite 𝜙 ≔ 𝜖𝑓 ⋅ 𝑓𝜂 is an isomorphism, as a
composite of isomorphisms, and also an idempotent:

𝑓 𝑓𝑢𝑓 𝑓

𝑓𝑢𝑓 𝑓𝑢𝑓𝑢𝑓 𝑓𝑢𝑓

𝑓𝑢𝑓 𝑓

𝑓𝜂

𝑓𝜂 𝑓ᵆ𝑓𝜂

𝜖𝑓

𝑓𝜂
𝑓𝜂ᵆ𝑓 𝜖𝑓ᵆ𝑓

𝑓ᵆ𝜖𝑓 𝜖𝑓

𝜖𝑓

By cancelation, any idempotent isomorphism is the identity, proving that 𝜖𝑓 ⋅
𝑓𝜂 = id𝑓.

A generalized element 𝑦∶ 𝑧 → 𝑏 is said to be in the essential image of a 1-
cell 𝑢∶ 𝑎 → 𝑏 if there exists a generalized element 𝑥∶ 𝑧 → 𝑎 and an invertible
2-cell 𝛽∶ 𝑦 ≅ 𝑢𝑥. When the functor 𝑢 is right adjoint right inverse to 𝑓, there
is a convenient characterization of its essential image:

Lemma B.4.3. A generalized element 𝑦∶ 𝑧 → 𝑏 is in the essential image of
the right adjoint right inverse 𝑢∶ 𝑎 → 𝑏 if and only if the unit component
𝜂𝑦∶ 𝑦 ⇒ 𝑢𝑓𝑦 is an isomorphism.
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Proof It remains only to argue that if given an invertible 2-cell 𝛽∶ 𝑦 ≅ 𝑢𝑥,
the unit component 𝜂𝑦 is also an isomorphism. This follows from the banal final
statement of Lemma B.1.3. From the horizontally composable pair below-left,
naturality of whiskering defines the commutative diagram below-right:

𝑧 𝑏 𝑏

𝑎 𝑎

𝑦

𝑥 ≅⇓𝛽
𝑓

⇓𝜂
ᵆ ᵆ

↭
𝑦 𝑢𝑓𝑦

𝑢𝑥 𝑢𝑓𝑢𝑥

𝜂𝑦

𝛽 ≅ 𝛽≅

𝜂ᵆ𝑥
≅

Since 𝑢 is a right adjoint right inverse, 𝜂𝑢 is invertible. Thus, if 𝛽 is invertible
so is 𝜂𝑦.

Sometimes it is more convenient to make use of a stricter notion of right
adjoint right inverse adjunction in which the counit 𝜖 is required to be the identity
𝑓𝑢 = id𝑎. In this case it follows from the triangle equalities that 𝑓𝜂 = id𝑓, so
that the unit is fibered over 𝑎. When the left adjoint is an isofibration in the
following 2-categorical sense, a right adjoint right inverse up to isomorphism
can always be replaced by a right adjoint right inverse up to identity (see Lemma
3.6.9).

Definition B.4.4 (isofibration). A 1-cell 𝑓∶ 𝑏 → 𝑎 in a 2-category defines an
isofibration – in which case the arrow is typically denoted by “↠” – if given
any invertible 2-cell 𝛼∶ 𝑓𝑦 ≅ 𝑥 abutting to 𝑎 with a specified lift of one of its
boundary 1-cells through 𝑓, there exists an invertible 2-cell 𝛽∶ 𝑦 ≅ ̄𝑦 abutting
to 𝑏 with this boundary 1-cell that whiskers with 𝑓 to the original 2-cell:

𝑧 𝑏 𝑧 𝑏

𝑎 𝑎

𝑦

𝑥
𝑓≅⇓𝛼 =

𝑦

̄𝑦
≅⇓𝛽

𝑓

Lemma B.4.5. Let 𝑓∶ 𝑏 ↠ 𝑎 be any isofibration in a 2-category 𝒞 that admits
a right adjoint 𝑢′∶ 𝑎 → 𝑏 with counit 𝜖∶ 𝑓𝑢′ ≅ id𝑎 an isomorphism. Then 𝑢′

is isomorphic to a functor 𝑢 that lies strictly over 𝑎 and defines a strict right
adjoint right inverse to 𝑓, in which case 𝑓 ⊣ 𝑢 defines an adjunction in the
2-category 𝒞/𝑎 of isofibrations with codomain 𝑎, commutative triangles over 𝑎,
and 2-cells that whisker to identities abutting to 𝑎.

𝑏 ⊥ 𝑎

𝑎
𝑓

𝑓

ᵆ
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Proof Define the 1-cell 𝑢∶ 𝑎 → 𝑏 by lifting the counit isomorphism through
the isofibration 𝑓∶ 𝑏 ↠ 𝑎

𝑎 𝑏 𝑎 𝑏

𝑎 𝑎

ᵆ′

𝑓≅⇓𝜖 =

ᵆ′

ᵆ
≅⇓𝛽

𝑓

Note by construction that 𝑓𝑢 = id𝑎, so 𝑢 defines a 1-cell in 𝒞/𝑎. By the triangle
equalities for the adjunction 𝑓 ⊣ 𝑢′, the unit defines a 2-cell 𝜂∶ id𝑏 ⇒ 𝑢′𝑓
with 𝜂𝑢′ and 𝑓𝜂 both invertible. The composite 2-cell

𝜂′ ≔ id𝑏 𝑢′𝑓 𝑢𝑓
𝜂 𝛽𝑓

≅

lies in 𝒞/𝑎 has the properties that 𝜂′𝑢 and 𝑓𝜂 are both invertible. Applying
Lemma B.4.2 in the 2-category 𝒞/𝑎, this 2-cell may then be modified to define
the unit of an adjunction 𝑓 ⊣ 𝑢 with counit 𝑓𝑢 = id𝑎.

Exercises
Exercise B.4.i. Consider a pair of equivalent adjunctions, satisfying the con-
dition of Proposition B.3.8. Show that if either of these is a right adjoint right
inverse adjunction then both are.

B.5 Absolute Absolute Lifting Diagrams

Recall from Definition 2.3.5 that for any cospan 𝑐 𝑔 𝑎 𝑓 𝑏 in a 2-category,
an absolute right lifting of 𝑔 through 𝑓 is given by a 1-cell 𝑟 and 2-cell 𝜌 as
displayed below-left

𝑏 𝑧 𝑏 𝑧 𝑏

𝑐 𝑎 𝑐 𝑎 𝑐 𝑎
⇓𝜌

𝑓 ⇓𝜒

𝑥

𝑦 𝑓 =
∃!⇓𝜁

⇓𝜌

𝑥

𝑦 𝑓

𝑔

𝑟

𝑔

𝑟

𝑔

so that any 2-cell as displayed above-center factors uniquely through (𝑟, 𝜌)
as displayed above-right. The adjective “absolute” refers to the property that
absolute right lifting diagrams are stable under restriction along any 1-cell
𝑘∶ 𝑑 → 𝑐.

The following lemma yields absolute right lifting diagrams which are absolute
in a second sense: namely, they are preserved by any 2-functor.
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Lemma B.5.1. Suppose (𝑓 ⊣ 𝑢, 𝜂∶ id𝑎 ⇒ 𝑢𝑓, 𝜖∶ 𝑓𝑢 ⇒ id𝑐) is an adjunction
under 𝑏 in the sense that

• the solid-arrow triangles involving both adjoints commute

𝑏

𝑐 𝑎

𝑘
ℓ

⊤

ᵆ
⊤

𝑟

𝑓

• and 𝜂𝑘 = id𝑘 and 𝜖ℓ = idℓ.

Then if ℓ admits a right adjoint 𝑟 with unit 𝜄∶ id𝑏 ⇒ 𝑟ℓ and counit 𝜈∶ ℓ𝑟 ⇒ id𝑐,
then 𝑢𝜈 exhibits 𝑟 as an absolute right lifting of 𝑢 through 𝑘.

𝑏

𝑐 𝑎
⇓ᵆ𝜈 𝑘

ᵆ

𝑟

Moreover, such absolute right lifting diagrams are preserved by any 2-functor.

Proof The argument is purely diagrammatic. Any 2-cell as below-left factors
through 𝑢𝜈 as below-right:

𝑧 𝑏 𝑧 𝑏 𝑧 𝑏

𝑐 𝑎 𝑐 𝑎 𝑐 𝑎

𝑐 𝑎 𝑐 𝑎

𝑥

⇓𝜒𝑦 𝑘 =

𝑥

⇓𝜒𝑦 𝑘 =

𝑥

⇓𝜒𝑦 𝑘

ℓ

=

ᵆ ᵆ
𝑓 ⇓𝜂

ᵆ
𝑓⇓𝜖

ᵆ

⇓𝜖

ᵆ

𝑧 𝑏 𝑏

𝑐 𝑎 𝑐 𝑐

𝑎

𝑥

⇓𝜒𝑦 𝑘
ℓ ⇓𝜄

⇓𝜈
ℓ

𝑘
ᵆ

⇓𝜖

𝑓

𝑟

ᵆ
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Conversely, if 𝜁 defines a factorization of 𝜒 through 𝑢𝜈, then

𝑧 𝑏 𝑧 𝑏 𝑏 𝑧 𝑏 𝑏

𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐

𝑧 𝑏 𝑏 𝑧 𝑏 𝑏

𝑐 𝑎 𝑐 𝑐 𝑎 𝑐

𝑥

𝑦
⇓𝜁 =

𝑥

𝑦
⇓𝜁

⇓𝜈
ℓ
⇓𝜄 =

𝑥

𝑦
⇓𝜁

⇓𝜈
ℓ 𝑘

ℓ
𝑟 𝑟 𝑟 𝑟

ᵆ

⇓𝜖

⇓𝜄

𝑓

𝑟

= 𝑦

𝑥

⇓𝜁

⇓ᵆ𝜈
𝑘

ℓ
= 𝑦

𝑥

⇓𝜒 𝑘
ℓ

ᵆ

𝑟

⇓𝜖
𝑓

⇓𝜄
𝑟

ᵆ
⇓𝜖

𝑓

⇓𝜄
𝑟

proving that the factorization constructed above is unique.
Finally, because the universal property of the absolute right lifting diagram is

“equationally witnessed” by the presence of the adjunctions, it is preserved by
any 2-functor.

Example B.5.2. For example, there is a diagram of adjoint functors

𝚫 𝚫+ 𝚫⊥

𝟙
! !

⊥

⊤

[−1]

involving the categories introduced in Definition 2.3.13. The inclusion 𝚫 ↪
𝚫+ ↪ 𝚫⊥ freely adjoins a bottom element to each ordinal, while its right
adjoint can be identified with the inclusion 𝚫⊥ ↪ 𝚫 of the wide subcategory
whose morphisms are bottom element preserving maps. The adjunction [−1] ⊣ !
witnesses the fact that [−1] ∈ 𝚫⊥ defines an initial object with the counit 𝜈
defining the canonical natural transformation from the initial object to the identity
functor.

This diagram satisfies the premises of Lemma B.5.1 in 𝒞𝑎𝑡op. Let 𝑎 be an
object of any 2-category 𝒞 that is cotensored over 𝒞𝑎𝑡. Then the 2-functor
𝑎(−)∶ 𝒞𝑎𝑡op → 𝒞 carries the given data to a diagram of adjoint functors in 𝒞 as
below-left and hence the triangle below-right is absolute right lifting:

𝑎 𝑎

𝑎𝚫⊥ 𝑎𝚫 𝑎𝚫⊥ 𝑎𝚫

Δ
Δ

⊥

⇓𝑎𝜈
Δ

res
⊤

ev−1

res

ev−1

This proves Proposition 2.3.15.
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Example B.5.3. There is a similar diagram of adjoint functors

𝚫 𝚫+ 𝚫⊤

𝟙
! !

⊥

⊤

[−1]

again involving the categories introduced in Definition 2.3.13. The inclusion
𝚫 ↪ 𝚫+ ↪ 𝚫⊤ freely adjoins a top element and its right adjoint can be
identified with the inclusion𝚫⊤ ↪ 𝚫 of the wide subcategory whose morphisms
are top element preserving maps. The adjunction [−1] ⊣ ! witnesses the fact
that [−1] ∈ 𝚫⊤ defines an initial object with the counit 𝜈 defining the canonical
natural transformation from the initial object to the identity functor. This proves
another version of Proposition 2.3.15 where the “splittings” occur on the other
side of the co/simplicial objects.

Exercises
Exercise B.5.i. Search for other diagrams of categories satisfying the premises
of Lemma B.5.1, such as the example implicit in Exercise 2.3.iv.

B.6 Representable Characterizations of 2-Categorical
Notions

In the cartesian closed category of 2-categories, the hom 2-functor 𝒞(−,−)∶
𝒞op × 𝒞 → 𝒞𝑎𝑡 associated to any 2-category 𝒞 transposes to define a Yoneda
embedding 2-functorよ∶ 𝒞 ↪ 𝒞𝑎𝑡𝒞

op
whose codomain is the 2-category of

2-functors, 2-natural transformations, and modifications from 𝒞 to 𝒞𝑎𝑡. By the
enriched Yoneda lemma, this 2-functor is fully faithful in an enriched sense: the 2-
category 𝒞 is isomorphic to the full sub 2-category spanned by the representable
2-functors 𝒞(−, 𝑥)∶ 𝒞op → 𝒞𝑎𝑡. On account of this enriched fully faithfulness,
structures such as equivalences or adjunctions that are defined internally to the
2-category 𝒞 are both preserved and reflected by the Yoneda embedding.

This result is less useful than one might expect. Indeed, none of the “repre-
sentable characterizations” of equivalences, adjunctions, and absolute lifting
diagrams proven in this section are consequences of it. The main point is that the
1-cells in 𝒞𝑎𝑡𝒞 are 2-natural transformations, but as our proofs reveal, weaker
naturality conditions suffice to detect 2-categorical structures that exist in 𝒞.
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We say more about the Yoneda perspective in Remark B.6.7 at the close of this
section.

By analogy with Theorem 1.4.7, we have the following result which tells us
that equivalences in a 2-category represent equivalences of categories.

Proposition B.6.1 (equivalences are representably defined). A 1-cell 𝑓∶ 𝑎 → 𝑏
in a 2-category 𝒞 defines an equivalence if and only if for all 𝑥 ∈ 𝒞 the induced
functor

𝒞(𝑥, 𝑎) 𝒞(𝑥, 𝑏)
𝑓∗

defines an equivalence of categories.

Proof Each 𝑥 ∈ 𝒞 defines a 2-functor 𝒞(𝑥, −)∶ 𝒞 → 𝒞𝑎𝑡, so if 𝑓∶ 𝑎 ∼ 𝑏 is
an equivalence in 𝒞, then 𝑓∗∶ 𝒞(𝑥, 𝑎) ∼ 𝒞(𝑥, 𝑏) is an equivalence in 𝒞𝑎𝑡.

Conversely, by essential surjectivity of 𝑓∗∶ 𝒞(𝑏, 𝑎) ∼ 𝒞(𝑏, 𝑏), there exists
some 𝑔∶ 𝑏 → 𝑎 and isomorphism 𝛽∶ 𝑓𝑔 ≅ id𝑏. By fully faithfulness of
𝑓∗∶ 𝒞(𝑎, 𝑎) ∼ 𝒞(𝑎, 𝑏) the isomorphism 𝛽−1𝑓∶ 𝑓 ≅ 𝑓𝑔𝑓 lifts to an isomorph-
ism 𝛼∶ id𝑎 ≅ 𝑔𝑓.

Similarly, an adjoint functor in a 2-category induces pointwise defined ad-
junctions between the hom-categories, but in this case, a further “exactness”
condition is required to convert a representably defined adjunction into an ad-
junction in the 2-category.

Proposition B.6.2 (adjunctions are representably defined). A 1-cell 𝑢∶ 𝑎 → 𝑏
in a 2-category 𝒞 admits a left adjoint if and only if:

(i) For all 𝑥 ∈ 𝒞, the induced functor admits a left adjoint

𝒞(𝑥, 𝑎) 𝒞(𝑥, 𝑏)
ᵆ∗
⊥
𝑓𝑥

(ii) For all 𝑘∶ 𝑦 → 𝑥 ∈ 𝒞, the mate of the identity 2-cell is an isomorphism:

𝒞(𝑥, 𝑎) 𝒞(𝑦, 𝑎) 𝒞(𝑥, 𝑎) 𝒞(𝑦, 𝑎)

𝒞(𝑥, 𝑏) 𝒞(𝑦, 𝑏) 𝒞(𝑥, 𝑏) 𝒞(𝑦, 𝑏)

ᵆ∗

𝑘∗

⇗id ᵆ∗ ↭

𝑘∗

𝑘∗

𝑓𝑥

𝑘∗

≅⇖𝜖𝑦𝑘∗𝑓𝑥⋅𝑓𝑦𝑘∗𝜂𝑥 𝑓𝑦

Proof The Yoneda embedding 2-functorよ∶ 𝒞 ↪ 𝒞𝑎𝑡𝒞
op

preserves adjunc-
tions, carrying an adjoint pair 𝑓 ⊣ 𝑢 in 𝒞 to an adjunction between the repre-
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sentable 2-functors 𝒞(−, 𝑎) and 𝒞(−, 𝑏)

𝒞(−, 𝑎) 𝒞(−, 𝑏)
ᵆ∗
⊥
𝑓∗

whose left and right adjoints are the 2-natural transformations 𝑓∗ ⊣ 𝑢∗ and
whose unit and counit are modifications. Evaluating at 𝑥 ∈ 𝒞, this defines a
family of adjunction as in (i) and strict adjunction morphisms, i.e., so that any
𝑘∶ 𝑦 → 𝑥 induces a strictly commutative square with respect to the left and
right adjoints inhabited by a mate pair of identity 2-cells.

The real content is in the converse. Assuming (i), define a candidate left
inverse by 𝑓 ≔ 𝑓𝑏(id𝑏). By construction 𝑢𝑓 ≔ 𝑢∗𝑓𝑏(id𝑏) so we may define a
candidate unit to be the component of the unit 𝜂𝑏 of 𝑓𝑏 ⊣ 𝑢∗ at id𝑏:

𝜂 ≔ id𝑏 𝑢𝑓 ∈ 𝒞(𝑏, 𝑏).
𝜂𝑏id𝑏

Note that these definitions do not a priori give any information about the
other composite 𝑓𝑢 ∈ 𝒞(𝑎, 𝑎), but condition (ii) defines a natural isomorphism
𝛼∶ 𝑓𝑎𝑢∗ ≅ 𝑢∗𝑓𝑏

𝒞(𝑏, 𝑎) 𝒞(𝑎, 𝑎)

𝒞(𝑏, 𝑏) 𝒞(𝑎, 𝑏)

ᵆ∗

𝑓𝑏

ᵆ∗

≅⇖𝜖𝑎ᵆ∗𝑓𝑏⋅𝑓𝑎ᵆ∗𝜂𝑏 𝑓𝑎

whose component at id𝑏 defines an isomorphism

𝛼id𝑏 ≔ 𝑓𝑎(𝑢) 𝑓𝑎(𝑢𝑓𝑢) = 𝑓𝑎𝑢∗(𝑓𝑢) 𝑓𝑢 ∈ 𝒞(𝑎, 𝑎).
𝑓𝑎(𝜂ᵆ) 𝜖𝑎(𝑓ᵆ)

Using this, we define the counit to be the composite of the inverse of this
isomorphism with the component of the counit 𝜖𝑎 of 𝑓𝑎 ⊣ 𝑢∗ at id𝑎:

𝜖 ≔ 𝑓𝑢 𝑓𝑎(𝑢) id𝑎 ∈ 𝒞(𝑎, 𝑎).≅

𝛼−1id𝑏 𝜖𝑎id𝑎

The commutative diagram

𝑢 𝑢𝑓𝑢

𝑢𝑓𝑎(𝑢) 𝑢𝑓𝑎(𝑢𝑓𝑢) 𝑢𝑓𝑢

𝜂𝑎(ᵆ)

𝜂ᵆ

𝜂𝑎(ᵆ𝑓ᵆ)
ᵆ𝑓𝑎(𝜂ᵆ)

ᵆ𝛼id𝑏

ᵆ𝜖𝑎(𝑓ᵆ)



B.6 Representable Characterizations of 2-Categorical Notions 563

reveals that 𝑢𝛼id𝑏 ⋅ 𝜂
𝑎𝑢 = 𝜂𝑢, so

𝑢𝜖 ⋅ 𝜂𝑢 = (𝑢𝜖𝑎id𝑎 ⋅ 𝑢𝛼
−1
id𝑏) ⋅ (𝑢𝛼id𝑏 ⋅ 𝜂

𝑎𝑢) = 𝑢𝜖𝑎id𝑎 ⋅ 𝑢𝛼id𝑏 = idᵆ,

which verifies one of the two triangle equalities.
It is somewhat delicate to prove that the other triangle equality composite

𝑓 𝑓𝑢𝑓 𝑓 ∈ 𝒞(𝑏, 𝑎)
𝑓𝜂 𝜖𝑓

is the identity because we do not have any way to understand the arrow 𝑓𝜂.
Note, however, that this arrow defines an endomorphism of the object 𝑓𝑏(id𝑏) ∈
𝒞(𝑏, 𝑎), so if we verify that its transpose under the adjunction 𝑓𝑏 ⊣ 𝑢∗ is the
unit component 𝜂𝑏id𝑏, then by uniqueness of adjoint transposition, we must have
𝜖𝑓 ⋅ 𝑓𝜂 = id𝑓 as desired. This can be verified by direct calculation: the adjoint
transpose is computed by applying the functor 𝑢∗ and then precomposing with
𝜂𝑏id𝑏 = 𝜂, which yields the left-bottom composite below.

1 𝑢𝑓

𝑢𝑓 𝑢𝑓𝑢𝑓 𝑢𝑓

𝜂

𝜂

𝜂ᵆ𝑓

ᵆ𝑓𝜂 ᵆ𝜖𝑓

An easy diagram chase making use of the previously verified triangle equality
completes the proof.

Condition (ii) of Proposition B.6.2 is referred to as a “Beck–Chevalley” or
exactness condition. Another exactness condition appears in a representable
characterization of absolute lifting diagrams.

Definition B.6.3. A trio of functors (𝑢, 𝑣, 𝑤) between a pair of absolute right
lifting diagrams (𝑟, 𝜌) and (𝑟′, 𝜌′) as below defines a right exact transformation
if and only if the 2-cell 𝜏 induced by the universal property of the absolute right
lifting is invertible:

𝑏

𝑐 𝑎 𝑏′

𝑐′ 𝑎′

⇓𝜌
𝑓

𝑣𝑟

𝑔

𝑤
ᵆ 𝑓′

𝑔′

=

𝑏

𝑐 𝑏′

𝑐′ 𝑎′

𝑣𝑟

𝑤

∃!⇓𝜏

⇓𝜌′
𝑓′

𝑔′

𝑟′

(B.6.4)

This right exactness condition holds if and only if, in the diagram on the left
of (B.6.4), the whiskered 2-cell 𝑢𝜌 displays 𝑣𝑟 as the absolute right lifting of
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𝑔′𝑤 through 𝑓′, which is to say that the right exact transformations are those
that preserve absolute right lifting diagrams.

Lemma B.6.5. The mate of a commutative square between left adjoints as below

𝑏 𝑏′

𝑎 𝑎′
𝑓⊢

𝑘

𝑓′ ⊣

ℎ

ᵆ
ᵆ′

is invertible if and only if (ℎ, 𝑘, ℎ) defines a right exact transformation between
the absolute right lifting diagrams (𝑢, 𝜖) and (𝑢′, 𝜖′) of id𝑎 through 𝑓 and id𝑎′
through 𝑓′.

Proof The unique 2-cell 𝜏 satisfying the pasting diagram below is the mate of
id∶ 𝑓′𝑘 ⇒ ℎ𝑓.

𝑏

𝑎 𝑎 𝑏′

𝑎′ 𝑎′

⇓𝜖
𝑓

𝑘ᵆ

ℎ
ℎ 𝑓′

=

𝑏

𝑎 𝑏′

𝑎′ 𝑎′

𝑘ᵆ

ℎ

∃!⇓𝜏

⇓𝜖′
𝑓′ᵆ′

Proposition B.6.6. Consider a 2-cell in a 2-category 𝒞

𝑏

𝑐 𝑎
⇓𝜌

𝑓𝑟

𝑔

(i) If (𝑟, 𝜌) defines an absolute right lifting diagram in 𝒞, then
(a) For all 𝑥 ∈ 𝒞,

𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎)
⇓𝜌∗

𝑓∗
𝑟∗

𝑔∗

defines an absolute right lifting diagram in 𝒞𝑎𝑡.
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(b) For all 𝑘∶ 𝑤 → 𝑥 ∈ 𝒞, the induced transformation is right exact.

𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎) 𝒞(𝑤, 𝑏)

𝒞(𝑤, 𝑐) 𝒞(𝑤, 𝑎)

𝑓∗
𝑘∗

𝑔∗

𝑘∗
𝑘∗ 𝑓∗

𝑔∗

(ii) Conversely if ((a)) holds for each 𝑥 ∈ 𝒞, then (𝑟, 𝜌) defines an absolute
right lifting diagram in 𝒞.

(iii) Moreover, if 𝑔∶ 𝑐 → 𝑎 and 𝑓∶ 𝑏 → 𝑎 are so that for all 𝑥 ∈ 𝒞, the
functor 𝑔∗∶ 𝒞(𝑥, 𝑐) → 𝒞(𝑥, 𝑎) admits an absolute right lifting through
𝑓∗∶ 𝒞(𝑥, 𝑏) → 𝒞(𝑥, 𝑎) for which condition ((b)) holds, then 𝑔 admits an
absolute right lifting through 𝑓 in 𝒞.

Proof We leave the proof of the first statement, which is the most straight-
forward, to the reader with the hint that to verify the universal property of an
absolute lifting diagram in 𝒞𝑎𝑡, it suffices to consider cones over the cospan
(𝑔∗, 𝑓∗) whose summit is the terminal category 𝟙.

For the second assertion, consider a cone

𝑥 𝑏

𝑐 𝑎

𝑦

𝑧 ⇓𝜒 𝑓

𝑔

over the cospan (𝑔, 𝑓) in 𝒞. This data defines a diagram of categories as below-
left, which factors uniquely as below-right:

𝟙 𝒞(𝑥, 𝑏) 𝟙 𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎) 𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎)

𝑦

𝑧 ⇓𝜒 𝑓∗ =

𝑦

𝑧
∃!⇓𝜁

⇓𝜌∗
𝑓∗

𝑔∗

𝑟∗

𝑔∗

defining the desired unique factorization

𝑥 𝑏 𝑥 𝑏

𝑐 𝑎 𝑐 𝑎

𝑦

𝑧 ⇓𝜒 𝑓 =

𝑦

𝑧
⇓𝜁

⇓𝜌
𝑓

𝑔 𝑔

𝑟

For the final statement, we define the pair (𝑟, 𝜌) by evaluating the functor and
natural transformation of the postulated absolute right lifting (𝑟𝑐, 𝜌𝑐) in the case
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𝑥 = 𝑐 at id𝑐 ∈ 𝒞(𝑐, 𝑐). To verify that 𝜌∶ 𝑓𝑟 ⇒ 𝑔 defines an absolute right lifting
of 𝑔 through 𝑓, consider a 1-cell 𝑧∶ 𝑥 → 𝑐. The hypothesis of right exactness
tells us that the composite transformation

𝒞(𝑐, 𝑏)

𝟙 𝒞(𝑐, 𝑐) 𝒞(𝑐, 𝑎) 𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎)

⇓𝜌𝑐
𝑓∗

𝑧∗

id𝑐
𝑔∗

𝑟𝑐

𝑧∗
𝑧∗ 𝑓∗

𝑔∗

is absolute right lifting. By the proof of the second statement above, this tells us
that (𝑟𝑐, 𝜌𝑐) is an absolute right lifting of 𝑔𝑐 through 𝑓, which proves that (𝑟, 𝜌)
is an absolute right lifting as required.

Remark B.6.7. The results of Propositions B.6.2 and B.6.6 can be viewed as
applications of the bicategorical Yoneda lemma, which defines a 2-fully faithful
embedding of a bicategory 𝒞 into the 2-category [𝒞op, 𝒞𝑎𝑡] of pseudofunctors,
pseudonatural transformations, and modifications (see Definitions 10.4.1, 10.4.2,
and B.2.3). If a 1-cell 𝑢∶ 𝑎 → 𝑏 in 𝒞 satisfies condition (i) of Proposition B.6.2,
then by Theorem B.3.6, the left adjoints 𝑓𝑥∶ 𝒞(𝑥, 𝑏) → 𝒞(𝑥, 𝑎) define the
components of an oplax natural transformation. Condition (ii) demands that
this oplax natural transformation is a pseudonatural transformation. Now 2-fully
faithfulness allows us to lift this to an arrow 𝑓∶ 𝑏 → 𝑎 in 𝒞, which is left adjoint
to 𝑢.

In the case of Proposition B.6.1, where 𝑢∶ 𝑎 → 𝑏 induces equivalences
𝒞(𝑥, 𝑎) ∼ 𝒞(𝑥, 𝑏), the inverses can be chosen to define adjoint equivalences,
which automatically assemble into a pseudonatural transformation (see Lemma
10.4.15). This is why no additional hypothesis was required.

Exercises
Exercise B.6.i. Confirm the assertion made in the proof of Lemma B.6.5.

Exercise B.6.ii. Prove Proposition B.6.6(i).



Appendix C

Abstract Homotopy Theory

The underlying 1-category of an ∞-cosmos, together with its classes of isofibra-
tions, equivalences, and trivial fibrations, defines a category of fibrant objects,
a categorical setting for abstract homotopy theory first studied by Brown [23].
In §C.1, we develop some of the general theory of categories of fibrant objects
in order to present some classical proofs that are omitted in the main text.

The remainder of this chapter develops material that is applied in later appen-
dices. In Appendix E, we discover that examples of ∞-cosmoi can be found
“in the wild” as model categories that are enriched as such over Joyal’s model
structure on the category of simplicial sets. To explain the notions that feature
in the statements and proofs of these results, model categories, enriched model
categories, and the various functors between them are introduced in §C.3.

A model category is an axiomatic framework for abstract homotopy the-
ory developed by Quillen [93].1 In the introduction to “ Chapter I. Axiomatic
Homotopy Theory” where the definition first appears, Quillen highlights the
factorization and lifting axioms as being the most important. These are most
clearly encapsulated in the categorical notion of a weak factorization system
discussed in §C.2, the axioms for which were enumerated later.

Finally, some of the technical combinatorial proofs of Appendix D require
inductive arguments involving the Reedy category 𝚫. Thus, we conclude in
§C.4 and §C.5 with a brief introduction to Reedy category theory and the Reedy
model structure following the presentation of [107].
1 Similarly, an ∞-cosmos is an axiomatic framework for abstract ∞-category theory, which may

productively be thought of as a categorification of a Quillen model category.
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C.1 Abstract Homotopy Theory in a Category of Fibrant
Objects

In this section, we work in an (unenriched) category of fibrant objects, a notion
first introduced by Brown [23]. Examples include the underlying category of an
∞-cosmos or the full subcategory of fibrant objects in a Quillen model category
(hence the name).

Definition C.1.1 (category of fibrant objects). A category of fibrant objects
consists of a category ℳ together with two subcategories of morphisms 𝚆 and
𝙵 satisfying the following axioms:

(i) ℳ has products and in particular a terminal object 1. Moreover, the
classes 𝙵 and 𝙵 ∩ 𝚆 are each closed under products.

(ii) 𝚆 has the 2-of-3 property: for any composable pair of morphisms, if
any two of 𝑓, 𝑔, and 𝑔𝑓 is in 𝚆 then so is the third.

(iii) Pullbacks of maps in 𝙵 exist and lie in 𝙵, and the class 𝙵 ∩ 𝚆 is also
stable under pullback.

(iv) Limits of countable towers2 of maps in 𝙵 exist and also lie in 𝙵, and the
class 𝙵 ∩ 𝚆 is also closed under forming limits of towers.

(v) For every object 𝐵, there exists a path object 𝑃𝐵 together with a factor-
ization of the diagonal into a map in 𝚆 followed by a map in 𝙵:

𝑃𝐵

𝐵 𝐵 × 𝐵
∼

Δ

(vi) All objects are fibrant: for every 𝐵 ∈ ℳ, the map 𝐵 → 1 lies in 𝙵.

Remark C.1.2. The original definition only requires the existence finite prod-
ucts in axiom (i) and omits axiom (iv). The closure of the classes 𝙵 and 𝙵 ∩ 𝚆
under finite products follows, by induction, from the closure under pullback
assumed in axiom (iii) (see Corollary C.1.14). Here, we ask for these infinite
limits to parallel the limit axiom 1.2.1(i) in our definition of an ∞-cosmos. In
practice, the classes 𝙵 and 𝙵 ∩ 𝚆 are frequently characterized by a right lifting
property, in which case the closure axioms (i), (iii), and (iv) are automatic (see
Lemma C.2.3).
2 A (countable) tower is a diagram of shape 𝝎op. Closure under limits of towers asserts that if the

images of each of the atomic arrows in the tower lie in 𝙵, then the map from the limit object to
the terminal object in the diagram is also in 𝙵. The dual notion, a map from the initial object in
an 𝝎-shaped diagram to its colimit, is commonly referred to as a “countable composite” or a
“transfinite composite” in the case of larger limit ordinals. More general towers, indexed by other
limit ordinals, are considered in Lemma C.2.3 and beyond.
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In general, it is customary to refer to the maps in 𝚆 as “weak equivalences,”
the maps in 𝙵 as “fibrations,” and the maps in 𝙵 ∩ 𝚆 as “trivial fibrations” –
unless the specific context dictates alternate names – and depict these classes
by the decorated arrows, ∼ , ↠, and ∼ , respectively. Our primary interest in
categories of fibrant objects is on account of the following two examples.

Example C.1.3. The underlying category of an ∞-cosmos defines a category
of fibrant objects with 𝚆 the class of equivalences and 𝙵 the class of isofibrations.
Most of the axioms of Definition C.1.1 are subsumed by the limit and isofibration
axioms of Definition 1.2.1. The remaining pieces are established in Lemmas
1.2.14, 1.2.17, and 1.2.19.

Example C.1.4. The full subcategory of fibrant objects in a model category
defines a category of fibrant objects with 𝚆 the class of weak equivalences and 𝙵
the class of fibrations between fibrant objects (see Definition C.3.2 and Exercise
C.3.i).

Remark C.1.5. Both of the examples just discussed have the additional property
of being right proper, satisfying an additional axiom:

(vii) Pullbacks of maps in 𝚆 along maps in 𝙵 define maps in 𝚆:

𝐹 𝐸

𝐴 𝐵

𝑞

∼𝑔

⌟
𝑝

∼
𝑓

For ∞-cosmoi, this is proven in Proposition 3.3.3 and for fibrant objects in
model categories, this was first observed by Reedy in [99, Theorem B] (see also
[84, 15.4.2]).

The factorization axiom in a category of fibrant objects can be generalized to
construct factorizations of any map (see Lemma 1.2.19).

Lemma C.1.6 (Brown factorization lemma). Any map 𝑓∶ 𝐴 → 𝐵 in a category
of fibrant objects may be factored as a weak equivalence followed by a fibration,
where the weak equivalence is constructed as a section of a trivial fibration.

𝑃𝑓

𝐴 𝐵

𝑝

∼𝑞

𝑓

∼ 𝑠

Moreover, 𝑓 is a weak equivalence if and only if the fibration 𝑝 is a trivial
fibration.
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Proof The displayed factorization is constructed by the pullback of the path
object factorization 𝐵 ∼ 𝑃𝐵 ↠ 𝐵 × 𝐵 of (v):

𝐴 𝐵

𝑃𝑓 𝑃𝐵

𝐴 × 𝐵 𝐵 × 𝐵

∼
𝑠

𝑓

(𝐴,𝑓)

⌟
∼

Δ(𝑞,𝑝)
⌟

𝑓×𝐵

By the 2-of-3 property for the weak equivalences, both projections 𝑃𝐵 ∼ 𝐵 are
trivial fibrations. Since the map 𝑞 is a pullback of one of these projections along
𝑓∶ 𝐴 → 𝐵, it follows from axiom (iii) that 𝑞 is a trivial fibration. Its section 𝑠,
constructed by applying the universal property of the pullback to the displayed
cone with summit 𝐴, is thus a weak equivalence. Finally, if either 𝑓 or 𝑝 are
weak equivalences, the other must be as well by the 2-of-3 property.

In analogy with Proposition 1.2.22:

Corollary C.1.7. If ℳ is a category of fibrant objects and 𝐵 ∈ ℳ, then the
category ℳ/𝐵 of fibrations in ℳ with codomain 𝐵 and maps over 𝐵 becomes a
category of fibrant objects with weak equivalences and fibrations created by the
forgetful functor ℳ/𝐵 →ℳ.

Proof The construction of limits in the slice category ℳ/𝐵 is described in the
proof of Proposition 1.2.22; note in particular, that id𝐵 is the terminal object, so
all objects in ℳ/𝐵, being fibrations in ℳ, are fibrant. Path objects for a fibration
𝑓∶ 𝐴 ↠ 𝐵 are constructed by applying Lemma C.1.6 to the “diagonal” map
(𝑓, 𝑓)∶ 𝐴 → 𝐴 ×𝐵 𝐴 from 𝐴 to the pullback of 𝑓 along itself.

The dual of a result of Blumberg and Mandell [20, 6.4] demonstrates that the
equivalences in any ∞-cosmos satisfy the 2-of-6 property. The proof reveals
that this holds in any category of fibrant objects in which the class 𝚆 is closed
under retracts.3

Proposition C.1.8. Let ℳ be a category with classes of maps 𝚆 and 𝙵 so that:

• 𝚆 satisfies the 2-of-3 property, and is closed under retracts.
3 An arrow 𝑓∶ 𝐴 → 𝐵 is a retract of an arrow 𝑔∶ 𝐶 → 𝐷 if there exists a diagram:

𝐴 𝐶 𝐴

𝐵 𝐷 𝐵
𝑓

𝑠
𝑔

𝑟
𝑓

𝑢 𝑣
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• The pullback of a map in 𝙵 ∩ 𝚆 is in 𝙵 ∩ 𝚆 and these pullbacks always exist.
• Every map in 𝚆 factors as a section of a map in 𝙵 ∩ 𝚆 followed by a map in
𝙵 ∩ 𝚆.

Then the class 𝚆 satisfies the 2-of-6 property: for any composable triple of
morphisms

𝐵

𝐴 𝐷

𝐶

∼

ℎ𝑔𝑓

∼
𝑔𝑓

ℎ𝑔𝑓

𝑔
ℎ

if 𝑔𝑓 and ℎ𝑔 are in a class 𝚆 then 𝑓, 𝑔, ℎ, and ℎ𝑔𝑓 are too.

Proof Form the factorization of the weak equivalence ℎ𝑔 displayed below-left,
and form the pullback of 𝑝 along ℎ and the induced map 𝑡:

𝐷′

𝐵 𝐷
∼

𝑝∼𝑟

∼
𝑗

∼
ℎ𝑔

𝐴 𝐵

𝐶′ 𝐷′ 𝐵

𝐶 𝐷

𝑓

∼
𝑔𝑓

𝑔

∼𝑗𝑡

⌟
ᵆ

∼𝑞

∼
𝑟

∼ 𝑝

ℎ

By pullback stability of the trivial fibrations, the map 𝑞 is in 𝚆, so by the 2-of-3
property and the assumption that 𝑔𝑓 is in 𝚆, the composite 𝑡𝑓∶ 𝐴 → 𝐶′ must
be in 𝚆. The map 𝑓 is a retract of this composite

𝐴 𝐴 𝐴

𝐵 𝐶′ 𝐵

𝑓 ∼ 𝑡𝑓 𝑓

𝑡 𝑟ᵆ

so by retract closure of the class 𝚆, 𝑓 is in 𝚆. Now it follows from the 2-of-3
property that 𝑔, ℎ, and ℎ𝑔𝑓 lie in 𝚆 as well.

Corollary C.1.9. The equivalences in an∞-cosmos satisfy the 2-of-6 property.

Proof It remains only to argue that the premises of Proposition C.1.8 hold for
the classes of equivalences, isofibrations, and trivial fibrations in any∞-cosmos.

Lemma 1.2.17 proves that the equivalences in an ∞-cosmos are also closed
under retracts and have the 2-of-3 property. Lemma 1.2.14 proves that the class of
trivial fibrations is stable under pullbacks, which exist in any∞-cosmos. Lemma
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1.2.19 constructed the desired factorization, which by the 2-of-3 property factors
an equivalence as a section of a trivial fibration followed by a trivial fibration.
Now Proposition C.1.8 applies to prove that the equivalences in any ∞-cosmos
satisfy the stronger 2-of-6 property.

The following consequence of Lemma C.1.6, traditionally referred to as
“Ken Brown’s lemma,” is the key to proving the invariance of various limit
constructions in a category of fibrant objects under pointwise weak equivalence.

Lemma C.1.10 (Ken Brown’s lemma). Consider a functor 𝐹∶ ℳ → 𝒩 whose
domain is a category of fibrant objects and whose codomain is a category with a
subcategory of “weak equivalences” satisfying the 2-of-3 property. If 𝐹 carries
trivial fibrations to weak equivalences, then 𝐹 carries weak equivalences in ℳ
to weak equivalences in 𝒩.

Proof By Lemma C.1.6, any weak equivalence in a category of fibrant objects
may be factored as a section of a trivial fibration followed by a trivial fibration.

𝑃𝑓

𝐴 𝐵

∼

𝑝

∼𝑞

∼
𝑓

∼ 𝑠

By hypothesis, the images of the maps 𝑞 and 𝑝 under 𝐹 are weak equivalences.
By the 2-of-3 property of the weak equivalences in 𝒩, it follows that the image
of 𝑠 and thus also the image of 𝑓 are weak equivalences.

The rest of this section is devoted to applications of Lemma C.1.10 to establish
the weak equivalence invariance of limits in a category of fibrant objects.

Lemma C.1.11. In a category of fibrant objects, a weak equivalence between
fibrations pulls back to a weak equivalence between fibrations:

𝑃 𝐸

𝑄 𝐹

𝐴 𝐵

∼ᵆ

𝑟

⌟
𝑝 ∼𝑒

𝑠

⌟
𝑞

𝑓

Proof By Corollary C.1.7, slices of a category ℳ of fibrant objects define
categories of fibrant objects and pullback along 𝑓 defines a functor 𝑓∗∶ ℳ/𝐵 →
ℳ/𝐴. Note that the map 𝑢 in the displayed diagram is the pullback of the
map 𝑒, so it follows directly from axiom (iii) of Definition C.1.1 that pullback
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preserves trivial fibrations. Now Lemma C.1.10 implies that it also preserves
equivalences.

Other results in a similar vein require somewhat more delicate arguments.
The proofs appearing below are originally due to Reedy in an unpublished
manuscript [99] that implicitly gave birth to the notion of a “Reedy category”
that we introduce in §C.4.

Proposition C.1.12. Consider a diagram in a category of fibrant objects:

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵

𝑟

𝑔

𝑝 𝑞

𝑓

𝑔̄ ̄𝑓

If the map 𝑟 and the map 𝑧∶ 𝐵 → 𝐴 ×𝐴̄ ̄𝐵 are both fibrations or both trivial
fibrations then the induced map from the pullback of 𝑓 along 𝑔 to the pullback
of ̄𝑓 along ̄𝑔 again a fibration or trivial fibration, respectively.

Proof By pullback composition and cancelation, the induced map 𝑡 factors as
a pullback of 𝑧 followed by a pullback of 𝑟 as displayed below

𝐶 ×
𝐴
𝐵 𝐵

𝐶 𝐴
• •

̄𝐶 ×̄
𝐴

̄𝐵 ̄𝐵

̄𝐶 ̄𝐴

𝑡 𝑞

𝑧

𝑝
⌟ ⌟𝑟

and is thus an fibration or trivial fibration if both of these maps are.

Similarly, we have the following result whose dual form is sometimes called
the “gluing lemma.”

Proposition C.1.13. In a category of fibrant objects, the induced map between
the pullbacks of the horizontal rows of a diagram of the following form is again
a weak equivalence:

𝐶 𝐴 𝐵

̄𝐶 ̄𝐴 ̄𝐵

∼𝑟

𝑔

∼ 𝑝 ∼ 𝑞

𝑓

𝑔̄ ̄𝑓
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The proof of Proposition 3.3.4 applies equally in any right proper category
of fibrant objects, but as we shall discover, the hypothesis of right properness is
not actually necessary.

Proof By Exercise C.1.i, for any category of fibrant objects ℳ there is a
category of fibrant objects ℳ whose

• objects are cospans 𝐶 𝑔 𝐴 𝑓 𝐵 whose right leg is a fibration in ℳ,
• weak equivalences are pointwise weak equivalences, and
• fibrations are diagrams

𝐶 𝐴 𝐵

•

̄𝐶 ̄𝐴 ̄𝐵

𝑔

𝑟 𝑝

𝑓

𝑞

𝑧

⌞

𝑔̄ ̄𝑓

in which the maps 𝑟, 𝑝, and 𝑞 are fibrations, as is the induced map 𝑧∶ 𝐵 →
𝐴 ×𝐴̄ ̄𝐵.

with the requisite limits inherited pointwise from ℳ. By Proposition C.1.12, the
pullback functor lim∶ ℳ →ℳ carries trivial fibrations to trivial fibrations,
so by Lemma C.1.10, it also preserves weak equivalences.

Corollary C.1.14. In a category of fibrant objects, finite products of fibrations,
trivial fibrations, or weak equivalences are again fibrations, trivial fibrations,
or weak equivalences.

Proof The product of a finite family of maps {𝑓𝑖∶ 𝐴𝑖 → ̄𝐴𝑖}𝑖=1,…,𝑛 can be
formed inductively as a pullback over the terminal object 1

∏𝑛−1
𝑖=1 𝐴𝑖 1 𝐴𝑛

∏𝑛−1
𝑖=1

̄𝐴𝑖 1 ̄𝐴𝑛

∏𝑓𝑖 𝑓𝑛

When each map 𝑓𝑖 is a fibration or trivial fibration, by Proposition C.1.12 and
an induction starting from the case of binary products, the same is true of the
product of these maps. When each map 𝑓𝑖 is a weak equivalence, the same
conclusion follows from Proposition C.1.13.

Similarly, limits of towers of fibrations are invariant under pointwise weak
equivalence:
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Proposition C.1.15. Consider a natural transformation between countable
towers of fibrations in a category of fibrant objects

𝑋𝝎 ≔ lim𝑛 𝑋𝑛 ⋯ 𝑋2 𝑋1 𝑋0

𝑌𝝎 ≔ lim𝑛 𝑌𝑛 ⋯ 𝑌2 𝑌1 𝑌0

𝛼𝝎 𝛼2

𝑓2 𝑓1

𝛼1 𝛼0

𝑔2 𝑔1

(i) If for each 𝑛 ≥ 0, the map ⟨𝛼𝑛, 𝑓𝑛⟩∶ 𝑋𝑛 → 𝑌𝑛 ×𝑌𝑛−1 𝑋𝑛−1 is a fibration
or trivial fibration,4 then the induced map 𝛼𝝎 between the limits is as
well.

(ii) If for each 𝑛 ≥ 0, the map 𝛼𝑛 is a weak equivalence, then the induced
map 𝛼𝝎 between the limits is as well.

Proof When the hypotheses of (i) hold in a category of fibrant objects ℳ, the
induced map 𝛼𝝎∶ 𝑋𝝎 → 𝑌𝝎 between the limits of the towers of fibrations is
itself the limit composite of a tower of fibrations or trivial fibrations, respectively

𝑋𝝎 ⋯ 𝑃𝑛 𝑃𝑛−1 ⋯ 𝑃1 𝑃0 𝑌𝝎

𝛼𝝎

where each layer is a pullback of the map

𝑃𝑛 𝑃𝑛−1

𝑋𝑛 𝑌𝑛 ×
𝑌𝑛−1

𝑋𝑛−1

⌟

⟨𝛼𝑛,𝑓𝑛⟩

assumed to be either a fibration or a trivial fibration. Starting from the bottom
𝑃0 is defined to be the pullback of 𝛼0 along the leg of the limit cone for 𝑌𝝎:

𝑃0 𝑌𝝎

𝑋0 𝑌0

⌟

𝛼0

By construction, 𝑃0 admits a canonical map to the pullback 𝑌1 ×𝑌0 𝑋0, and 𝑃1 is

4 To make sense of the case 𝑛 = 0, declare 𝑋−1 and 𝑌−1 to be terminal so that the map under
consideration is 𝛼0.
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defined to be the pullback:

𝑃1 𝑃0

𝑋1 𝑌1 ×
𝑌0
𝑋0

⌟

⟨𝛼1,𝑓1⟩

Continuing inductively, the limit of the tower of fibrations 𝑃𝑛 ↠ 𝑃𝑛−1 can be
seen to coincide with the limit of the 𝝎op × 𝟚 shaped diagram formed by the
maps 𝑓𝑛, 𝑔𝑛, and 𝛼𝑛. Since the inclusion 𝝎op ↪ 𝝎op × 𝟚 of the top row of
this diagram is initial, this limit recovers 𝑋𝝎 and the composite of the tower
of fibrations recovers the map 𝛼𝝎. Thus, by axioms (iii) and (iv) of Definition
C.1.1, the induced map 𝛼𝝎 is again a fibration or trivial fibration, respectively.

The second statement now follows by applying Lemma C.1.10 to the limit
functor lim∶ ℳ𝝎op →ℳ whose domain is the category of towers of fibrations
(see Exercise C.1.ii).

Again in this proof we have made use of the fact that the category of dia-
grams valued in a category of fibrant objects may itself be equipped with the
structure of a category of fibrant objects, at least for certain types of diagrams
and certain diagram shapes. We now establish this result more systematically
for a particularly useful family of diagrams, namely those indexed by inverse
categories.

Definition C.1.16. A category ℐ is a inverse category if there exists a functor
deg∶ ℐ → 𝝎op that reflects identities.5

The degree functor assigns a natural number degree to each object of ℐ in
such a way that all nonidentity morphisms “lower degree,” in the sense that
the degree of their domain object is strictly greater than the degree of their
codomain object. The utility of the degree functor for an inverse category is that
it allows us to define the data of an ℐ-indexed diagram or natural transformation
by inductively specifying diagrams indexed by the full subcategories

ℐ≤0 ⋯ ℐ≤𝑛−1 ℐ≤𝑛 ⋯ colim𝑛∈𝝎 ℐ≤𝑛 ≅ ℐ

of objects with bounded degree. To extend 𝑋 ∈ ℳℐ≤𝑛−1 to ℳℐ≤𝑛 requires the
specification, for each object 𝑖 with degree 𝑛 of an object 𝑋 𝑖 ∈ ℳ together with
5 The mathematics does not change in any substantial way if 𝝎 is replaced by the category of

ordinals. The reason we restrict to finite degrees is because Definition C.1.1 only asks for limits
of 𝝎op-indexed towers (see Proposition C.1.21(i)).
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a map 𝑋 𝑖 → 𝜕𝑖𝑋 from 𝑋 𝑖 to the limit

𝜕𝑖𝑋 ≔ lim
𝑖
≠
→𝑗

𝑋𝑗 ≔ lim ( 𝑖/ℐ≤𝑛−1 ℐ≤𝑛−1 ℳcod 𝑋 ) (C.1.17)

indexed by the nonidentity maps 𝑖 → 𝑗 in ℐ.

Observation C.1.18 (boundary data as a weighted limit). As the notation
suggests, the object 𝜕𝑖𝑋 should be thought of as the object of “boundary data”
associated to 𝑋 𝑖. This intuition can be made precise through the formalism of
weighted limits, illustrating their utility even in unenriched contexts.

Recall from Definition A.6.1(i) that the limit of a diagram 𝑋 ∈ ℳℐ weighted
by the representable functor ℐ(𝑖, −) ∈ 𝒮𝑒𝑡ℐ at an object 𝑖 ∈ ℐ is the object 𝑋 𝑖.
Define the boundary 𝜕ℐ(𝑖, −) ∈ 𝒮𝑒𝑡ℐ of the representable functor to be the
functor defined by

𝜕ℐ(𝑖, 𝑗) ≔ {
ℐ(𝑖, 𝑗) deg(𝑗) < deg(𝑖)
∅ deg(𝑗) ≥ deg(𝑖)

By comparing (C.1.17) with the formula of Remark A.6.11, we observe that
lim𝜕ℐ(𝑖,−) 𝑋 ≅ 𝜕𝑖𝑋.

Recall from Definition A.6.1, that weighted limits are contravariantly func-
torial in the weight. Thus, the natural inclusion 𝜕ℐ(𝑖, −) ↪ ℐ(𝑖, −) induces a
canonical map

𝑋 𝑖 ≅ limℐ(𝑖,−) 𝑋 lim𝜕ℐ(𝑖,−) 𝑋 ≅ 𝜕𝑖𝑋𝑚𝑖

between the weighted limits. Anticipating the terminology of Definition C.4.14
we refer to 𝜕𝑖𝑋 as the 𝑖th matching object of the diagram 𝑋 and call 𝑚𝑖∶ 𝑋 𝑖 →
𝜕𝑖𝑋 the 𝑖th matching map.

For reasons that will momentarily become clear we define:

Definition C.1.19. Let ℳ be a category of fibrant objects and let ℐ be an
inverse category.

• A fibrant diagram is a diagram 𝑋 ∈ ℳℐ with the property that for each
𝑖 ∈ ℐ, the matching map 𝑚𝑖∶ 𝑋 𝑖 ↠ 𝜕𝑖𝑋 is a fibration.

• A fibrant natural transformation is a natural transformation 𝛼∶ 𝑋 → 𝑌 ∈
ℳℐ between fibrant diagrams so that for each 𝑖 ∈ ℐ the relative matching
map 𝑚̂𝑖 defined by the pullback in the square formed by the matching maps
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is a fibration:

𝑋 𝑖 𝑌 𝑖

•

𝜕𝑖𝑋 𝜕𝑖𝑌

𝑚𝑖

𝛼𝑖

𝑚̂𝑖

𝑚𝑖⌟

𝜕𝑖𝛼

(C.1.20)

For example, a fibrant diagram of shape 𝝎 is a tower of fibrations, as in
Proposition C.1.15. The maps referenced in the first statement of that result
are exactly the relative matching maps associated to a natural transformation 𝛼
between fibrant diagrams, so the first hypothesis asserts exactly that 𝛼 is a fibrant
natural transformation. The following generalization of Proposition C.1.15 is an
unenriched version of Proposition 6.2.8.

Proposition C.1.21.

(i) A category of fibrant objects ℳ admits limits of any fibrant diagram
𝑋 ∈ ℳℐ indexed by an inverse category ℐ, with limℐ 𝐹 ∈ ℳ constructed
as the limit of a tower6

lim
ℐ
𝑋 ≔ lim

𝝎op
( ⋯ limℐ≤𝑛 𝑋 limℐ≤𝑛−1 𝑋 ⋯ limℐ≤0 𝑋 )

each layer of which is a pullback

limℐ≤𝑛 𝑋 limℐ≤𝑛−1 𝑋

∏
deg(𝑖)=𝑛

𝑋 𝑖 ∏
deg(𝑖)=𝑛

𝜕𝑖𝑋

⌟

In particular, each leg of the limit cone limℐ 𝑋 ↠ 𝑋 𝑖 is a fibration as is
each map in the image of the fibrant diagram 𝑋.

(ii) For any fibrant natural transformation 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ between fi-
brant diagrams, the induced map limℐ 𝑋 → limℐ 𝑌 is the limit composite
of a tower whose 𝑛th layer is a pullback of the map 𝑝𝑛 constructed as a

6 The objects are the limits of the restricted diagrams, with the subscript indicating the indexing
category.
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pullback in the diagram below:

limℐ≤𝑛 𝑋
𝑖 ∏

deg(𝑖)=𝑛
𝑋 𝑖

limℐ≤𝑛−1 𝑋
𝑖 ∏

deg(𝑖)=𝑛
𝜕𝑖𝑋

• •

limℐ≤𝑛 𝑌
𝑖 ∏

deg(𝑖)=𝑛
𝑌 𝑖

limℐ≤𝑛−1 𝑌
𝑖 ∏

deg(𝑖)=𝑛
𝜕𝑖𝑌

𝑝𝑛

⌟ ⌟

(C.1.22)
Moreover, each component map 𝛼𝑖∶ 𝑋 𝑖 ↠ 𝑌 𝑖 is a fibration.

Proof Note that the slice category 𝑖/ℐ𝑛−1 is again an inverse category with
degree functor

𝑖/ℐ𝑛−1
cod ℐ𝑛−1

deg 𝝎op

in which every object has degree at most 𝑛 − 1. In the case where 𝑖 has degree
1, this category has only identity arrows, so by induction we may assume that
the limit 𝜕𝑖𝑋 defined by (C.1.17) exists. Now the result of (i) follows by direct
inspection of the universal property of this construction, as in the proof of
Proposition C.1.15. The final assertion follows from this construction and is left
to Exercise C.1.iii.

By (i), it follows that the induced map between the inverse limits is defined
as the limit of an 𝝎op-indexed diagram in the arrow category ℳ𝟚:

limℐ 𝑋 ≔ lim𝑛∈𝝎op limℐ≤𝑛 𝑋 ⋯ limℐ≤2 𝑋 limℐ≤1 𝑋 limℐ≤0 𝑋

limℐ 𝑌 ≔ lim𝑛∈𝝎op limℐ≤𝑛 𝑌 ⋯ limℐ≤2 𝑌 limℐ≤1 𝑌 limℐ≤0 𝑌

limℐ𝛼 𝑝0

Under the hypothesis of (ii), it follows by the proof of Proposition C.1.15(i),
the map limℐ 𝛼 then factors as the limit composite of a tower whose bottom
layer is the pullback of the map 𝑝0 along the lower-horizontal composite above,
whose next layer is the pullback of the map 𝑝1 appearing in the right-most
square, whose next layer is the pullback of the map 𝑝2 appearing in the second
right-most square, and so on, where in each square 𝑝𝑛 is the map from the upper
left-hand corner to the pullback of the lower-right cospan. The map 𝑝0 is a
product of the relative matching maps indexed by objects of degree zero, and is
thus a fibration. By applying pullback composition and cancelation in the cube
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(C.1.22), it follows from (i) that the top and bottom faces are pullbacks, and
consequently the map 𝑝𝑛 from the initial vertex to the pullback in the left face
is a pullback of the corresponding map from ∏deg(𝑖)=𝑛 𝑋

𝑖 to the pullback in the
right face. This map is the product of the relative matching maps indexed by
objects of degree 𝑛, and in thus a fibration, so 𝑝𝑛 is a fibration as well. Thus, by
Proposition C.1.15(i), the induced map limℐ 𝛼∶ limℐ 𝑋 → limℐ 𝑌 is a fibration
as well. This proves all but the final clause of (ii), which is also left to Exercise
C.1.iii.

We would like to conclude also that for any pointwise weak equivalence
𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ between fibrant diagrams indexed by inverse categories,
the induced map limℐ 𝑋 → limℐ 𝑌 is a weak equivalence. As in the proof of
Proposition C.1.15(ii) this requires an intermediate result of independent interest,
closely related to Exercise 6.1.iii.

Proposition C.1.23. Let ℳ be a category of fibrant objects with fibrations 𝙵
and weak equivalences 𝚆 and let ℐ be an inverse category. The category ℳℐ

of fibrant diagrams and all natural transformations between them inherits the
structure of a category of fibrant objects in which:

• the weak equivalences are those natural transformations whose components
lie in 𝚆

• the fibrations are the fibrant natural transformations, those 𝛼∶ 𝑋 → 𝑌 ∈

ℳℐ so that for each 𝑖 ∈ ℐ the relative matching map 𝑋 𝑖 𝑌 𝑖 ×
𝜕𝑖𝑌

𝜕𝑖𝑋𝑚̂𝑖

is in 𝙵.
• the trivial fibrations are those natural transformations 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ

so that for each 𝑖 ∈ ℐ the relative matching map 𝑋 𝑖 𝑌 𝑖 ×
𝜕𝑖𝑌

𝜕𝑖𝑋∼𝑚̂
𝑖

is

in 𝙵 ∩ 𝚆.

Proof The proof is a very lengthy exercise for the reader, which only entails
specializing the corresponding arguments from §C.4 to this “one-sided” case.
A proof of a similar result using a mildly different axiomatization can be found
in [94, 9.2.4].

The payoff for all this work is the following result.

Proposition C.1.24. Let ℳ be a category of fibrant objects and let ℐ be an
inverse category. Then for any pointwise weak equivalence 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ

between fibrant diagrams, the induced map limℐ 𝑋 → limℐ 𝑌 between the limits
is a weak equivalence.
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Proof We make use of Proposition C.1.23, which gives the category ℳℐ of
fibrant diagrams the structure of a category of fibrant objects. Consider a map
𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ in 𝙵 or 𝙵∩𝚆. By Proposition C.1.21(ii), this map is the limit
composite of a tower of maps, each layer of which is the pullback of a product
of the maps that we have assumed lies in 𝙵 or 𝙵 ∩ 𝚆. Since the classes 𝙵 and
𝙵 ∩ 𝚆 are closed under product, pullback, and limits of towers, it is now clear
that the limit functor preserves these classes. The fact that it also proves the
class 𝚆 then follows from Lemma C.1.10.

Exercises
Exercise C.1.i. Show that for any category of fibrant objects ℳ there is a
category of fibrant objects ℳ whose

• objects are cospans 𝐶 𝑔 𝐴 𝑓 𝐵 whose right leg is a fibration in ℳ,
• weak equivalences are pointwise weak equivalences, and
• fibrations are diagrams

𝐶 𝐴 𝐵

•

̄𝐶 ̄𝐴 ̄𝐵

𝑔

𝑟 𝑝

𝑓

𝑞

𝑧

⌞

𝑔̄ ̄𝑓

in which the maps 𝑟, 𝑝, and 𝑞 are fibrations, as is the induced map 𝑧∶ 𝐵 →
𝐴 ×𝐴̄ ̄𝐵.

with the requisite limits inherited pointwise from ℳ.

Exercise C.1.ii. Specialize Proposition C.1.23 to describe the category of
fibrant objects structure on the categoryℳ𝝎op of towers of fibrations in a category
of fibrant objectsℳ, and use this to complete the proof of Proposition C.1.15(ii).

Exercise C.1.iii (C.5.10).

(i) Verify that each leg of the limit cone constructed in Proposition C.1.21(i)
is a fibration.

(ii) Conclude that each morphism in the image of a fibrant diagram is a
fibration.

(iii) Arguing along the same lines, verify that each component of a fibrant
natural transformation is a fibration.

Exercise C.1.iv. Prove Proposition C.1.23 and determine whether Exercises
C.1.i and C.1.ii are special cases of this result.
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C.2 Lifting Properties, Weak Factorization Systems, and
Leibniz Closure

Fixing two arrows 𝑗 and 𝑝 in a category ℳ, we regard any commutative square
of the form

• •

• •

ᵆ

𝑗 𝑝ℓ

𝑣

as presenting a lifting problem between 𝑗 and 𝑝, which is solved by constructing
a lift: a diagonal morphism ℓ making both triangles commute. If every lifting
problem between 𝑗 and𝑝 has a solution, we say that 𝑗 has the left lifting property
with respect to 𝑝 and, equivalently, that 𝑝 has the right lifting property with
respect to 𝑗. When this is the case, we use the suggestive symbol 𝑗 𝑝 to assert
this lifting property.

Frequently in abstract homotopy theory a class of maps of interest is charac-
terized by a left or right lifting property with respect to another class or set of
maps.

Definition C.2.1. Let 𝙹 be a class of maps in a category ℳ.

• Write 𝙹 for the class of maps in ℳ that have the right lifting property with
respect to every morphism in 𝙹.

• Write 𝙹 for the class of maps in ℳ that have the left lifting property with
respect to every morphism in 𝙹.

Example C.2.2. Definitions 1.1.17 and 1.1.25 characterize the isofibrations
and trivial fibrations between quasi-categories by right lifting properties against
the sets of maps

{Λ𝑘[𝑛] ↪ Δ[𝑛]}𝑛≥2,0<𝑘<𝑛 ∪ {𝟙 ↪ 𝕀} and {𝜕Δ[𝑛] ↪ Δ[𝑛]}𝑛≥0 ,

respectively.

Maps characterized by a right lifting property automatically satisfy various
closure properties that may now be familiar.

Lemma C.2.3. Any class of maps 𝙹 characterized by a right lifting property
contains the isomorphisms and is closed under composition, product, pullback,
retract, and limits of towers.

In the statement, “products” and “retracts” refer to limits formed in the cate-
gory of arrows, while the “pullbacks” are of a map in 𝙹 along an arbitrary map.
A “tower” refers to a diagram of shape 𝛼op, where 𝛼 is a limit ordinal (most
likely 𝝎).
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Proof All of the arguments are similar. For instance, suppose 𝑞 is a pullback
of 𝑝 ∈ 𝙹 . By juxtaposing a lifting problem as below-left with the pullback
square as below-right, we may solve the composite lifting problem of 𝑗 against
𝑝 to obtain the dashed diagonal morphism ℓ, and then induce a solution 𝑠 to the
lifting problem of 𝑗 against 𝑞 via the cone formed by (𝑣, ℓ) over the pullback
diagram

• • •

• • •

𝙹∋𝑗

ᵆ

𝑞

𝑎

⌟
𝑝

𝑣

ℓ𝑠

𝑏

So 𝑞 lifts against 𝙹 and is therefore in 𝙹 .

On account of the dual of Lemma C.2.3, any set of maps in a cocomplete
category “cellularly generates” a larger class of maps with the same left lifting
property.

Definition C.2.4. Let 𝙹 be a set of maps that we think of as “basic cells.” A
𝙹-cell complex is a map built as a transfinite composite of pushouts of coproducts
of maps in 𝙹:

• • • •

• • • • •

• •

∐𝑗∈𝙹

⌜

∐𝑗∈𝙹

⌜

∈𝙹-cell

∐𝑗∈𝙹

⌞

The class 𝙹-cell of 𝙹-cell complexes is said to be cellularly generated by a set
of maps 𝙹. The class 𝙹-cof of maps cofibrantly generated by a set of maps
𝙹 is comprised of those maps obtained as retracts of sequential composites of
pushouts of coproducts of those maps.

Definition C.2.5. A weak factorization system (𝙻, 𝚁) on a category ℳ is
comprised of two classes of morphisms 𝙻 and 𝚁 so that

(i) Every morphism in ℳ may be factored as a morphism in 𝙻 followed by
a morphism in 𝚁.

• •
•

𝑓

𝙻∋ℓ 𝑟∈𝚁

(ii) The classes 𝙻 and 𝚁, respectively, have the left and right lifting properties
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𝙻 𝚁 with respect to each other: that is, any commutative square from
a mall in 𝙻 to a map in 𝚁 admits a diagonal filler:

• •

• •
𝙻∋ℓ 𝑟∈𝚁

(iii) Moreover 𝙻 = 𝚁 and 𝚁 = 𝙻 .

As a consequence of axiom (iii), the right class of a weak factorization system
enjoys the closure properties of Lemma C.2.3, while the left class is closed
under the dual constructions.

In the presence of a pair of adjoint functors, lifting properties transpose.

Lemma C.2.6. In the presence of an adjunction:

ℳ 𝒩
𝐹

⟂
𝑈

(i) A solution to the lifting problem in 𝒩 displayed below-left transposes
to define a solution for the transposed lifting problem in ℳ displayed
below-right:

𝐹𝐴 𝑋 𝐴 𝑈𝑋

𝐹𝐵 𝑌 𝐵 𝑈𝑌

𝐹ℓ

𝑓♯

𝑟

𝑓♭

ℓ 𝑈𝑟

𝑔♯

𝑘♯ 𝑘♭

𝑔♭

(ii) If ℳ has a weak factorization system (𝙻, 𝚁) and 𝒩 has a weak factor-
ization system (𝙻′, 𝚁′) then 𝐹 preserves the left classes if and only if 𝑈
preserves the right classes:

𝐹𝙻 ⊂ 𝙻′ ↭ 𝚁 ⊃ 𝑈𝚁′.

The factorizations of Definition C.2.5 are completely irrelevant to (ii) but we
have stated this result for weak factorization systems because that is the context
in which it is typically applied.

Proof Exercise C.2.iii.

Lemma C.2.6(ii) defines the notion of adjunction of weak factorization
systems, this being an adjoint pair of functors between categories equipped with
weak factorization systems so that the left adjoint preserves the left classes and



C.2 Weak Factorization Systems 585

the right adjoint preserves the right classes. Our aim is now to extend this notion
to two-variable adjunctions,7 which are given by a triple of bifunctors,

𝒱 ×ℳ ⊗ 𝒩 , 𝒱op ×𝒩 {,} ℳ , ℳop ×𝒩 hom 𝒱 (C.2.7)

written using notation that suggests the most common examples, equipped with
a natural isomorphism

𝒩(𝑉 ⊗𝑀,𝑁) ≅ ℳ(𝑀, {𝑉, 𝑁}) ≅ 𝒱(𝑉, hom(𝑀,𝑁)).

The “pushout product” of a bifunctor ⊗∶ 𝒱 ×ℳ → 𝒩 defines a bifunctor
⊗̂∶ 𝒱𝟚×ℳ𝟚 →𝒩𝟚 that we refer to as the “Leibniz tensor” (when the bifunctor
⊗ is called a “tensor”). The “Leibniz cotensor” and “Leibniz hom”

{̂, }∶ (𝒱𝟚)op ×𝒩𝟚 →ℳ𝟚 and ĥom∶ (ℳ𝟚)op ×𝒩𝟚 → 𝒱𝟚

are defined dually, using pullbacks in ℳ and 𝒱, respectively.

Definition C.2.8 (Leibniz tensors and cotensors). Given a bifunctor ⊗∶ 𝒱 ×
ℳ → 𝒩 valued in a category with pushouts, the Leibniz tensor of a map
𝑘∶ 𝐼 → 𝐽 in 𝒱 and a map ℓ∶ 𝐴 → 𝐵 in ℳ is the map 𝑘 ⊗̂ ℓ in 𝒩 induced by
the pushout diagram below-left:

𝐼 ⊗ 𝐴 𝐼 ⊗ 𝐵 {𝐽, 𝑋}

𝐽 ⊗ 𝐴 • • {𝐼, 𝑋}

𝐽 ⊗ 𝐵 {𝐽, 𝑌} {𝐼, 𝑌}

𝐼⊗ℓ

𝑘⊗𝐴
⌜ 𝑘⊗𝐵

{𝑘,𝑋}

{𝐽,𝑚}

{̂𝑘,𝑚}

𝐽⊗ℓ

𝑘⊗̂ℓ
⌟

{𝐼,𝑚}

{𝑘,𝑌}

In the case of a bifunctor {, }∶ 𝒱op×𝒩 →ℳ contravariant in one of its variables
valued in a category with pullbacks, the Leibniz cotensor of a map 𝑘∶ 𝐼 → 𝐽
in 𝒱 and a map 𝑚∶ 𝑋 → 𝑌 in 𝒩 is the map {̂𝑘,𝑚} induced by the pullback
diagram above right.

Proposition C.2.9. The Leibniz construction preserves:

(i) structural isomorphisms: a natural isomorphism

𝑋 ∗ (𝑌 ⊗ 𝑍) ≅ (𝑋 × 𝑌) 𝑍

between suitably composable bifunctors extends to a natural isomorph-
ism

𝑓 ∗̂ (𝑔 ⊗̂ ℎ) ≅ (𝑓 ×̂ 𝑔) ˆ ℎ
7 There is an analogous generalization to 𝑛-variable adjunctions that can be found in [26, §4].
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between the corresponding Leibniz products;
(ii) adjointness: if (⊗, {, }, hom) define a two-variable adjunction, then the

Leibniz functors (⊗̂, {̂, }, ĥom) define a two-variable adjunction between
the corresponding arrow categories;

(iii) retracts: if 𝑓 is a retract of ℎ and 𝑔 is a retract of 𝑘 then 𝑓⊗̂𝑔 is a retract
of ℎ ⊗̂ 𝑘;

(iv) colimits in the arrow category: if ⊗∶ 𝒱 ×ℳ → 𝒩 is cocontinuous in
either variable, then so is ⊗̂∶ 𝒱𝟚 ×ℳ𝟚 →𝒩𝟚;

(v) pushouts: if ⊗∶ 𝒱 ×ℳ → 𝒩 is cocontinuous in its second variable,
and if 𝑔′ is a pushout of 𝑔, then 𝑓 ⊗̂ 𝑔′ is a pushout of 𝑓 ⊗̂ 𝑔;

(vi) composition, in a sense: the Leibniz tensor 𝑓 ⊗̂ (ℎ ⋅ 𝑔) factors as a
composite of a pushout of 𝑓 ⊗̂ 𝑔 followed by 𝑓 ⊗̂ ℎ

𝐼 ⊗ 𝐴 𝐼 ⊗ 𝐵 𝐼 ⊗ 𝐶

𝐽 ⊗ 𝐴 • •

𝐽 ⊗ 𝐵 •

𝐽 ⊗ 𝐶

𝑓⊗𝐴

𝐼⊗𝑔

⌜

𝐼⊗ℎ

⌜ 𝑓⊗𝐶

𝐽⊗𝑔
𝑓⊗̂𝑔

⌜
𝑓⊗̂(ℎ⋅𝑔)

𝐽⊗ℎ
𝑓⊗̂ℎ

(vii) cell complex structures: if 𝑓 and 𝑔 may be presented as cell complexes
with cells 𝑓𝛼 and 𝑔𝛽, respectively, and if ⊗ is cocontinuous in both
variables, then 𝑓 ⊗̂ 𝑔 may be presented as a cell complex with cells
𝑓𝛼 ⊗̂ 𝑔𝛽.

Proof The components of the induced structural isomorphism between Leibniz
products are instances of the given structural isomorphism and hence invertible,
proving (i). For (ii), by naturality of the isomorphisms defining a two-variable
adjunction (⊗, {, }, hom), each of the squares below commutes if and only if the
other two do, under the hypothesis that the horizontal arrows given the same
names in each diagram are transposes:

𝐽 ⊗ 𝐴 ∪
𝐼⊗𝐴

𝐼 ⊗ 𝐵 𝑋 𝐴 {𝐽, 𝑋}

𝐽 ⊗ 𝐵 𝑌 𝐵 {𝐽, 𝑌} ×
{𝐼,𝑌}

{𝐼, 𝑋}

𝑘⊗̂ℓ

⟨ᵆ,𝑣⟩

𝑚

ᵆ

ℓ {̂𝑘,𝑚}

𝑤

𝑥

⟨𝑤,𝑣⟩

𝑥
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𝐼 hom(𝐵, 𝑋)

𝐽 hom(𝐴, 𝑋) ×
hom(𝐴,𝑌)

hom(𝐵, 𝑌)

𝑘

𝑣

ĥom(ℓ,𝑚)𝑥

⟨ᵆ,𝑤⟩

This transposition correspondence extends to solutions to the lifting problems
presented by these squares (see Exercise C.2.v).

Property (iii) is a consequence of the bifunctoriality of ⊗̂ in the arrow cate-
gories: any bifunctor preserves retracts. Property (iv) is nearly as immediate,
since limits or colimits in arrow categories are computed pointwise. For (v),
consider the commutative cube:

𝐼 ⊗ 𝐴 𝐼 ⊗ 𝐶

𝐼 ⊗ 𝐵 𝐼 ⊗ 𝐷

• •

𝐽 ⊗ 𝐴 𝐽 ⊗ 𝐶

𝐽 ⊗ 𝐵 𝐽 ⊗ 𝐷

𝐼⊗𝑔

𝑓⊗𝐴
⌜

𝐼⊗𝑔′

⌜

𝑓⊗̂𝑔′

𝐽⊗𝑔

𝑓⊗̂𝑔

Since 𝐼 ⊗ − and 𝐽 ⊗ − preserve the pushout defining 𝑔′ as a pushout of 𝑔, the
top and bottom faces of the cube are pushouts. The squares defining the domains
of the Leibniz tensors define pushouts inside the left and right-hand faces. It
follows by pushout composition and cancelation that 𝑓 ⊗̂ 𝑔′ is a pushout of
𝑓 ⊗̂ 𝑔 as claimed.

The displayed diagram in (vi) proves the assertion made there, so it remains
only to prove (vii). First note that pushouts of transfinite composites of pushouts
are again transfinite composites of pushouts and transfinite composites of trans-
finite composites are transfinite composites, so it suffices to work one variable
at a time and prove that 𝑓 ⊗̂ − preserves cell complex presentations for 𝑔. To
that end, suppose 𝑔 is a 𝛼-composite of maps 𝑔𝑖 each of which are pushouts of
a coproduct of maps 𝑔′𝑖 = ∐𝑗 𝑔

′
𝑖,𝑗. We may promote this colimit to the arrow

category to regard 𝑔 = 𝑔0,𝛼 as the colimit of the diagram 𝑔−,𝛼∶ 𝛼 → ℳ𝟚 with
one-step maps

• •

• •

𝑔𝑖

𝑔𝑖,𝛼 𝑔𝑖+1,𝛼

Similarly, the pushout square defining 𝑔𝑖 from 𝑔′𝑖 can be promoted to a pushout
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square in the arrow category:

• •

• •

• •

• •

𝑔′𝑖

𝑔′𝑖

ᵆ𝑖
⌜
𝑣𝑖

𝑔𝑖

𝑔𝑖+1,𝛼

𝑔𝑖+1,𝛼𝑣𝑖 ⌜
𝑔𝑖+1,𝛼𝑣𝑖

𝑔𝑖,𝛼

We interpret this cube as presenting the square in the front face as a pushout
of the square in the back face, which decomposes as a coproduct of similar
squares, one for each component of 𝑔′𝑖 = ∐𝑗 𝑔

′
𝑖,𝑗. In this way we see that

𝑔 = 𝑔0,𝛼 is the domain component of the colimit of a diagram 𝛼 → ℳ𝟚, each
step of which is a pushout of a coproduct of maps in the arrow category. Now
𝑓 ⊗̂ −∶ ℳ𝟚 →𝒩𝟚 preserves colimits in the arrow category, and the domain
functor dom∶ 𝒩𝟚 →𝒩 preserves colimits as well. Thus, 𝑓 ⊗̂ 𝑔 is a colimit of
an 𝛼-sequence of pushouts of coproducts of the maps 𝑓 ⊗̂ 𝑔𝑖,𝑗.

More details establishing these assertions are given in [107, §4–§5].

Definition C.2.10. Let 𝒱, ℳ, and 𝒩 be cocomplete categories each equipped
with weak factorization systems (𝙻, 𝚁), (𝙻′, 𝚁′), and (𝙻″, 𝚁″), respectively. A
left Leibniz bifunctor is a bifunctor ⊗∶ 𝒱 ×ℳ → 𝒩 that is

(i) cocontinuous in each variable separately, and
(ii) has the Leibniz property: ⊗-pushout products of a map in 𝙻 with a

map in 𝙻′ are in 𝙻″.

Dually, a bifunctor between complete categories equipped with weak factor-
ization systems is a right Leibniz bifunctor if it is continuous in each variable
separately and if pullback cotensors of maps in the right classes land in the right
class. We most frequently apply this definition in the case of a bifunctor

{, }∶ 𝒱op ×𝒩 →ℳ

that is contravariant in one of its variables, in which we case the relevant hy-
potheses are that 𝒱 is cocomplete and colimits in the first variable are carried to
limits in ℳ, and furthermore the Leibniz cotensor of a map in ℒ with a map
in ℛ″ defines a map in ℛ′. The nature of the duality between left and right
Leibniz bifunctors is somewhat subtle to articulate, and left this as a puzzle for
the reader (or see [26]).
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Lemma C.2.11. If the bifunctors

𝒱 ×ℳ ⊗ 𝒩, 𝒱op ×𝒩 {,} ℳ, and ℳop ×𝒩 hom 𝒱

define a two-variable adjunction, and (𝙻, 𝚁), (𝙻′, 𝚁′), and (𝙻″, 𝚁″) are three
weak factorization systems on 𝒱, ℳ, and 𝒩, respectively, then the following are
equivalent

(i) ⊗∶ 𝒱 ×ℳ → 𝒩 defines a left Leibniz bifunctor.
(ii) {, }∶ 𝒱op ×𝒩 →ℳ defines a right Leibniz bifunctor.
(iii) hom∶ ℳop ×𝒩 → 𝒱 defines a right Leibniz bifunctor.

When these conditions are satisfied, we say that (⊗, {, }, hom) defines a Leibniz
two-variable adjunction.

Proof The presence of the adjoints ensures that each of the bifunctors satisfy
the required (co)continuity hypotheses. Note that, for instance, 𝙻 ⊗̂ 𝙻′ ⊂ 𝙻″ if
and only if 𝙻 ⊗̂ 𝙻′ 𝚁″. Now the equivalence of the three statements follows
from the equivalence of the following three lifting properties:

𝙻 ⊗̂ 𝙻′ 𝚁″ ↭ 𝙻′ {̂𝙻, 𝚁″} ↭ 𝙻 ĥom(𝙻′, 𝚁″),

the proof of which is left to Exercise C.2.v.

Remark C.2.12. By Proposition C.2.9(vii), to show that a cocontinuous bifunc-
tor ⊗ satisfies the Leibniz property, it suffices to show that ⊗-Leibniz products
of generating morphisms are in the left class of the codomain weak factorization
system.

Lemma C.2.13. For any category ℳ with products and coproducts that is
equipped with a weak factorization system (𝙻, 𝚁) the set-tensor, set-cotensor,
and hom

∗∶ 𝒮𝑒𝑡×ℳ →ℳ, {, }∶ 𝒮𝑒𝑡op×ℳ →ℳ, and hom∶ ℳop×ℳ → 𝒮𝑒𝑡

respectively define a Leibniz two-variable adjunction relative to the (monomor-
phism, epimorphism) weak factorization system on 𝒮𝑒𝑡.

Proof By Lemma C.2.11, it suffices to prove any one of these bifunctors is
Leibniz. When 𝐴 ↪ 𝐵 is a monomorphism in 𝒮𝑒𝑡, the Leibniz tensor with
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𝑓∶ 𝑋 → 𝑌 decomposes as a coproduct of maps that are manifestly in 𝙻.

𝐴 ∗ 𝑋 𝐵 ∗ 𝑋 ≅ 𝐴 ∗ 𝑋 ⨿ 𝐵\𝐴 ∗ 𝑋

𝐴 ∗ 𝑌 𝐴 ∗ 𝑌 ⨿ 𝐵\𝐴 ∗ 𝑋

𝐵 ∗ 𝑌 ≅ 𝐴 ∗ 𝑌 ⨿ 𝐵\𝐴 ∗ 𝑌

𝐴∗𝑓
⌜

𝐴∗𝑓⨿id
𝐵∗𝑓

id⨿𝐵\𝐴∗𝑓

(C.2.14)
A slicker proof is also possible. Because every monomorphism may be pre-

sented as a cell complex built from a single cell ∅ ↪ 1, it suffices, by Proposi-
tion C.2.9(vii), to consider Leibniz tensor with the generating monomorphism
∅ ↪ 1. But note that the functor

ℳ𝟚 (∅↪1)∗̂− ℳ2

is naturally isomorphic to the identity, which certainly preserves the left class
𝙻.

Remark C.2.15. By Lemma C.2.13, hom∶ ℳop ×ℳ → 𝒮𝑒𝑡 is right Leibniz,
meaning that for any ℓ ∈ 𝙻 and 𝑟 ∈ 𝚁, the morphism

ℳ(cod ℓ, dom 𝑟) 𝑟∘−∘ℓ ℳ(dom ℓ, dom 𝑟) ×
ℳ(domℓ,cod 𝑟)

ℳ(cod ℓ, cod 𝑟)

is an epimorphism. The target of this map is the set of commutative squares in
ℳ from ℓ to 𝑟, while the fiber over any element is the set of solutions to the
lifting problem so-presented. The fact that this is an epimorphism re-expresses
the lifting property 𝙻 𝚁.

Exercises
Exercise C.2.i. Finish the proof of Lemma C.2.3.

Exercise C.2.ii.

(i) Prove the “retract argument”: Suppose 𝑓 = 𝑟∘ℓ and 𝑓 has the left lifting
property with respect to its right factor 𝑟. Then 𝑓 is a retract of its left
factor ℓ.

(ii) Conclude that in the presence of axioms (i) and (ii) of Definition C.2.5,
that axiom (iii) may be replaced by the hypothesis that the classes 𝙻 and
𝚁 are closed under retracts.

Exercise C.2.iii. Prove Lemma C.2.6
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Exercise C.2.iv.

(i) Suppose ℳ is a category with products, pullbacks, and limits of towers
equipped with a weak factorization system (𝙻, 𝚁). Prove that for any
inverse category ℐ, the category of diagramsℳℐ has a weak factorization
system whose left class is comprised of those maps whose components
are in 𝙻 and whose right class is comprised of those maps 𝛼∶ 𝑋 → 𝑌
so that for each 𝑖 ∈ 𝐼, the relative matching map 𝑚̂𝑖∶ 𝑋𝑖 → 𝜕𝑖𝑋 ×𝜕𝑖𝑌 𝑌𝑖
lies in 𝚁.

(ii) Give a new proof that lim∶ ℳℐ → ℳ preserves fibrations and trivial
fibrations under the additional hypothesis that the classes 𝙵 and 𝙵 ∩ 𝚆
of ℳ are the right classes of weak factorization systems.

Exercise C.2.v. Given a two variable adjunction (C.2.7) and classes of maps
𝙰, 𝙱, 𝙲 in 𝒱,ℳ,𝒩, respectively, prove that the following lifting properties are
equivalent

𝙰⊗̂𝙱 𝙲 ⇔ 𝙱 {̂𝙰, 𝙲} ⇔ 𝙰 ĥom(𝙱, 𝙲).

C.3 Model Categories and Quillen Functors

The following reformulation of Quillen’s definition of a “closed model cate-
gory” [93, I.5.1] was given by Joyal and Tierney [64, 7.7], who prove that a
category (ℳ, 𝚆) with weak equivalences satisfying the 2-of-3 property admits a
model structure just when there exist classes 𝙲 and 𝙵 that define a pair of weak
factorization systems as follows:

Definition C.3.1 (model category). A model structure on a complete and
cocomplete category ℳ consists of three classes of maps – the weak equiva-
lences 𝚆 denoted “∼ ” which must satisfy the 2-of-3 property, the cofibrations
𝙲 denoted “↣,” and the fibrations 𝙵 denoted “↠” – so that (𝙲, 𝙵 ∩ 𝚆) and
(𝙲 ∩ 𝚆, 𝙵) each define weak factorization systems on ℳ.8

A model category is a complete and cocomplete category equipped with
a model structure. The better-behaved objects in a model category are either
“fibrant” or “cofibrant” or both:

Definition C.3.2. In a model category ℳ an object 𝑋 is fibrant just when the
unique map 𝑋 → 1 to the terminal object is a fibration and cofibrant just when
8 There is one axiom in standard definition of a model category – the closure of weak

equivalences under retracts – that is not obviously packaged into these hypotheses, but this is a
consequence of the axioms given here [64, 7.8].
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the unique map ∅ → 𝑋 from the initial object is a cofibration. By factoring
the unique maps, any object 𝑋 has a cofibrant replacement 𝑄𝑋 and a fibrant
replacement 𝑅𝑋 constructed as follows:

𝑅𝑋

∅ 𝑋 ∗

𝑄𝑋

!
∼

!∼

Note that Definitions C.2.5 and C.3.1 are self-dual: if (𝙻, 𝚁) defines a weak
factorization system on ℳ then (𝚁, 𝙻) defines a weak factorization system on
ℳop. Thus all general theorems about the right classes 𝙵 of fibrations and 𝙵∩𝚆
of trivial fibrations “∼ ,” imply the dual results involving the left classes 𝙲 of
cofibrations and 𝙲 ∩ 𝚆 of trivial cofibrations “ ∼ .” In particular, by Example
C.1.4, all of the results proven in §C.1 about a category of fibrant objects hold for
the fibrations, trivial fibrations, and weak equivalence between the eponymous
fibrant objects in a model category, and the duals of these results hold for
the cofibrations, trivial cofibrations, and weak equivalences between cofibrant
objects.

Note also that since either class of a weak factorization system determines
the other, the trivial cofibrations can be defined without reference to either the
cofibrations or weak equivalences as those maps that have the left lifting property
with respect to the fibrations, and dually the trivial fibrations are precisely those
maps that have the right lifting property with respect to the cofibrations.

Definition C.3.3. A functor between model categories is

• left Quillen if it preserves cofibrations, trivial cofibrations, and cofibrant
objects, and

• right Quillen if it preserves fibrations, trivial fibrations, and fibrant objects.

Left Quillen functors admit left derived functors while right Quillen functors
admit right derived functors. We leave a full account of this to other authors
[103, §2.1–2] so as to avoid defining these terms, but an important component
of the “derivability” of Quillen functors is captured by the following result:

Lemma C.3.4. Any left Quillen functor between model categories preserves
weak equivalences between cofibrant objects, while any right Quillen functor
preserves weak equivalences between fibrant objects.

Proof For right Quillen functors this follows directly from Lemma C.1.10 and
Example C.1.4. The result for left Quillen functors is dual.
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Most left Quillen functors are “cocontinuous,” preserving all colimits, while
most right Quillen functors are “continuous,” preserving all limits; when this is
the case there is no need to separately assume that cofibrant or fibrant objects
are preserved. In fact, Quillen functors commonly occur as an adjoint pair:

Definition C.3.5. Consider an adjunction between a pair of model categories.

ℳ 𝒩
𝐹

⟂
𝑈

By Lemma C.2.6 the following are equivalent, defining a Quillen adjunction.

(i) The left adjoint 𝐹 is left Quillen.
(ii) The right 𝑈 is right Quillen.
(iii) The left adjoint preserves cofibrations and the right adjoint preserves

fibrations.
(iv) The left adjoint preserves trivial cofibrations and the right adjoint pre-

serves trivial fibrations.

Lemma C.3.6. For a Quillen adjunction

ℳ 𝒩
𝐹

⟂
𝑈

the following are equivalent and characterize those Quillen adjunctions that
define Quillen equivalences:

(i) For every cofibrant object 𝑀 ∈ ℳ and every fibrant object 𝑁 ∈ 𝒩, a
map 𝑓♯∶ 𝐹𝑀 → 𝑁 is a weak equivalence in𝒩 if and only if its transpose
𝑓♭∶ 𝑀 → 𝑈𝑁 is a weak equivalence in ℳ.

(ii) For every cofibrant object 𝑀 ∈ ℳ, the derived unit

𝑀 𝑈𝐹𝑀 𝑈𝑅𝐹𝑀
𝜂

defined by composing the unit with fibrant replacement is a weak equiva-
lence, and for every fibrant object 𝑁 ∈ 𝒩, the derived counit

𝐹𝑄𝑈𝑁 𝐹𝑈𝑁 𝑁𝜖

defined by composing the counit with cofibrant replacement is a weak
equivalence.

Proof Assume (i) and consider a cofibrant object 𝑀 ∈ ℳ and a fibrant object
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𝑁 ∈ 𝒩. The derived unit and counit are, respectively, transposes of the fibrant
replacement and cofibrant replacement maps

𝐹𝑀 𝑅𝐹𝑀 𝑄𝑈𝑁 𝑈𝑁∼ ∼

By Definition C.3.2 these maps are weak equivalences, and since 𝑀 and 𝑄𝑈𝑁
are cofibrant while 𝑅𝐹𝑀 and 𝑁 are fibrant, (i) tells us that the derived unit and
counit must be weak equivalences as well.

Now assume that the derived unit is a weak equivalence and consider a weak
equivalence 𝑓♯∶ 𝐹𝑀 ∼ 𝑁 where 𝑀 is cofibrant and 𝑁 is fibrant. Applying the
right adjoint and fibrant replacement, we obtain a commutative diagram

𝑀 𝑈𝐹𝑀 𝑈𝑅𝐹𝑀

𝑈𝑁 𝑈𝑅𝑁

𝜂

𝑓♭

∼

𝑈𝑓♯ ∼ 𝑈𝑅𝑓♯

∼

By Lemma C.3.4, the right and bottom maps are weak equivalences and by
hypothesis the derived unit appearing as the top composite is as well. By the
2-of-3 property, the transpose 𝑓♭∶ 𝑀 ∼ 𝑈𝑁 is a weak equivalence as well.
Dually, if the derived counit is a weak equivalence then weak equivalences
𝑓♭∶ 𝑀 ∼ 𝑈𝑁 transpose to weak equivalences 𝑓♯∶ 𝐹𝑀 ∼ 𝑁.

We now introduce a pair of model structures on diagram categories that are
designed to ensure that the diagonal functor Δ∶ ℳ →ℳ𝒥 is, respectively, right
or left Quillen, so that the colimit and limit functors, respectively, are left or
right Quillen. The corresponding left and right derived functors then define the
homotopy colimit and homotopy limit functors.

Definition C.3.7. Let ℳ be a model category and let 𝒥 be a small category.

(i) The projective model structure on ℳ𝒥 has weak equivalences and
fibrations defined pointwise in ℳ.

(ii) The injective model structure on ℳ𝒥 has weak equivalences and cofi-
brations defined pointwise in ℳ.

When the model category ℳ is combinatorial or more generally accessible,
the projective and injective model structures always exist [54]. Of course, the
projective and injective model structures might happen to exist on ℳ𝒥, perhaps
for particular diagram shapes 𝒥, in the absence of these hypotheses.

A Quillen two-variable adjunction is a two-variable adjunction in which the
left adjoint is a left Quillen bifunctor while the right adjoints are both right
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Quillen bifunctors. By Exercise C.2.v, any one of these conditions implies the
other two:

Definition C.3.8. A two-variable adjunction

𝒱 ×ℳ ⊗ 𝒩, 𝒱op ×𝒩 {,} ℳ, ℳop ×𝒩 hom 𝒱

between model categories 𝒱,ℳ, and𝒩 defines a Quillen two-variable adjunc-
tion if any, and hence all, of the following equivalent conditions are satisfied:

(i) The functor ⊗̂∶ 𝒱𝟚 × ℳ𝟚 → 𝒩𝟚 carries a cofibration in 𝒱 and a
cofibration in ℳ to a cofibration in 𝒩 and furthermore this cofibration
is a weak equivalence if either of the domain cofibrations are.

(ii) The functor {̂, }∶ (𝒱𝟚)op ×𝒩𝟚 → ℳ𝟚 carries a cofibration in 𝒱 and a
fibration in𝒩 to a fibration in𝒩 and furthermore this fibration is a weak
equivalence if either of the domain maps are.

(iii) The functor ĥom∶ (ℳ𝟚)op ×𝒩𝟚 → 𝒱𝟚 carries a cofibration in ℳ and a
fibration in 𝒩 to a fibration in 𝒱 and furthermore this fibration is a weak
equivalence if either of the domain maps are.

Remark C.3.9. By Definition C.3.8, a two-variable adjunction is Quillen if
and only if its left adjoint ⊗∶ 𝒱 × ℳ → 𝒩 is a left Quillen bifunctor: a
bifunctor that is left Leibniz with respect to seven of the eight possible choices
of constituent weak factorization systems, the exception the choice of (𝙲, 𝙵 ∩ 𝚆)
for both 𝒱 and ℳ and (𝙲 ∩ 𝚆, 𝙵) for 𝒩.

Quillen’s axiomatization of the additional properties enjoyed by his model
structure on the category of simplicial sets has been generalized by Hovey [57,
§4.2] to define the notions of monoidal model category and enriched model
category. We specialize the former to the cartesian closed categories of §A.1 as
those are the only cases needed here. If 𝒱 has a model structure and also is a
cartesian closed category it is natural to ask that these structures be compatible
in the following sense:

Definition C.3.10. A cartesian closed model category is a cartesian closed
category (𝒱, ×, 1) with a model structure so that

(i) the cartesian product and internal hom define a Quillen two-variable
adjunction and

(ii) the map 𝑄1 × 𝑣 → 1 × 𝑣 ≅ 𝑣 defined by the cofibrant replacement of
the terminal object is a weak equivalence whenever 𝑣 is cofibrant.

Definition C.3.11. If 𝒱 is a cartesian closed model category a 𝒱-model cate-
gory is a model category ℳ that is tensored, cotensored, and 𝒱-enriched and
so that
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(i) (⊗, {, }, hom) is a Quillen two-variable adjunction and
(ii) the map 𝑄1 ⊗ 𝑚 → 1⊗ 𝑚 ≅ 𝑚 defined by the cofibrant replacement

of the terminal object is a weak equivalence whenever 𝑚 is cofibrant.

If 1 ∈ 𝒱 is cofibrant, the second condition in both Definition C.3.10 and
C.3.11 follows from the first one (see Exercise C.3.iii).

Lemma C.3.12. If ℳ is a 𝒱-model category, then for any cofibrant object 𝑀
and fibrant object 𝑁 in ℳ, hom(𝑀,𝑁) is a fibrant object in 𝒱. More gener-
ally, for any cofibrant object 𝑀 and fibration 𝑝∶ 𝑁 ↠ 𝑃, the induced map
𝑝∗∶ hom(𝑀,𝑁) → hom(𝑀, 𝑃) is a fibration in 𝒱.

Proof By Proposition A.5.4 – which implies, for the terminal object 1 ∈ ℳ
and any 𝑀 ∈ 𝒱, that hom(𝑀, 1) ≅ 1 is terminal in 𝒱 – the second statement
subsumes the first. By Exercise C.2.v, the lifting problem below-left for any
trivial cofibration 𝑖 in 𝒱 transposes to the lifting problem below-right

𝑈 hom(𝑀,𝑁) 𝑈 ⊗𝑀 𝑁

𝑉 hom(𝑀, 𝑃) 𝑉 ⊗𝑀 𝑃
∼

𝑖 𝑝∗

∼𝑖⊗𝑀 𝑝

By Exercise C.3.iii, since 𝑀 is cofibrant, −⊗𝑀∶ 𝒱 → ℳ is left Quillen, so
𝑖 ⊗𝑀 is a trivial cofibration in ℳ and since 𝑝∶ 𝑁 ↠ 𝑃 is a fibration, a solution
to the lifting problem exists.

The next result was formulated by Gambino [45] in the context of a model
category enriched over Quillen’s cartesian closed model structure on simplicial
sets, but its proof applies in greater generality.

Theorem C.3.13. If ℳ is a 𝒱-model category and 𝒥 is a small category, then
the weighted colimit functor

colim−−∶ 𝒱𝒥 ×ℳ𝒥op →ℳ

is left Quillen if the domain categories have the (injective, projective) or (pro-
jective, injective) model structure. Similarly, the weighted limit functor

lim−−∶ (𝒱𝒥)op ×ℳ𝒥 →ℳ

is right Quillen if the domain categories have the (projective, projective) or
(injective, injective) model structure.

Proof By Definition C.3.8 we can prove both statements in adjoint form. The
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weighted colimit bifunctor of Definition A.6.5 has a right adjoint (used to express
the defining universal property of the weighted colimit)

hom∶ (ℳ𝒥op)op ×ℳ → 𝒱𝒥

which sends 𝐹 ∈ ℳ𝒥op and 𝑚 ∈ ℳ to hom(𝐹−,𝑚) ∈ 𝒱𝒥.
To prove the statement when 𝒱𝒥 has the projective and ℳ𝒥op has the injective

model structure, we must show that this is a right Quillen bifunctor with respect
to the pointwise (trivial) cofibrations in ℳ𝒥op, (trivial) fibrations in ℳ, and
pointwise (trivial) fibrations in 𝒱𝒥. Because the limits involved in the definition
of right Quillen bifunctors are also formed pointwise, this follows immediately
from the corresponding property of the enriched hom bifunctor, which was part
of the definition of an enriched model category. The other cases are similar.

Digression C.3.14 (on the construction of homotopy colimits). In a model
category, the terms homotopy colimit and homotopy limit refer to the derived
functors of the colimit and limit functors. The upshot of Theorem C.3.13 is
that there are two approaches to constructing a homotopy colimit: “fattening up
the diagram” – for instance, by requiring that its objects are cofibrant and its
morphisms are cofibrations – or “fattening up the weight” – typically by taking
a cofibrant replacement of the terminal weight [103, §11.5]. Lemmas 6.2.14
and 6.2.18 can be understood as examples of the general equivalence between
these two approaches.

We single out one of many consequences of Theorem C.3.13, of interest
because the flexible weights of Definition 6.2.1 are precisely the cofibrant
objects in the projective model structure on the category of weights defines
relative to the Joyal model structure on simplicial sets.

Corollary C.3.15. Ifℳ is a 𝒱-model category, then for any diagram 𝐹 ∈ ℳ𝒥

whose objects are all fibrant and any projective cofibrant weight 𝑊 ∈ 𝒱𝒥, the
weighted limit is a fibrant object.

Proof By Theorem C.3.13, the weighted limit bifunctor lim−−∶ (𝒱𝒥)op ×
ℳ𝒥 → ℳ is right Quillen with respect to the projective model structure on
the category of weights and the projective model structure on the category of
diagrams. Since right Quillen bifunctors preserve fibrant objects, it follows that
the limit of a pointwise fibrant diagram weighted by a projective cofibrant weight
is fibrant.

Finally, we make use of the following theorem which enables the change of
base of enrichment for model categories extending the results of §A.7. The
premises of Theorem C.3.16 are the obvious extension of the premises of Propo-
sition A.7.5 to the enriched model category context, but the conclusion only
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allows us to transfer enrichments in the direction of the right adjoint because
an enriched model category must also be tensored and cotensored and these
properties only transfer in that direction.

The result below is a specialization of a more general theorem proven in [50,
3.8] to cartesian closed bases for enrichment.

Theorem C.3.16. Consider a Quillen adjunction, in which the left adjoint
preserves finite products, between cartesian closed model categories:

𝒱 𝒲
𝐹

⟂
𝑈

Then any 𝒲-model category admits the structure of a 𝒱-model category with
the same underlying unenriched model category with enriched homs, cotensors,
and tensors defined by:

hom𝒱(𝑀,𝑁) ≔ 𝑈 hom𝒲(𝑀,𝑁) , 𝑉 ⊗𝑀 ≔ 𝐹𝑉 ⊗𝑀 , and 𝑀𝑉 ≔ 𝑀𝐹𝑉.

Proof By Proposition A.7.8 these definitions make 𝒲 into a tensored and
cotensored 𝒱-enriched category. Lemma A.7.9 observes that change of base
along the right adjoint of a finite-product-preserving adjunction preserves un-
derlying 1-categories. It remains only to verify that the functors underlying the
𝒱-enriched hom, tensor, and cotensor define a Quillen two-variable adjunction,
but this follows easily from the cartesian closure of the model categories 𝒱 and
𝒲 and the fact that 𝐹 ⊣ 𝑈 is Quillen.

Exercises
Exercise C.3.i. Verify that the full subcategory of fibrant objects in a model cat-
egory defines a category of fibrant objects with 𝚆 the class of weak equivalences
and 𝙵 the class of fibrations between fibrant objects.

Exercise C.3.ii. Verify that a model structure on ℳ, if it exists, is uniquely
determined by any of the following data:

(i) the cofibrations and weak equivalences,
(ii) the fibrations and weak equivalences,
(iii) the cofibrations and fibrations, or
(iv) the trivial cofibrations and trivial fibrations.9

Exercise C.3.iii.
9 By a more delicate observation of Joyal [63, E.1.10], a model structure is also uniquely

determined by (v) the cofibrations and fibrant objects, or (vi) the fibrations and cofibrant objects.



C.4 Reedy Categories as Cell Complexes 599

(i) Prove that if ⊗∶ 𝒱 ×ℳ → 𝒩 is a left Quillen bifunctor and 𝑉 ∈ 𝒱 is
cofibrant then 𝑉 ⊗ −∶ ℳ → 𝒩 is a left Quillen functor.

(ii) Conclude that the second conditions of Definitions C.3.10 and C.3.11
are unnecessary if 1 ∈ 𝒱 is cofibrant.

Exercise C.3.iv. In a locally small category ℳ with products and coproducts
the hom bifunctor is part of a two-variable adjunction:

∗∶ 𝒮𝑒𝑡 ×ℳ →ℳ, {, }∶ 𝒮𝑒𝑡op ×ℳ →ℳ, hom∶ ℳop ×ℳ → 𝒮𝑒𝑡.

Equipping 𝒮𝑒𝑡 with the model structure whose weak equivalences are all maps,
whose cofibrations are the monomorphisms, and whose fibrations are the epi-
morphisms, prove that

(i) 𝒮𝑒𝑡 is a cartesian closed model category.
(ii) Any model category ℳ is a 𝒮𝑒𝑡-model category.

C.4 Reedy Categories as Cell Complexes

In this section, we describe a structure borne by certain small categories 𝒜
first exploited by Reedy to prove homotopical results about the category of
𝒜-indexed diagrams [99]. Our primary examples – the ordinal category 𝚫+,
inverse categories, their opposites, and products of these – are all (strict) Reedy
categories as defined by Daniel Kan,10 so we confine our attention to this special
case.11 Our presentation follows [107].

Definition C.4.1. A Reedy structure on a small category 𝒜 consists of a
degree function deg∶ obj𝒜 → 𝝎 together with a pair of wide subcategories
⃗𝒜 and ⃖𝒜 of degree-increasing and degree-decreasing arrows, respectively, so

that

(i) For each nonidentity morphism in ⃗𝒜, the degree of its domain is strictly
less than the degree of its codomain, and for each nonidentity morphism
in ⃖𝒜, the degree of its domain is strictly greater than the degree of its
domain.

10 The original written reference for this definition, as cited by the canonical model category texts
[55] and [57], was an early draft of the book that became [39], though by the time this
manuscript appeared in print, it in turn referenced those sources in order to “review the notion of
a Reedy category.”

11 This theory has been usefully extended by Berger and Moerdijk in such a way as to encompass
“generalized Reedy categories” in which objects are permitted to have nonidentity
automorphisms [12].
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(ii) Every morphism 𝑓 in 𝒜 may be uniquely factored as

• •

•

𝑓

⃖𝒜∋ ⃖𝑓 𝑓⃗∈𝒜⃗
(C.4.2)

Axiom (i) implies that ⃗𝒜∩ ⃖𝒜 = obj(𝒜), while both conditions together imply
that 𝒜 contains no nonidentity automorphisms (see Exercise C.4.i).

Example C.4.3. Any inverse category ℐ (see Definition C.1.16) is a Reedy
category, with ⃖ℐ = ℐ and ⃗ℐ = obj ℐ. Conversely, any Reedy category 𝒜 with
𝒜 = ⃖𝒜 is an inverse category, in which case its degree function extends to a
degree functor that reflects identity arrows.

Example C.4.4. The category 𝚫+ is a Reedy category with 𝚫⃗+ the subcate-
gory of monomorphisms and 𝚫⃖+ the subcategory of epimorphisms. Here it is
convenient to take advantage of the order isomorphism 𝟙 + 𝝎 ≅ 𝝎 to define
deg[𝑛] ≔ 𝑛. The subcategories 𝚫, 𝚫⊤, and 𝚫⊥ all inherit analogous Reedy
category structures.

Remark C.4.5. If 𝒜 is a Reedy category, then so is 𝒜op: its Reedy structure has
the same degree function but has the degree-increasing and degree-decreasing ar-
rows interchanged. In particular, the Reedy categories of Example C.4.3 dualize
to define direct categories, with an identity-reflecting functor deg∶ 𝒜 → 𝝎.

Example C.4.6. If𝒜 andℬ are Reedy categories, so is𝒜×ℬ, with deg(𝑎, 𝑏) ≔
deg(𝑎) + deg(𝑏) (see Exercise C.4.ii).

For the remainder of this section, we fix a Reedy category 𝒜. We refer to the
unique factorization (C.4.2) as the Reedy factorization of the map 𝑓 and the
degree of the object cod ⃖𝑓 = dom ⃗𝑓 as the degree of 𝑓. Our next aim is to show
that:

(i) The degree of 𝑓 is the minimal degree of an object through which 𝑓
factors.

(ii) The only factorization of 𝑓 through an object with this degree is the
Reedy factorization.

To prove these assertions, consider the category ℱ𝑎𝑐𝑡𝑓 ≔ (𝑎/𝒜)/𝑓 ≅
𝑓/(𝒜/𝑏)

whose objects are factorizations 𝑎 𝑔 𝑐 ℎ 𝑏 of 𝑓 and whose morphisms
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ℎ ⋅ 𝑔 → ℎ′ ⋅ 𝑔′ are maps 𝑘∶ 𝑐 → 𝑐′ so that the front triangles

𝑐

𝑎 𝑏

𝑐′

ℎ𝑔

𝑔′

𝑓

ℎ′
𝑘

commute. Write ℱ𝑎𝑐𝑡≤𝑛𝑓 ⊂ ℱ𝑎𝑐𝑡𝑓 for the full subcategory of factorizations
through an object of degree at most 𝑛.

Lemma C.4.7. The category ℱ𝑎𝑐𝑡𝑓 is connected, and each full subcategory
ℱ𝑎𝑐𝑡≤𝑛𝑓 is either empty or connected. The minimal 𝑛 with ℱ𝑎𝑐𝑡≤𝑛𝑓 nonempty
is the degree of 𝑓, and ℱ𝑎𝑐𝑡≤deg(𝑓)𝑓 ≅ 𝟙.

Proof Consider ℎ ⋅ 𝑔 ∈ ℱ𝑎𝑐𝑡𝑓 and their Reedy factorizations:

• • •

• •

•

𝑔

𝑔⃖

ℎ

⃖ℎ𝑔⃗

⃖𝑘

𝑘= ⃖ℎ⋅𝑔⃗

ℎ⃗

𝑘⃗

(C.4.8)

In this way, we define a zigzag of morphisms in ℱ𝑎𝑐𝑡𝑓 connecting ℎ ⋅ 𝑔 to
⃗ℎ ⃗𝑘 ⋅ ⃖𝑘 ⃖𝑔, which by axiom (ii) must be the Reedy factorization of 𝑓. This shows

that ℱ𝑎𝑐𝑡𝑓 is connected.
Moreover, axiom (i) implies that the degree of cod(𝑔) = dom(ℎ) is at least

the degree of 𝑓. In particular, if ℎ ⋅ 𝑔 ∈ ℱ𝑎𝑐𝑡≤𝑛𝑓, then each of the factorizations
in (C.4.8) is as well, proving that ℱ𝑎𝑐𝑡≤𝑛𝑓 is connected if it is nonempty. This
diagram also shows that each nonempty category ℱ𝑎𝑐𝑡≤𝑛𝑓 contains the Reedy
factorization. Hence, the minimal such 𝑛 is the degree of 𝑓.

Finally, if the degree of cod(𝑔) = dom(ℎ) equals the degree of 𝑓, then ⃗𝑔 and ⃖ℎ
(and ⃗𝑘 and ⃖𝑘) must be identities, from which we deduce that 𝑔 ∈ ⃖𝒜 and ℎ ∈ ⃗𝒜:
i.e., that ℎ ⋅ 𝑔 is the Reedy factorization. Hence ℱ𝑎𝑐𝑡≤deg(𝑓)𝑓 ≅ 𝟙 is the terminal
category as claimed.

Lemma C.4.7 is used to establish a “cellular decomposition” for the hom
bifunctor, elsewhere denoted by𝒜(−,−) but here abbreviated by𝒜 ∈ 𝒮𝑒𝑡𝒜

op×𝒜.
The Reedy structure allows us to present the bifunctor 𝒜 as a cell complex in
the sense of Definition C.2.4: a sequential composite of pushouts of coproducts
of basic “cells” that have a particular form. Lemma C.4.7 implies that the subset
of arrows of degree at most 𝑛 assembles into a subfunctor of the hom-bifunctor.
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Definition C.4.9 (𝑛-skeleton of the hom bifunctor). For any Reedy category
𝒜, the 𝑛-skeleton is the subfunctor of arrows of degree at most 𝑛.

sk𝑛𝒜 ↪ 𝒜 ∈ 𝒮𝑒𝑡𝒜
op×𝒜

There are obvious inclusions sk𝑛−1𝒜 ↪ sk𝑛𝒜. The colimit of the sequence

∅ sk0𝒜 ⋯ sk𝑛−1𝒜 sk𝑛𝒜 ⋯ colim sk𝑛𝒜 ≅ 𝒜

is the hom bifunctor 𝒜. The morphisms of degree 𝑛 first appear in sk𝑛𝒜. It
remains to express each inclusion sk𝑛−1𝒜 ↪ sk𝑛𝒜 as a pushout of a coproduct
of basic “cells” we now describe.

The external (pointwise) product defines a bifunctor ∶ 𝒮𝑒𝑡𝒜 × 𝒮𝑒𝑡𝒜
op
→

𝒮𝑒𝑡𝒜
op×𝒜. For any 𝑎 ∈ 𝒜, there is a natural “composition” map ∘∶ 𝒜𝑎 𝒜𝑎 →

𝒜 whose domain is the external product of the contravariant 𝒜𝑎 and covariant
𝒜𝑎 representables; here we write𝒜𝑎 to abbreviate𝒜(−, 𝑎) and𝒜𝑎 to abbreviate
𝒜(𝑎,−). By Lemma C.4.7, the composite of any pair of maps that factor through
an object 𝑎 of degree 𝑛 lies in sk𝑛𝒜, defining a map:

∐
deg(𝑎)=𝑛

𝒜𝑎 𝒜𝑎 sk𝑛𝒜
∘

Our next task is to describe the subfunctor of the domain that factors through
sk𝑛−1𝒜 ↪ sk𝑛𝒜, for which we require some new notation.

Definition C.4.10 (boundaries of representable functors). If 𝑎 ∈ 𝒜 has degree
𝑛, write

𝜕𝒜𝑎 ≔ sk𝑛−1𝒜𝑎 ∈ 𝒮𝑒𝑡𝒜 and

𝜕𝒜𝑎 ≔ sk𝑛−1𝒜𝑎 ∈ 𝒮𝑒𝑡𝒜
op
.

By Lemma C.4.7, 𝜕𝒜𝑎 ↪ 𝒜𝑎 is the subfunctor of arrows in 𝒜 with domain 𝑎
that do not lie in ⃗𝒜, while 𝜕𝒜𝑎 ↪ 𝒜𝑎 is the subfunctor of arrows with codomain
𝑎 that do not lie in ⃖𝒜.

In particular, the exterior Leibniz product

𝒜𝑎 𝜕𝒜𝑎 ∪
𝜕𝒜𝑎 𝜕𝒜𝑎

𝜕𝒜𝑎 𝒜𝑎 𝒜𝑎 𝒜𝑎(𝜕𝒜𝑎↪𝒜𝑎)ˆ(𝜕𝒜𝑎↪𝒜𝑎)

defines the subfunctor of pairs of morphisms ℎ ⋅ 𝑔 with domℎ = cod 𝑔 = 𝑎 in
which at least one of the morphisms 𝑔 and ℎ has degree less than the degree of
𝑎.
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Proposition C.4.11. The displayed commutative square is both a pullback and
a pushout in 𝒮𝑒𝑡𝒜

op×𝒜.

∐
deg(𝑎)=𝑛

𝜕𝒜𝑎 𝒜𝑎 ∪ 𝒜𝑎 𝜕𝒜𝑎 ∐
deg(𝑎)=𝑛

𝒜𝑎 𝒜𝑎

sk𝑛−1𝒜 sk𝑛𝒜

∘ ∘
(C.4.12)

The fact that (C.4.12) is a pullback is used to facilitate the proof that it is also
a pushout.

Proof An element of the pullback consists of 𝑓 ∈ sk𝑛−1𝒜 together with
a factorization 𝑓 = ℎ ⋅ 𝑔 through an object 𝑎 of degree 𝑛. If both ℎ and 𝑔
have degree 𝑛, then Lemma C.4.7 tells us that ℎ ⋅ 𝑔 is a Reedy factorization,
contradicting the fact that 𝑓 has degree at most 𝑛 − 1. So we must have either
ℎ ∈ 𝜕𝒜𝑎 or 𝑔 ∈ 𝜕𝒜𝑎, which tells us that the map from the upper left corner of
(C.4.12) surjects onto the pullback. Because the top-horizontal map is monic,
the comparison is therefore an isomorphism; i.e., (C.4.12) is a pullback square.

To see that it is a pushout, it suffices now to show that the right-hand vertical is
one-to-one on the complement of sk𝑛−1𝒜 ↪ sk𝑛𝒜. This follows from Lemma
C.4.7, which argued that any morphism of degree 𝑛 has a unique factorization
through an object of that degree: namely its Reedy factorization.

As a corollary of Proposition C.4.11, the hom bifunctor 𝒜 has a canonical
presentation as a cell complex.

Theorem C.4.13. The inclusion ∅ ↪ 𝒜 ∈ 𝒮𝑒𝑡𝒜
op×𝒜 has a canonical presen-

tation as a cell complex:

∐
deg(𝑎)=𝑛

𝜕𝒜𝑎 𝒜𝑎 ∪ 𝒜𝑎 𝜕𝒜𝑎 ∐
deg(𝑎)=𝑛

𝒜𝑎 𝒜𝑎

∅ sk0𝒜 sk𝑛−1𝒜 sk𝑛𝒜 colim𝑛 sk𝑛𝒜 ≅ 𝒜
⌜

∘ ∘

i.e., is a sequential composite of pushouts of coproducts of cells defined as
exterior Leibniz products

(𝜕𝒜𝑎 ↪ 𝒜𝑎) ˆ (𝜕𝒜𝑎 ↪ 𝒜𝑎),

where the cell for each 𝑎 ∈ 𝒜 of degree 𝑛 is attached at stage 𝑛.

As a corollary of Theorem C.4.13, any morphism 𝑓 ∈ ℳ𝒜 is itself a cell
complex: the cellular decomposition of𝒜 is translated into a cellular decomposi-
tion for 𝑓 by taking weighted colimits. Taking weighted limits instead transforms
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the cellular decomposition of 𝒜 into a “Postnikov presentation” for 𝑓 as the
limit of a countable tower of pullbacks of products of particular maps. This sort
of result is exemplary of the slogan of [107] that “it is all in the weights.” Before
proving this corollary, we require notation for the maps appearing as the basic
cells and basic layers.

Definition C.4.14 (latching and matching objects). Let 𝑎 ∈ 𝒜. The latching
and matching objects of diagram 𝑋 ∈ ℳ𝒜 at 𝑎 are defined to be the colimits
and limits, respectively, weighted by the boundary representables of appropriate
variance:

𝐿𝑎𝑋 ∶= colim𝜕𝒜𝑎 𝑋 𝑀𝑎𝑋 ∶= lim𝜕𝒜𝑎 𝑋.

The boundary inclusions 𝜕𝒜𝑎 ↪ 𝒜𝑎 and 𝜕𝒜𝑎 ↪ 𝒜𝑎 induce the latching and
matching maps ℓ𝑎∶ 𝐿𝑎𝑋 → 𝑋𝑎 and 𝑚𝑎∶ 𝑋𝑎 → 𝑀𝑎𝑋, on account of the
isomorphisms colim𝒜𝑎 𝑋 ≅ 𝑋𝑎 ≅ lim𝒜𝑎 𝑋 of Definition A.6.1(i).

Definition C.4.15 (relative latching and matching maps). The relative latching
and relative matching maps of a natural transformation 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 are
defined to be the Leibniz weighted colimits and limits

̂ℓ𝑎𝑓 ∶= ĉolim𝜕𝒜𝑎↪𝒜𝑎𝑓 𝑚̂𝑎𝑓 ∶= l̂im𝜕𝒜𝑎↪𝒜𝑎𝑓,

i.e., by the pullbacks and pushouts:

𝐿𝑎𝑋 𝑋𝑎 𝑋𝑎

𝐿𝑎𝑌 • • 𝑀𝑎𝑋

𝑌𝑎 𝑌𝑎 𝑀𝑎𝑌

𝐿𝑎𝑓

ℓ𝑎

⌜ 𝑓𝑎
𝑚̂𝑎𝑓

𝑚𝑎

𝑓𝑎

ℓ𝑎

ℓ̂𝑎𝑓
⌟

𝑀𝑎𝑓

𝑚𝑎

of the maps 𝐿𝑎𝑓 ∶= colim𝜕𝒜𝑎 𝑓 and 𝑀𝑎𝑓 ∶= lim𝜕𝒜𝑎 𝑓.

Notation C.4.16. For any diagram 𝑋 ∈ ℳ𝒜 let

sk𝑛 𝑋 ≔ colimsk𝑛𝒜 𝑋 and cosk𝑛 𝑋 ≔ limsk𝑛𝒜 𝑋

denote the results of applying the weighted colimit and weighted limit bifunctors
colim−−∶ 𝒮𝑒𝑡𝒜

op×𝒜×ℳ𝒜 →ℳ𝒜 and lim−−∶ (𝒮𝑒𝑡𝒜
op×𝒜)op×ℳ𝒜 →ℳ𝒜

of Exercise A.6.iv to the diagram 𝑋 with weight sk𝑛𝒜.

Recall the set-tensor ∗∶ 𝒮𝑒𝑡 ×ℳ →ℳ and set-cotensor {, }∶ 𝒮𝑒𝑡op ×ℳ →
ℳ bifunctors defined for category with coproducts and products.
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Corollary C.4.17. Let 𝒜 be a Reedy category and let ℳ be complete and
cocomplete. Any morphism 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 is a cell complex

𝑋 → 𝑋 ∪
sk0𝑋

sk0 𝑌 → ⋯ → 𝑋 ∪
sk𝑛−1𝑋

sk𝑛−1 𝑌 → 𝑋 ∪
sk𝑛𝑋

sk𝑛 𝑌 → ⋯ → colim ≅ 𝑌

whose 𝑛th stage attaches the coproduct of the cells

(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ ̂ℓ𝑎𝑓

indexed by objects 𝑎 of degree 𝑛, and also a “Postnikov tower”

𝑋 ≅ lim →⋯→ cosk𝑛 𝑋 ×
cosk𝑛𝑌

𝑌 → cosk𝑛−1 𝑋 ×
cosk𝑛−1𝑌

𝑌 →⋯→ cosk0 𝑋 ×
cosk0𝑌

𝑌 → 𝑌

whose 𝑛th layer is the product of the maps

ˆ{𝜕𝒜𝑎 ↪ 𝒜𝑎, 𝑚̂𝑎𝑓}

indexed by the objects 𝑎 of degree 𝑛.

Proof These dual results follow immediately by applying the weighted colimit
and weighted limit bifunctors of Exercise A.6.iv

colim−−∶𝒮𝑒𝑡𝒜
op×𝒜×ℳ𝒜 →ℳ𝒜 and lim−−∶ (𝒮𝑒𝑡𝒜

op×𝒜)op×ℳ𝒜 →ℳ𝒜

to the cell complex presentations of Theorem C.4.13; recall from Definition
A.6.1(ii) that both bifunctors are cocontinuous in the weight.

To see that the cell complex presentation for 𝑓 has the asserted form, note
that for any diagram 𝑋 ∈ ℳ𝒜 and weight defined by an exterior product
of 𝑈 ∈ 𝒮𝑒𝑡𝒜 and 𝑉 ∈ 𝒮𝑒𝑡𝒜

op
, there is a natural isomorphism colim𝑈 𝑉 𝑋 ≅

𝑈∗colim𝑉 𝑋,which extends to a natural isomorphism between Leibniz products
(Proposition C.2.9(i)).

By the coYoneda lemma, 𝑓 ≅ colim𝒜 𝑓 ≅ ĉolim∅↪𝒜𝑓. By Proposition
C.2.9(vii), the Leibniz weighted colimit functor ĉolim−𝑓 preserves cell struc-
tures. It follows that 𝑓 admits a canonical presentation as a cell complex with
cells

ĉolim(𝜕𝒜𝑎↪𝒜𝑎)ˆ(𝜕𝒜𝑎↪𝒜𝑎)𝑓≅(𝜕𝒜𝑎↪𝒜𝑎)∗̂ ĉolim𝜕𝒜𝑎↪𝒜𝑎𝑓≅(𝜕𝒜𝑎↪𝒜𝑎)∗̂ ̂ℓ𝑎𝑓.

This presentation is most familiar for the Reedy category 𝚫op. Here we
write 𝚫𝑛 for the standard 𝑛-simplex Δ[𝑛] and 𝜕𝚫𝑛 for its boundary, common
notational conventions in the literature that are consistent with the notation of
Definition C.4.10.
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Example C.4.18. A simplicial object 𝑌 taking values in any cocomplete cate-
gory admits a skeletal filtration

∅ → sk0 𝑌 → ⋯ → sk𝑛−1 𝑌 → sk𝑛 𝑌 → ⋯ → colim
𝑛

sk𝑛 𝑌 ≅ 𝑌

in which the step from stage 𝑛 − 1 to stage 𝑛 is given by a pushout

𝚫𝑛 ∗ 𝐿𝑛𝑌 ∪ 𝜕𝚫𝑛 ∗ 𝑌𝑛 𝚫𝑛 ∗ 𝑌𝑛

sk𝑛−1 𝑌 sk𝑛 𝑌
⌜

where 𝐿𝑛𝑌 → 𝑌𝑛 is the object of “degenerate 𝑛-simplices.”
Considering the Yoneda embedding as a simplicial object𝚫 ∈ (𝒮𝑒𝑡𝚫)𝚫op, this

specializes to the “canonical cell complex presentation” of the hom bifunctor of
Theorem C.4.13

𝚫𝑛 × 𝜕𝚫𝑛 ∪ 𝜕𝚫𝑛 × 𝚫𝑛 𝚫𝑛 × 𝚫𝑛

∅ ⋯ sk𝑛−1𝚫 sk𝑛𝚫 ⋯ 𝚫
⌜

In summary, Corollary C.4.17 tells us that we may express a generic nat-
ural transformation between diagrams of shape 𝒜 valued in a complete and
cocomplete category as

(i) a cell complex whose cells are Leibniz tensors built from boundary
inclusions of covariant representables and relative latching maps, and
dually

(ii) as a Postnikov tower whose layers are Leibniz cotensors built from
boundary inclusions of contravariant representables and relative match-
ing maps.

This explains the importance of these maps to Reedy category theory, as we
shall discover in the next section.

Exercises
Exercise C.4.i. Show that any isomorphism in a (strict) Reedy category is an
identity.

Exercise C.4.ii. Show that the product of two Reedy categories is a Reedy
category, with the degree of an object defined to be the sum of the degrees.
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C.5 The Reedy Model Structure

Our aim in this section is to explain how any weak factorization system on ℳ
gives rise to a Reedy weak factorization system on ℳ𝒜, and moreover that the
Reedy weak factorization systems associated to a model structure on ℳ define
the Reedy model structure on ℳ𝒜. Both results derive from an analysis of what
is required to inductively define functors and natural transformations indexed
by a Reedy category. Finally, we prove that the weighted limit and weighted
colimit bifunctors define Quillen bifunctors – an important special case of a
more general algebraic result – and discuss the implications of this result for the
theory of homotopy limits and homotopy colimits indexed by Reedy categories.

This work requires one preliminary: a discussion of how the skeleta and
coskeleta introduced in the previous section feature in the inductive definition
of Reedy-shaped diagrams. For a Reedy category 𝒜, write

𝒜≤0 ⊂ 𝒜≤1 ⊂ ⋯ ⊂ 𝒜≤𝑛−1 ⊂ 𝒜≤𝑛 ⊂ ⋯ ⊂ 𝒜

for the full subcategories of objects with degree at most the ordinal appearing
in the subscript. These categories give us a new way to understand the skeleton
and coskeleton functors of C.4.16.

Lemma C.5.1. For any complete and cocomplete category ℳ, restriction and
left and right Kan extension define an adjoint triple of functors

ℳ𝒜 ℳ𝒜≤𝑛res𝑛

ran𝑛
⊥

lan𝑛
⊥

with induced comonad sk𝑛 ≔ lan𝑛 ∘ res𝑛 and monad cosk𝑛 ≔ ran𝑛 ∘ res𝑛 that
are adjoint sk𝑛 ⊣ cosk𝑛 and naturally isomorphic to the functors defined by
weighted colimit and weighted limit

lan𝑛 res𝑛(−) ≅ colimsk𝑛𝒜− and ran𝑛 res𝑛(−) ≅ limsk𝑛𝒜−.

Proof Exercise C.5.i.

For example:

Definition C.5.2. Specializing the notation above, write 𝚫≤𝑛 ⊂ 𝚫 for the full
subcategory of the simplex category of 1.1.1 spanned by the ordinals [0],… , [𝑛].
Restriction and left and right Kan extension define adjunctions

𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚫
op
≤𝑛res𝑛

ran𝑛
⊥

lan𝑛
⊥
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inducing an idempotent comonad sk𝑛 ≔ lan𝑛 ∘ res𝑛 and an idempotent monad
cosk𝑛 ≔ ran𝑛 ∘ res𝑛 on 𝑠𝒮𝑒𝑡 that are adjoint sk𝑛 ⊣ cosk𝑛. The counit and unit
of this comonad and monad define canonical maps

sk𝑛 𝑋 𝑋 cosk𝑛 𝑋
𝜖 𝜂

relating a simplicial set 𝑋 with its 𝑛-skeleton and 𝑛-coskeleton. We say 𝑋 is
𝑛-skeletal or 𝑛-coskeletal if the former or latter of these maps, respectively, is
an isomorphism.

The following lemma records special properties of an adjoint triple of functors
lan𝑛 ⊣ res𝑛 ⊣ ran𝑛 arising from a fully faithful inclusion sk𝑛𝒜 ↪ 𝒜. In
particular, the canonical map from the 𝑛-skeleton of a simplicial set to its 𝑛-
coskeleton can be defined more generally, not just for diagrams defined as
restrictions:

Lemma C.5.3. For any fully faithful inclusion ℬ ↪ 𝒜 and complete and co-
complete category ℳ, consider the associated adjoint triple:

ℳ𝒜 ℳℬres

ran
⊥

lan
⊥

(i) The functors lan, ran∶ ℳℬ →ℳ𝒜 are fully faithful; that is, the unit of
lan ⊣ res and the counit of res ⊣ ran are isomorphisms.

(ii) The common composite in the commutative square below defines a canon-
ical natural transformation

lan ran res lan

lan res ran ran

𝜂∘lan

lan∘𝜖−1
𝜏

ran∘𝜂−1

𝜖∘ran

While we find the commutative square in (ii) amusing, since the inclusion
ℬ ↪ 𝒜 is fully faithful, that 𝜏 can be defined more simply using the universal
properties of left and right Kan extensions as the initial and terminal functors
that extend a given diagram.

Proof It is well-known that a right adjoint functor is fully faithful if and only
if the counit is an isomorphism and that the counit of a pointwise right Kan
extension along a fully faithful functor is an isomorphism; for proofs, specialize
the results of Lemma 9.4.4 and Proposition 9.4.5 to the ∞-cosmos 𝒞𝑎𝑡. These
statements and their duals prove (i).

In (ii), 𝜏 is defined to be the adjoint transpose of 𝜂−1∶ res lan ⇒ id under
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res ⊣ ran and also to be the adjoint transpose of 𝜖−1∶ id ⇒ res ran under
lan ⊣ res. To see that these definitions agree, observe that the former asserts
that the composite of the right two morphisms below is the unique right inverse
of the left morphism, while the latter asserts that the composite of the left two
morphisms below is the unique left inverse of the right morphism:

id res lan res ran id
𝜂
≅

res 𝜏 𝜖
≅

In other words, both definitions assert exactly that the displayed triple composite
is the identity.

In this way, we obtain a natural transformation 𝜏𝑛∶ sk𝑛 ⇒ cosk𝑛 between
the comonad and monad introduced in Lemma C.5.1. These structures allow us
to inductively define Reedy diagrams:

Proposition C.5.4 (inductive definition of diagrams).

(i) A diagram 𝑋 ∈ ℳ𝒜≤𝑛−1 together with a family of factorizations for each
object 𝑎 ∈ 𝒜 of degree 𝑛

sk𝑛−1 𝑋𝑎 cosk𝑛−1 𝑋𝑎

𝑋𝑎

𝜏𝑛−1𝑋𝑎

𝑖𝑎 𝑝𝑎

uniquely determines an extension of 𝑋 to a diagram 𝑋 ∈ ℳ𝒜≤𝑛.
(ii) A natural transformation 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜≤𝑛−1 together with a family

of factorizations for each object 𝑎 ∈ 𝒜 of degree 𝑛

sk𝑛−1 𝑋𝑎 𝑋𝑎 cosk𝑛−1 𝑋𝑎

sk𝑛−1 𝑌𝑎 𝑌𝑎 cosk𝑛−1 𝑌𝑎

𝜏𝑛−1𝑋𝑎

𝑖𝑎

sk𝑛−1 𝑓𝑎
𝑝𝑎

𝑓𝑎 cosk𝑛−1 𝑓𝑎

𝜏𝑛−1𝑌𝑎

𝑖𝑎 𝑝𝑎

uniquely determines an extension of 𝑓 to a map 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜≤𝑛.

Proof For (i), it remains to define the action of 𝑋 on nonidentity morphisms
whose domain or codomain has degree 𝑛. The Reedy factorization of any such
morphism 𝑘∶ 𝑎 → 𝑎′ is through an object 𝑏 of degree less than 𝑛. By composing
the maps in the upper-right or lower-left square, there exist unique dotted-arrow
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maps making the following diagram commute

sk𝑛−1 𝑋𝑎 𝑋𝑎 cosk𝑛−1 𝑋𝑎

sk𝑛−1 𝑋𝑏 𝑋𝑏 cosk𝑛−1 𝑋𝑏

sk𝑛−1 𝑋𝑎′ 𝑋𝑎′ cosk𝑛−1 𝑋𝑎′

𝑖𝑎

sk𝑛−1𝑋𝑘⃖

𝑝𝑎

𝑋𝑘⃖ cosk𝑛−1𝑋𝑘⃖

𝑖𝑏

sk𝑛−1𝑋𝑓⃗ 𝑋𝑘⃗

𝑝𝑏

cosk𝑛−1𝑋𝑘⃗

𝑖𝑎′ 𝑝𝑎′

and these compose to define the action of 𝑋 on 𝑘. The functoriality of this
construction in a composable pair of morphisms 𝑘⋅ℎ follows from connectedness
of the category ℱ𝑎𝑐𝑡≤𝑛−1(𝑘 ⋅ ℎ).

For (ii), apply (i) to the diagram 𝑎 ↦ 𝑓𝑎∶ 𝒜≤𝑛−1 →ℳ𝟚.

Now we turn our attention to the main subject of this section. Let ℳ be a
category with a weak factorization system (𝙻, 𝚁) and let 𝒜 be a Reedy category.

Definition C.5.5. The Reedy weak factorization system (𝙻[𝒜], 𝚁[𝒜]) on
ℳ𝒜 defined relative to the weak factorization system (𝙻, 𝚁) on ℳ has:

• as left class 𝙻[𝒜] those maps 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 whose relative latching
maps ̂ℓ𝑎𝑓∶ ℓ𝑎𝑓 → 𝑌𝑎 ∈ ℳ are in 𝙻, and

• as right class 𝚁[𝒜] those maps 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 whose relative matching
maps 𝑚̂𝑎𝑓∶ 𝑋𝑎 → 𝑚𝑎𝑓 ∈ ℳ are in 𝚁.

We say a map 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 is Reedy in 𝙻 or Reedy in 𝚁 if its relative
latching or relative matching maps are in 𝙻 or 𝚁, respectively.

The classes 𝙻[𝒜] and 𝚁[𝒜] are lifts, respectively, of the classes 𝙻 and 𝚁 along
the 𝒜-indexed family of functors ̂ℓ𝑎∶ (ℳ𝒜)𝟚 → ℳ𝟚 or 𝑚̂𝑎∶ (ℳ𝒜)𝟚 → ℳ𝟚.
By functoriality, we see that these classes are closed under retracts. Now Exercise
C.2.ii combines with the following pair of lemmas to imply that these two classes
indeed define a weak factorization system on the category ℳ𝒜.

Lemma C.5.6. The maps 𝑖 ∈ 𝙻[𝒜] have the left lifting property with respect to
the maps 𝑝 ∈ 𝚁[𝒜].

𝐴 𝐾

𝐵 𝐿

𝑖 𝑝
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Proof By Lemma C.2.3 and Corollary C.4.17, to show that 𝑖 𝑝 for any pair
of morphisms 𝑖, 𝑝 ∈ ℳ𝒜, it suffices to solve the lifting problems below-left

• • • •

• • • •
(𝜕𝒜𝑎↪𝒜𝑎)∗̂ℓ̂𝑎𝑖 𝑝 ↭ ℓ̂𝑎𝑖 l̂im𝜕𝒜𝑎↪𝒜𝑎𝑝≅𝑚̂

𝑎𝑝

in ℳ𝒜 for each 𝑎 ∈ 𝒜. By adjunction, it suffices to solve the transposed lifting
problem in ℳ above-right (see Lemma C.2.6). If 𝑖 ∈ 𝙻[𝒜] and 𝑝 ∈ 𝚁[𝒜], then
by definition ̂ℓ𝑎𝑖 ∈ 𝙻 and 𝑚̂𝑎𝑝 ∈ 𝚁, so a solution exists.

Lemma C.5.7. Every map 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 can be factored as a map in 𝙻[𝒜]
followed by a map in 𝚁[𝒜].

Proof We define the components of the factorization of 𝑓𝑎∶ 𝑋𝑎 → 𝑌𝑎 induc-
tively in the degree of 𝑎. To start, we use the factorization of (𝙻, 𝚁) to factor all
components indexed by objects at degree zero. Since the full subcategory 𝒜≤0
spanned by these objects has only identity arrows, this defines a factorization of
the subdiagram 𝑓 ∈ ℳ𝒜≤0.

Continuing inductively, suppose we have factored the restriction 𝑓 ∈ ℳ𝒜<𝑛

as

𝑋 𝑌

𝑍

𝑓

𝑔 ℎ
∈ ℳ𝒜<𝑛

with the relative latching maps ̂ℓ𝑎𝑔 ∈ 𝙻 and 𝑚̂𝑎ℎ ∈ 𝚁 for all objects 𝑎 of degree
less than 𝑛. By Proposition C.5.4, to define the attendant factorization of 𝑓𝑎, it
suffices to define an object 𝑍𝑎 of ℳ together with the dotted arrow maps.

𝐿𝑎𝑋 𝐿𝑎𝑍 𝐿𝑎𝑌

𝑋𝑎 ∪
𝐿𝑎𝑋

𝐿𝑎𝑍

𝑋𝑎 𝑍𝑎 𝑌𝑎

𝑀𝑎𝑍 ×
𝑀𝑎𝑌

𝑌𝑎

𝑀𝑎𝑋 𝑀𝑎𝑍 𝑀𝑎𝑌

⌜

ℓ̂𝑎𝑔

𝑔𝑎
𝑚̂𝑎ℎ

ℎ𝑎

⌟

We factor the dashed diagonal map from the pushout to the pullback using (𝙻, 𝚁)
to define the object 𝑍𝑎. The left and right factors become the 𝑎th relative latching
map and matching map of the composite morphisms 𝑔𝑎 and ℎ𝑎 so-defined. Note
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by construction that these maps lie in the classes 𝙻 and 𝚁, respectively. It follows
from the universal properties of the pushout and the pullback that 𝑓𝑎 = ℎ𝑎 ⋅ 𝑔𝑎.
By Proposition C.5.4 these definitions extend the natural transformations 𝑔 and
ℎ to degree 𝑛.

It follows from Proposition C.2.9 and Corollary C.4.17 that if the left class of
a weak factorization system (𝙻, 𝚁) on ℳ is cofibrantly or cellularly generated,
as in Definition C.2.4, then the left class of the Reedy weak factorization system
is too:

Proposition C.5.8. If (𝙻, 𝚁) is a weak factorization system on ℳ that is cel-
lularly or cofibrantly generated by a set of maps 𝙹, then the Reedy weak fac-
torization system (𝙻[𝒜], 𝚁[𝒜]) on ℳ𝒜 is cellularly or cofibrantly generated,
respectively, by the set

{(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ 𝑗}𝑎∈𝒜,𝑗∈𝒥.

Proof By Corollary C.4.17, any morphism 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 may be pre-
sented as a cell complex built from cells

{(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ ̂ℓ𝑎𝑓}𝑎∈𝒜.

If 𝑓 ∈ 𝙻[𝒜], then ̂ℓ𝑎𝑓 ∈ 𝙻 for each 𝑎, and by hypothesis these relative latching
maps may be presented as cell complexes or retracts of cell complexes built
from the maps in the generating set 𝙹. By Proposition C.2.9(vii), the Leibniz
tensors (𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ ̂ℓ𝑎𝑓may then be presented as (retracts of) cell complexes
built from the Leibniz tensors of the boundary inclusions and the maps in 𝙹,
exactly as claimed in the statement.

For example, the monomorphisms of simplicial sets are cellularly generated
by the simplex boundary inclusions 𝜕Δ[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 0.

Lemma C.5.9. The Reedy weak factorization system (mono[𝚫op], epi[𝚫op]) on
𝑠𝒮𝑒𝑡 = 𝒮𝑒𝑡𝚫

op
defined relative to the (monomorphism, epimorphism) weak

factorization system on 𝒮𝑒𝑡 coincides with the (monomorphism, trivial fibration)
weak factorization system. Consequently, any monomorphism of simplicial sets
decomposes canonically as a sequential composite of pushouts of coproducts of
the maps 𝜕Δ[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 0.

Proof Monomorphisms of sets are cellularly generated by a single map, the
inclusion !∶ ∅ ↪ ∗. Consequently, by Proposition C.5.8, the Reedy weak factor-
ization system is cellularly generated as well. In this case, the pushout product
functor −∗̂!∶ 𝒮𝑒𝑡𝚫

op
→ 𝒮𝑒𝑡𝚫

op
is the identity, so the set of generating maps

are the familiar simplex boundary inclusions {𝜕Δ[𝑛] ↪ Δ[𝑛]}[𝑛]∈𝚫, the right
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lifting property against which characterizes the trivial fibrations (see Definition
1.1.25).

Proposition C.5.10.

(i) If 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 is Reedy in 𝙻, that is, if the relative latching maps
̂ℓ𝑎𝑓 are in 𝙻, then each of the components 𝑓𝑎∶ 𝑋𝑎 → 𝑌𝑎 and each of

the latching maps 𝐿𝑎𝑓∶ 𝐿𝑎𝑋 → 𝐿𝑎𝑌 are also in 𝙻.
(ii) If 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜 is Reedy in 𝚁, that is, if the relative matching maps

𝑚̂𝑎𝑓 are in 𝚁, then each of the components 𝑓𝑎∶ 𝑋𝑎 → 𝑌𝑎 and each of
the matching maps 𝑀𝑎𝑓∶ 𝑀𝑎𝑋 → 𝑀𝑎𝑌 are also in 𝚁.

Proof The maps 𝑓𝑎 and 𝐿𝑎𝑓 are the Leibniz weighted colimits of 𝑓 with the
maps ∅ ↪ 𝒜𝑎 and ∅ ↪ 𝜕𝒜𝑎, respectively. Evaluating the covariant variable of
the cell complex presentation of Theorem C.4.13 at 𝑎 ∈ 𝒜, we see that∅ ↪ 𝒜𝑎

is a cell complex whose cells have the form

((𝜕𝒜𝑥)𝑎 ↪ 𝒜𝑎
𝑥) ˆ (𝜕𝒜𝑥 ↪ 𝒜𝑥), (C.5.11)

indexed by the objects 𝑥 ∈ 𝒜. In fact, it suffices to consider those objects
with deg(𝑥) ≤ deg(𝑎) because when deg(𝑥) > deg(𝑎) the inclusion (𝜕𝒜𝑥)𝑎 ↪
𝒜𝑎
𝑥, and hence the cell (C.5.11), is an isomorphism. Similarly, since 𝜕𝒜𝑎 =

skdeg(𝑎)−1𝒜𝑎, Theorem C.4.13 implies that ∅ ↪ 𝜕𝒜𝑎 is a cell complex whose
cells have the form (C.5.11) with deg(𝑥) < deg(𝑎).

By Proposition C.2.9(vii), the maps 𝑓𝑎 and 𝐿𝑎𝑓 are then cell complexes
whose cells, indexed by the objects 𝑥 ∈ 𝒜 with the deg(𝑥) ≤ deg(𝑎) and
deg(𝑥) < deg(𝑎), respectively, have the form

ĉolim((𝜕𝒜𝑥)𝑎↪𝒜𝑎
𝑥)ˆ(𝜕𝒜𝑥↪𝒜𝑥)𝑓 ≅ ((𝜕𝒜𝑥)𝑎 ↪ 𝒜𝑎

𝑥) ∗̂ ̂ℓ𝑥𝑓, (C.5.12)

the isomorphism arising from Proposition C.2.9(i). By Lemma C.2.13, the
Leibniz tensor of a monomorphism with a map in the left class of a weak
factorization system is again in the left class. Thus, since (𝜕𝒜𝑥)𝑎 ↪ 𝒜𝑎

𝑥 is a
monomorphism and ̂ℓ𝑥𝑓 is in 𝙻, these cells, and thus the maps 𝑓𝑎 and 𝐿𝑎𝑓 are
in 𝙻 as well.

Recall from Definition C.3.1 that a model structure on a category ℳ with
a class of weak equivalences 𝚆 satisfying the 2-of-3 property is given by two
classes of maps 𝙲 and 𝙵 so that (𝙲∩𝚆, 𝙵) and (𝙲, 𝙵∩𝚆) define weak factorization
systems. To show that the Reedy weak factorization systems on ℳ𝒜 relative
to a model structure on ℳ define a model structure on ℳ𝒜 with the weak
equivalences defined pointwise, one lemma is needed.

Lemma C.5.13. Let the classes (𝚆, 𝙲, 𝙵) define a model structure on ℳ. Then a
map 𝑓∶ 𝑋 → 𝑌 ∈ ℳ𝒜
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(i) is Reedy in 𝙲 ∩ 𝚆 if and only if 𝑓 is Reedy in 𝙲 and a pointwise weak
equivalence, and

(ii) is Reedy in 𝙵 ∩ 𝚆 if and only if 𝑓 is Reedy in 𝙵 and a pointwise weak
equivalence.

Proof We prove the first of these dual statements. If 𝑓 is Reedy in 𝙲 ∩ 𝚆, then
it is obviously Reedy in 𝙲, and Proposition C.5.10 implies that its components
𝑓𝑎 are also in 𝙲 ∩ 𝚆. Thus 𝑓 is a pointwise weak equivalence.

For the converse, we make use of the diagram

𝐿𝑎𝑋 𝐿𝑎𝑌

𝑋𝑎 •

𝑌𝑎

ℓ𝑎

⌜

𝐿𝑎𝑓

ℓ𝑎

𝑓𝑎

ℓ̂𝑎𝑓

which relates the maps 𝐿𝑎𝑓, ̂ℓ𝑎𝑓, and 𝑓𝑎 for any 𝑎 ∈ 𝒜; this is an instance of
Proposition C.2.9(vi) applied to (∅ ↪ 𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂𝒜 𝑓. Suppose that 𝑓 is
Reedy in 𝙲 and a pointwise weak equivalence. By Proposition C.5.10, it follows
that 𝐿𝑎𝑓 is in 𝙲. We will show that 𝐿𝑎𝑓 is in fact in 𝙲∩𝚆 and then apply pushout
stability of the left class of a weak factorization system and the 2-of-3 property,
to conclude that ̂ℓ𝑎𝑓 ∈ 𝚆 and hence that 𝑓 is Reedy in 𝙲 ∩ 𝚆. We argue by
induction. If 𝑎 has degree zero, then 𝐿𝑎𝑓 is the identity at the initial object,
which is certainly a weak equivalence, and ̂ℓ𝑎𝑓 = 𝑓𝑎 is in 𝙲∩𝚆. If 𝑎 has degree
𝑛, we may now assume that ̂ℓ𝑥𝑓 ∈ 𝙲 ∩ 𝚆 for any 𝑥 with degree less than the
degree of 𝑎. By the proof of Proposition C.5.10, 𝐿𝑎𝑓 may be presented as a
cell complex whose cells (C.5.12) are Leibniz tensors of monomorphisms with
maps in 𝙲 ∩ 𝚆, and thus lie in 𝙲 ∩ 𝚆. Thus, we conclude that 𝐿𝑎𝑓 ∈ 𝙲 ∩ 𝚆,
completing the proof.

Lemmas C.5.6, C.5.7, and C.5.13 assemble to prove:

Theorem C.5.14 (the Reedy model structure). If 𝒜 is a Reedy category and
(𝚆, 𝙲, 𝙵) define a model structure on ℳ, then the Reedy weak factorization
systems (𝙲 ∩ 𝚆[𝒜], 𝙵[𝒜]) and (𝙲[𝒜], 𝙵 ∩ 𝚆[𝒜]) define a model structure on
ℳ𝒜 with pointwise weak equivalences.

One reason the Reedy model structure is important is because it is equipped
with convenient Quillen bifunctors arising in the following manner.

Theorem C.5.15. Let 𝒜 be a Reedy category and let ⊗∶ 𝒱 ×ℳ → 𝒩 be a
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left Leibniz bifunctor with respect to weak factorization systems (𝙻, 𝚁), (𝙻′, 𝚁′),
and (𝙻″, 𝚁″). Then the functor tensor product

⊗𝒜∶ 𝒱𝒜op ×ℳ𝒜 →𝒩

is left Leibniz with respect to (𝙻″, 𝚁″) and the Reedy weak factorization systems
(𝙻[𝒜op], 𝚁[𝒜op]) and (𝙻′[𝒜], 𝚁′[𝒜]).

The functor tensor product of 𝐹 ∈ 𝒱𝒜op and 𝐺 ∈ ℳ𝒜 is defined by the
coend

𝐹⊗𝒜𝐺 ≔ ∫
𝑎∈𝒜

𝐹𝑎 ⊗ 𝐺𝑎 ≔ coeq( ∐
𝑎,𝑏∈𝒜

∐
𝒜(𝑎,𝑏)

𝐹𝑎 ⊗ 𝐺𝑏 ∐
𝑎∈𝒜

𝐹𝑎 ⊗ 𝐺𝑎) .

Proof As a construction built from a cocontinuous functor and colimits, the
functor tensor product is cocontinuous in both variables. We argue that ⊗𝒜 has
the Leibniz property. Corollary C.4.17 asserts that the maps 𝑓 ∈ 𝒱𝒜op can be
built as cell complexes whose cells are Leibniz products

(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ ̂ℓ𝑎𝑓,

and the maps 𝑔 ∈ ℳ𝒜 can be built as cell complexes whose cells are Leibniz
products

(𝜕𝒜𝑏 ↪ 𝒜𝑏) ∗̂ ̂ℓ𝑏𝑔.

By Proposition C.2.9(vii), 𝑓 ⊗̂𝒜 𝑔 is then a cell complex whose cells have the
form

((𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ ̂ℓ𝑎𝑓) ⊗̂𝒜 ((𝜕𝒜𝑏 ↪ 𝒜𝑏) ∗̂ ̂ℓ𝑏𝑔)

≅ ((𝜕𝒜𝑎 ↪ 𝒜𝑎) ×̂𝒜 (𝜕𝒜𝑏 ↪ 𝒜𝑏)) ∗̂ ( ̂ℓ𝑎𝑓 ⊗̂ ̂ℓ𝑏𝑔)

To say that 𝑓 is Reedy in 𝙻 and 𝑔 is Reedy in 𝙻′ means that ̂ℓ𝑎𝑓 ∈ 𝙻 and
̂ℓ𝑏𝑔 ∈ 𝙻′. Since ⊗ is left Leibniz, it follows that ̂ℓ𝑎𝑓 ⊗̂ ̂ℓ𝑏𝑔 ∈ 𝙻″. The Leibniz

functor tensor product

(𝜕𝒜𝑏 ↪ 𝒜𝑏) ×̂𝒜 (𝜕𝒜𝑎 ↪ 𝒜𝑎)

of the maps in 𝒮𝑒𝑡𝒜
op

and in 𝒮𝑒𝑡𝒜 amounts to the inclusion into the hom-set
𝒜𝑎
𝑏 = 𝒜(𝑏, 𝑎) of the subset of morphisms from 𝑏 to 𝑎 that factor through an

object of degree strictly less than 𝑎 or strictly less than 𝑏; in particular, this
map is a monomorphism. Now Lemma C.2.13 applies to the weak factorization
system (𝙻″, 𝚁″) on 𝒩 to prove that the Leibniz tensor of this monomorphism
with ̂ℓ𝑎𝑓 ⊗̂ ̂ℓ𝑏𝑔 remains in 𝙻″, completing the proof.
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For example, by (A.6.4), the weighted colimit bifunctor is the functor tensor
product defined from the set-tensor bifunctor of Lemma C.2.13. Applying
Theorem C.5.15 with (monomorphism, epimorphism) taken as the default weak
factorization system on 𝒮𝑒𝑡, we conclude:

Corollary C.5.16. For any complete and cocomplete category ℳ with a weak
factorization system (𝙻, 𝚁) and any Reedy category, the weighted colimit and
weighted limit

colim−−∶ 𝒮𝑒𝑡𝒜 ×ℳ𝒜op →ℳ and lim−−∶ (𝒮𝑒𝑡𝒜)op ×ℳ𝒜 →ℳ

define left and right Leibniz bifunctors relative to the Reedy weak factorization
systems.

In the setting of a model category, a cartesian closed model category, or a
𝒱-model category (which subsumes the previous two cases by taking 𝒱 to be
𝒮𝑒𝑡 with the model structure of Exercise C.3.iv or taking 𝒱 to be the model
category itself), Corollary C.5.16 specializes to the following result, which helps
us understand homotopy limits and colimits of diagrams of Reedy shape.

Corollary C.5.17. Let ℳ be a 𝒱-model category and let 𝒜 be a Reedy cat-
egory. Then for any weight 𝑊 in 𝒱𝒜 that is Reedy cofibrant,12 the weighted
colimit and weighted limit functors

colim𝑊−∶ ℳ𝒜op →ℳ and lim𝑊−∶ ℳ𝒜 →ℳ

are respectively left and right Quillen with respect to the Reedy model structure
on ℳ𝒜.

Proof By Exercise C.3.iii, the Quillen bifunctors give rise to Quillen functors
when plugging a cofibrant object into the appropriate variable.

Example C.5.18 (homotopy limits and colimits). Taking the terminal weight 1
in 𝒮𝑒𝑡𝒜, the weighted limit reduces to the ordinary limit functor. The functor
1 ∈ 𝒮𝑒𝑡𝒜 is Reedy monomorphic just when, for each 𝑎 ∈ 𝒜, the category of
elements for the weight 𝜕𝒜𝑎 is either empty or connected. This is the case if and
only if𝒜 has cofibrant constants, meaning that the constant𝒜-indexed diagram
at any cofibrant object in any model category is Reedy cofibrant. Thus, we
conclude that if𝒜 has cofibrant constants, then the limit functor lim∶ ℳ𝒜 →ℳ
is right Quillen.

Dually, the colimit functor colim∶ ℳ𝒜 →ℳ is a special case of the weighted
colimit functor with the terminal weight 1 ∈ 𝒮𝑒𝑡𝒜

op
. This is Reedy monomorphic

12 In the case of 𝒱 = 𝒮𝑒𝑡, “Reedy cofibrant” should be read as “Reedy monomorphic.”
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just when each category of elements for the weights 𝜕𝒜𝑎 is either empty or
connected, which is the case if and only if𝒜 has fibrant constants, meaning that
the constant 𝒜-indexed diagram at any fibrant object in any model category is
Reedy fibrant. Thus, we conclude that if𝒜 has fibrant constants, then the colimit
functor colim∶ ℳ𝒜 →ℳ is left Quillen (see [107, §9] for more discussion).

In presheaf categories, the cofibrations are often the monomorphisms, and
with a bit of elbow grease, we can identify Reedy monomorphic weights for
use in applications of Corollary C.5.17. For instance, any bisimplicial set is
Reedy cofibrant as an object of 𝑠𝒮𝑒𝑡𝚫

op
(see [103, 14.3.7]). Reedy monomorphic

cosimplicial objects can also be identified, on account of the following lemma.

Lemma C.5.19.

(i) Let 𝑋∶ 𝚫 → 𝒮𝑒𝑡𝒥
op

be a cosimplicial object in a presheaf category. If 𝑋
is unaugmentable, in the sense that the equalizer of the pair of coface
maps 𝛿0, 𝛿1∶ 𝑋0 → 𝑋1 is empty, then the latching maps of 𝑋 are all
monomorphisms.

(ii) If 𝑋 is an unaugmentable cosimplicial object in a slice category of a
presheaf category, then the latching maps of 𝑋 are all monomorphisms.

Proof Since latching objects are defined in terms of certain colimits in 𝒮𝑒𝑡𝒥
op

computed pointwise in 𝒮𝑒𝑡, we may reduce this result to the corresponding
one for cosimplicial sets 𝑋∶ 𝚫 → 𝒮𝑒𝑡. A simplex in a cosimplicial set is
“nondegenerate” if it is not in the image of a monomorphism from 𝚫. The 𝑛th
latching map 𝐿𝑛𝑋 → 𝑋𝑛 is a monomorphism just when each expression of an
𝑛-simplex 𝑥 as the image of a nondegenerate simplex 𝑧 under a monomorphism
𝜎∶ [𝑘] ↣ [𝑛] is unique.

So suppose we have two such representations 𝑥 = 𝜎 ⋅ 𝑧 = 𝜎′ ⋅ 𝑧′. Any
monomorphism 𝜎 ∈ 𝚫 has a left inverse 𝜏, so we see that 𝑧 = 𝜏𝜎′ ⋅ 𝑧′. The
map 𝜏𝜎′ can be factored as an epimorphism followed by a monomorphism.
Because 𝑧 is nondegenerate, this monomorphism must be the identity, so 𝜏𝜎′

is an epimorphism. Repeating this argument with an left inverse 𝜏′ for 𝜎′ we
see that 𝜏′𝜎 is an epimorphism, so 𝑧 and 𝑧′ have the same degree and both
epimorphisms are identities. This proves that 𝑧 = 𝑧′.

If the set of left inverses for a monomorphism in 𝚫 uniquely characterized
that monomorphism, then we could conclude that 𝜎 and 𝜎′ must be equal, and
hence that such decompositions would be fully unique. This is true for nearly all
monomorphisms in 𝚫, the only exceptions being the face maps 𝛿0, 𝛿1∶ [0] ↣
[1]. However, 𝑋 is assumed to be unaugmentable, so there is no 𝑧 ∈ 𝑍0 with
𝛿0 ⋅ 𝑧 = 𝛿1 ⋅ 𝑧, and thus 𝐿𝑛𝑋 → 𝑋𝑛 is a monomorphism for all 𝑛. This proves
the first statement.
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For the second statement, we only need to consider slice categories 𝐴/𝒮𝑒𝑡𝒥
op

under a presheaf 𝐴 ∈ 𝒮𝑒𝑡𝒥
op

, since the slice category 𝒮𝑒𝑡𝒥
op
/𝐴 is equivalent to

the category of presheaves on the category of elements of 𝐴, and so this case is
covered by (i). The forgetful functor 𝐴/𝒮𝑒𝑡𝒥

op
→ 𝒮𝑒𝑡𝒥

op
creates monomorphisms

and connected colimits, which tells us that the latching maps 𝐿𝑛𝑋 → 𝑋𝑛 of a
complicial object 𝑋 in 𝐴/𝒮𝑒𝑡𝒥

op
are calculated in 𝒮𝑒𝑡𝒥

op
for all 𝑛 > 1. The direct

calculation given above proves that these are monomorphisms, so it remains
only to consider the cases 𝑛 = 0 and 𝑛 = 1. If 𝑋 is unaugmentable, then by
hypothesis the equalizer of the map 𝛿0, 𝛿1∶ 𝑋0 → 𝑋1 in 𝒮𝑒𝑡𝒥

op
is 𝐴. Thus, the

0th latching map 𝐴 → 𝑋0 is an equalizer, and so it must be a monomorphism.
Finally, we claim that the 1st latching map (𝛿0, 𝛿1)∶ 𝐿1𝑋 ≅ 𝑋0 +𝑋0 → 𝑋1 is a
monomorphism: arguing in 𝒮𝑒𝑡𝒥

op
and then ultimately in 𝒮𝑒𝑡, it is easy to see

that the pullback of this map along itself is 𝐴. This completes the proof that 𝑋
is a Reedy monomorphism.

Example C.5.20 (geometric realization and totalization). By Lemma C.5.19,
the Yoneda embedding defines a Reedy cofibrant weight 𝚫 ∈ 𝑠𝒮𝑒𝑡𝚫. The
weighted colimit and weighted limit functors

colim𝚫−∶ ℳ𝚫op →ℳ and lim𝚫• −∶ ℳ𝚫 →ℳ

typically go by the names of geometric realization and totalization. Corollary
C.5.17 proves that if ℳ is a simplicial model category, then these functors are
left and right Quillen.

Exercises
Exercise C.5.i. Prove Lemma C.5.1.

Exercise C.5.ii ([103, 14.3.8]). Prove the relative analog of Lemma C.5.19:
if 𝑋 and 𝑌 are both unaugmentable cosimplicial objects in a presheaf category,
then any pointwise monomorphism 𝑋 → 𝑌 is also a Reedy monomorphism, i.e.,
its relative latching maps are monic.
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Appendix D

The Combinatorics of (Marked) Simplicial Sets

In this appendix we explore the combinatorics of simplicial sets, proving results
stated in Chapters 1 and 4. Certain of these results, namely those involving
isomorphisms in quasi-categories, are more easily proved in the closely related
category of “marked” simplicial sets, where the quasi-categories are identified
with those marked simplicial sets that are 1-complicial. Because the correspond-
ing 𝑛-complicial sets provide one of the families of examples of ∞-cosmoi
appearing in Appendix E, we prove the necessary combinatorial results in that
more general context.

The category of marked simplicial sets is introduced in §D.1. Certain objects
in this category that have composites of simplices in all dimensions define
complicial sets, which are characterized by a right lifting property that also
defines the complicial isofibrations. In §D.2, we begin our combinatorial work by
revisiting the join and slice constructions from §4.2, redeveloping these notions
from the viewpoint of augmented simplicial sets. This work is completed in
§D.6, where we prove that various models for the quasi-category of cones over
or under a diagram are equivalent.

In §D.3, we prove the Leibniz stability of complicial isofibrations under
exponentiation with monomorphisms of marked simplicial sets. This closely re-
sembles some of the unproven results of §1.1, but before making the connection,
we must relate complicial sets and complicial isofibrations to quasi-categories
and isofibrations. This task occupies the remaining two sections. In §D.4 we
establish the connection between the theory of complicial sets and the theory
of quasi-categories, showing that any quasi-category can be equipped with a
canonically defined “natural” marking in such a way that it defines a complicial
set with all simplices above dimension 1 marked. The proof involves a careful
study of the data that define an isomorphism in a quasi-category. Applying this
analysis in §D.5, we prove Joyal’s “special outer horn filling” Proposition 1.1.14,
which amounts to the observation that isofibrations between naturally marked
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quasi-categories coincide with the complicial isofibrations. With this connection
established, the previous results can be assembled to supply proofs of the claims
made in §1.1.

D.1 Complicial Sets

When a quasi-category is regarded as an (∞, 1)-category, its vertices play the
role of the objects and its edges represent the morphisms, with the degenerate
edge at a vertex representing its identity. The 𝑛-simplices then witness 𝑛-ary
composition relations. When a complicial set is regarded as an (∞,∞)-category,
its 𝑛-simplices must play a dual role: both serving as witnesses for lower dimen-
sional composition relations and representing a priori noninvertible 𝑛-dimen-
sional cells in their own right. To disambiguate between these two interpretations,
certain positive dimensional simplices in a complicial set are marked as “thin,”
indicating that they should be interpreted as equivalences witnessing a weak
composition relation between their boundary faces. Thus the ambient category in
which complicial sets are defined is not the category of ordinary simplicial sets
but a closely related category of marked simplicial sets1 that we now introduce.

Definition D.1.1 (marked simplicial sets). A marked simplicial set is a sim-
plicial set with a designated subset of marked or thin positive dimensional
simplices that includes all degenerate simplices. A map of marked simplicial
sets is a simplicial map that preserves marked simplices.

Definition D.1.2 (minimal and maximal marking). The category 𝑠𝒮𝑒𝑡+ of
marked simplicial sets is equipped with an evident forgetful functor to 𝑠𝒮𝑒𝑡
admitting both left and right adjoints:

𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡(−)0 ⊥

core
⊥

(−)♯

(−)♭

⊥

The left adjoint (−)♭ defines the minimal marking of a simplicial set, in which
only the degeneracies are marked, while the right adjoint (−)♯ defines the maxi-
mal marking, with all simplices marked. This functor has a further right adjoint,
1 In the original sources [128, 129], marked simplicial sets are called stratified simplicial sets. To

avoid confusing with the increasingly prominent unrelated notion of stratified spaces, we have
elected to change the name. In [78], Lurie uses the term marked simplicial sets for a special case
of the more general notion we presently introduce.
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which takes a marked simplicial set to its core, the simplicial set with the same
vertices comprised of those marked simplices whose faces are also marked.

On various occasions, it is convenient to identify 𝑠𝒮𝑒𝑡 with either of the fully
faithful embeddings into 𝑠𝒮𝑒𝑡+ just introduced. Unless otherwise specified, the
default convention is to identify simplicial sets with their minimal markings. In
particular, with this convention, we are free to regard the standard simplices and
their subspaces as minimally marked simplicial sets.

To succinctly introduce other marked simplicial sets, the following terminol-
ogy is convenient:

Definition D.1.3. An inclusion 𝑈 ↪ 𝑉 of marked simplicial sets is:

• regular, denoted 𝑈 ↪𝑟 𝑉, if thin simplices in 𝑈 are created in 𝑉 and
• entire, denoted 𝑈 ↪𝑒 𝑉, if the map is an isomorphism (or more commonly

the identity) on underlying simplicial sets, in which case the only difference
between 𝑈 and 𝑉 is that 𝑉 has more marked simplices.

For example, for each 𝑛 ≥ 1, we define the marked simplex Δ[𝑛]𝑡 to be
the entire extension of minimally marked simplex Δ[𝑛] that also marks the top
nondegenerate simplex.

Notation D.1.4 (the marked simplex category). Let 𝑡𝚫 ↪ 𝑠𝒮𝑒𝑡+ denote the
full subcategory spanned by the minimally marked simplices Δ[𝑛], for 𝑛 ≥ 0,
together with the marked simplices Δ[𝑛]𝑡, for 𝑛 ≥ 1. It can be built from the
simplex category 𝚫 of Notation 1.1.1 by:

• adjoining objects [𝑛]𝑡 for 𝑛 ≥ 1,
• adjoining maps 𝜙∶ [𝑛] → [𝑛]𝑡 for 𝑛 ≥ 1 and 𝜁𝑖∶ [𝑛 + 1]𝑡 → [𝑛] for 𝑛 ≥ 0

and 0 ≤ 𝑖 ≤ 𝑛, and
• imposing relations 𝜁𝑖𝜙 = 𝜎𝑖 and 𝜎𝑖𝜁𝑗+1 = 𝜎𝑗𝜁𝑖 for 𝑖 ≤ 𝑗.2

For a marked simplicial set 𝑋, the maps Δ[𝑛] → 𝑋 and Δ[𝑛]𝑡 → 𝑋, respec-
tively, parametrize 𝑛-simplices in 𝑋 and marked 𝑛-simplices in 𝑋. This defines a
canonical embedding 𝑠𝒮𝑒𝑡+ ↪ 𝒮𝑒𝑡𝑡𝚫

op
, which is easily seen to be fully faithful.

Moreover:

Proposition D.1.5. There is a reflective embedding 𝑠𝒮𝑒𝑡+ 𝒮𝑒𝑡𝑡𝚫
op

⊥

whose

(i) essential image consists of those presheaves 𝐹 for which the component
maps − ∘ 𝜙∶ 𝐹[𝑛]𝑡 → 𝐹[𝑛] are monomorphisms, and

2 Viktoriya Ozornova and Martina Rovelli pointed out to us that this last family of relations was
omitted from the original source [122] but should have been included. A corrected definition
appears in [89, 1.1].



624 The Combinatorics of (Marked) Simplicial Sets

(ii) left adjoint is constructed by replacing the set 𝐹[𝑛]𝑡 with the image of the
map − ∘ 𝜙∶ 𝐹[𝑛]𝑡 → 𝐹[𝑛].

Consequently, 𝑠𝒮𝑒𝑡+ is a locally finitely presentable category, and in particular
is complete and cocomplete, with limits constructed pointwise as presheaves
and with colimits constructed by applying the reflector to the pointwise colimit
of presheaves.

Put in more elementary terms, limits and colimits of marked simplicial sets
are created by the underlying simplicial set functor (−)0∶ 𝑠𝒮𝑒𝑡+ → 𝑠𝒮𝑒𝑡. A
simplex in the limit is marked if and only if each of its components, defined
by composing with the legs of the limit cone, are marked simplices. A simplex
in a colimit is marked if any of its lifts along any leg of the colimit cone are
marked simplices. The reflection in (ii) is a sort of “propositional truncation,”
remembering which simplices should be marked while forgetting the data that
indicates why.

Proof The right action of the operators in 𝑡𝚫 on a presheaf 𝐹 ∈ 𝒮𝑒𝑡𝑡𝚫
op

gives the sets of elements of 𝐹 the structure of a marked simplicial set with the
exception of one condition: namely that the marked 𝑛-simplices form a subset of
the 𝑛-simplices. This explains the condition appearing in (i) and the construction
appearing in (ii). It follows that marked simplicial sets are the category of models
for a finite limit sketch, and hence form a locally finitely presentable category.
Any reflective full subcategory of a complete and cocomplete category inherits
limits in the manner constructed in the statement (see, e.g., [104, 4.5.15]).

Lemma C.5.9 extends to marked simplicial sets as follows:

Lemma D.1.6. The momomorphisms in 𝑠𝒮𝑒𝑡+ are cellularly generated by

{𝜕Δ[𝑛] 𝑟 Δ[𝑛]}𝑛≥0 ∪ {Δ[𝑛] 𝑒 Δ[𝑛]𝑡}𝑛≥1.

Proof Exercise D.1.i.

A marked simplicial set is a simplicial set with enough structure to talk about
composition of simplices in all dimensions. A complicial set is a marked sim-
plicial set in which composites exist and in which thin witnesses to composition
compose to define thin simplices, an associativity condition that ultimately
implies that thin simplices are equivalences in a sense that is made explicit in
Lemma D.4.2 and Digression D.4.21. The following form of the definition of a
(née weak) complicial set, due to Verity [129], modifies an earlier equivalent
presentation due to Street [120]. Verity’s modification focuses on a particular
set of 𝑘-admissible 𝑛-simplices, which are thin 𝑛-simplices that exhibit their
𝑘th face as a composite of their (𝑘 + 1)th and (𝑘 − 1)th faces, in the case where



D.1 Complicial Sets 625

0 < 𝑘 < 𝑛. In the cases 𝑘 = 0 or 𝑘 = 𝑛, a 𝑘-admissible 𝑛-simplex witnesses an
equivalence between the first or last pair of faces, respectively.

Definition D.1.7 (𝑘-admissible 𝑛-simplex). For 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛, the
𝑘-admissible 𝑛-simplex Δ𝑘[𝑛] is the entire superset of the standard 𝑛-simplex
with certain additional faces marked thin: a nondegenerate 𝑚-simplex in Δ𝑘[𝑛]
is thin if and only if it contains all of the vertices in {𝑘 − 1, 𝑘, 𝑘 + 1} ∩ [𝑛]. Thin
faces include in particular:

• the top dimensional 𝑛-simplex
• all codimension-one faces except for the (𝑘 − 1)th, 𝑘th, and (𝑘 + 1)th
• the 2-simplex spanned by {𝑘 − 1, 𝑘, 𝑘 + 1} when 0 ≤ 𝑘 ≤ 𝑛 or the edge

spanned by {𝑘 − 1, 𝑘, 𝑘 + 1} ∩ [𝑛] when 𝑘 = 0 or 𝑘 = 𝑛.

When drawing pictures of marked simplicial sets, we use the symbol ”≃” to
decorate marked simplices and “∼” to decorate marked edges. Our diagrams
also adopt a convention for the direction of the cells inhabiting an unmarked
𝑛-simplex. Following the combinatorics introduced by Street in his “Algebra
of oriented simplexes” [120], we regard an 𝑛-simplex as an 𝑛-cell from the
pasted composite of its odd-numbered faces to the pasted composite of its even-
numbered faces. Note this is compatible with the convention already in use for
depicting a 1-simplex in a simplicial set as an arrow from its 1st face (the 0th
vertex) to its 0th face (the 1st vertex).

Example D.1.8 (admissible simplices in low dimensions).

(i) For 𝑛 = 1, both admissible simplices Δ0[1] and Δ1[1] equal the thin
1-simplex Δ[1]𝑡 = Δ[1]♯. A map Δ[1]♯ → 𝐴 is interpreted as defining
an equivalence between the two vertices in its image.

(ii) For 𝑛 = 2, the admissible simplex Δ1[2] equals the thin 2-simplex Δ[2]𝑡.
A map Δ1[2] → 𝐴 is interpreted as specifying that the image of the
{02}-edge is a composite of the images of the {01}- and {12}-edges.

By contrast, Δ0[2] and Δ2[2] each have a marked edge, as well as a
marked 2-simplex as indicated by the diagrams:

Δ0[2] ≔
1

0 2

≃∼ Δ2[2] ≔
1

0 2

∼≃

A map Δ0[2] → 𝐴 witnesses an equivalence between the image of the
{12} edge and the image of the {02} edge.
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(iii) For 𝑛 = 3, the admissible simplices Δ1[3] and Δ2[3] have their 3rd
and 0th faces marked, respectively, as well as the top dimensional 3-
simplex, with no other nondegenerate faces marked. We choose to draw
admissible 3-simplices in such a way that allows us to see all of their
codimension-one faces:

Δ2[3] ≔

1 2 1 2

0 3 0 3

𝑔

𝑘
𝛽⇑ ≃

𝑔

𝑘𝑔

≃

⇑𝛼∗𝛽
𝑘𝑓 ⇑𝛼

ℎ

ℓ ℓ

𝑓

Here we label the faces in order to better describe the interpretation of
a map Δ2[3] → 𝐴. Its 0th face, which is itself an admissible simplex
Δ1[2], witnesses that the edge {13} is a composite of the edges {12} and
{23}. Note that because the 0th face is thin, its 1st edge is interpreted as
a composite 𝑘𝑔 of 𝑔 and 𝑘, which is needed so that the boundary of the
2-cell appearing in the 2nd face agrees with the boundary of the pasted
composite of 𝛽 and 𝛼. On account of this boundary condition and the
thin 3-simplex, we interpret the 2nd face as the pasted composite of the
1st and 3rd faces depicted on the right.

The admissible simplex Δ0[3] has both its 2nd and 3rd faces marked,
as well as the top dimensional 3-simplex, and the edge {01}. Dually,
Δ3[3] has its 0th and 1st faces marked, as well as the top dimensional
3-simplex, and the edge {23}.

Δ0[3] ≔

1 2 1 2

0 3 0 3

𝑓𝑒−1

𝑔
𝛼⇑ ≃

𝑓𝑒−1

ℎ𝑒−1

𝛼𝑒−1⇑≃ 𝑔∼𝑒

≃

𝑓

ℎ ℎ

∼𝑒

A map Δ0[3] → 𝐴 is interpreted as witnessing an equivalence between
the pair of nonthin 2-simplices occupying the 0th and 1st faces, respec-
tively.

Definition D.1.9. A complicial set is a marked simplicial set 𝐴 that admits
extensions along the elementary marked anodyne extensions, which are given
by the following two sets of maps:
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(i) The complicial horn extensions

Λ𝑘[𝑛] 𝐴

Δ𝑘[𝑛]
𝑟

for 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛 (D.1.10)

are regular inclusions of 𝑘-admissible 𝑛-horns. An inner admissible
𝑛-horn parametrizes “admissible composition” of a pair of (𝑛 − 1)-sim-
plices. The extension defines a composite (𝑛 − 1)-simplex together with
a thin 𝑛-simplex witness.

(ii) The complicial thinness extensions

Δ𝑘[𝑛]′ 𝐴

Δ𝑘[𝑛]″

for 𝑛 ≥ 2, 0 ≤ 𝑘 ≤ 𝑛 (D.1.11)

are entire inclusions of two entire supersets of Δ𝑘[𝑛]. The marked sim-
plicial set Δ𝑘[𝑛]′ is obtained from Δ𝑘[𝑛] by also marking the (𝑘 − 1)th
and (𝑘+1)th faces, while Δ𝑘[𝑛]″ has all codimension-one faces marked.
This extension problem demands that whenever the composable pair of
simplices in an admissible horn are thin, then so is any composite.

Example D.1.12 (complicial horn extensions). ForΛ2[4] ↪𝑟 Δ2[4] the nonthin
codimension-one faces in the horn define the two 3-simplices with a common
face displayed on the left, while their composite is a 3-simplex as displayed on
the right.

1

2

0 4

3

1

0 4

3

It makes sense to interpret the right hand simplex, the 2nd face of the 2-admis-
sible 4-simplex, as a composite of the 3rd and 1st faces because the following
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simplices are thin:

2

1 3

≃

1

0 3

2

2

1 4

3

We refer to the maps that are cellularly generated by the elementary marked
anodyne extensions as marked anodyne extensions. For instance, by a mild
extension of the argument that solves Exercise 1.1.v:

Lemma D.1.13. Either inclusion 𝟚♯ ↪ 𝕀♯ of the marked 1-simplex into the
maximally marked isomorphism is an marked anodyne extension, as is the
injection 𝟙 ↪ 𝕀♯.

Proof Exercise D.1.iii.

Definition D.1.14. A map of marked simplicial sets is a complicial isofibra-
tion if it has the right lifting property with respect to the elementary marked
anodyne extensions and if its domain and codomain are complicial sets.

By Exercise D.1.iv, a marked map between complicial sets is a complicial
isofibration if and only if it lifts against the complicial horn extensions – the
complicial thinness extensions come for free. By Lemma C.2.3, complicial
isofibrations then enjoy the right lifting property against all marked anodyne
extensions. Among the complicial isofibrations are the trivial fibrations, defined
to be those maps of marked simplicial sets that lift against the monomorphisms,
as characterized by Lemma D.1.6.

The original meaning of “complicial sets” referred to a particular variety that
we now call strict.

Definition D.1.15. A strict complicial set is a marked simplicial set that
admits unique extensions along the elementary marked anodyne extensions
(D.1.10) and (D.1.11).

In the manuscript [128], Verity proves that the strict complicial sets are
precisely those marked simplicial sets that are Street nerves of strict𝜔-categories,
resolving a conjecture of Roberts and Street. In this manuscript, we primarily
utilize marked simplicial sets to streamline the proofs of results concerning
isomorphisms in quasi-categories and equivalences between quasi-categories.
We discuss this topic more explicitly in §D.4 and §D.5 after developing some
combinatorial constructions required in the interim.
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Definition D.1.16. A marked simplicial set 𝑋 is 𝑛-trivial if all 𝑟-simplices are
marked for 𝑟 > 𝑛.

The full subcategory of 𝑛-trivial marked simplicial sets is reflective and
coreflective

𝑛-𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+⊥
⊥

trv𝑛

core𝑛

in the category of marked simplicial sets. That is 𝑛-trivialization defines an
idempotent monad on 𝑠𝒮𝑒𝑡+ with unit the entire inclusion 𝑋 ↪𝑒 trv𝑛𝑋 of a
marked simplicial set 𝑋 into the marked simplicial set trv𝑛𝑋 with the same
marked simplices in dimensions 1,… , 𝑛, and with all higher simplices “made
thin.” A complicial set is 𝑛-trivial if this map is an isomorphism.

The 𝑛-core core𝑛𝑋, defined by restricting to those simplices whose faces
above dimension 𝑛 are all thin in 𝑋, defines an idempotent comonad with counit
the regular inclusion core𝑛𝑋 ↪𝑟 𝑋. Again, a complicial set is 𝑛-trivial just
when this map is an equivalence. As is always the case for a monad–comonad
pair arising in this way, these functors are adjoints: trv𝑛 ⊣ core𝑛.

The inclusions of the subcategories of 𝑛-trivial marked simplicial sets have
adjoints

𝑠𝒮𝑒𝑡 0-𝑠𝒮𝑒𝑡+ (𝑛-1)-𝑠𝒮𝑒𝑡+ 𝑛-𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+≃

(−)♯
↪⋯↪ ⊥

⊥

trv𝑛−1

core𝑛−1

↪⋯↪

The 𝑛-core of a complicial set is a complicial set, but the 𝑛-trivialization functor,
which just marks simplices in the appropriate dimension without changing the
underlying simplicial set, does not necessarily preserve complicial sets (see
Exercise D.1.v).

Remark D.1.17 (the odd dual). Recall that the opposite of a simplicial set 𝑋 is
the simplicial set obtained by reindexing along the involution (−)op∶ 𝚫 → 𝚫
that reverses the ordering in each ordinal. This operation may be extended to
marked simplicial sets in a natural way: marking an 𝑛-simplex in 𝑋op just when
the corresponding 𝑛-simplex in 𝑋 is marked. Note, however, that under Street’s
interpretation of an 𝑛-simplex as encoding an 𝑛-dimensional morphism from
the composite of its odd (𝑛 − 1)-dimensional faces to the composite of its even
(𝑛 − 1)-dimensional faces, this operation does not simply “reverse the direction
of all the cells” in a marked simplicial set. Rather, it reverses the direction of
all the simplices in the odd dimensional cells, while preserving the direction
in all of the even dimensional cells. Thus, we refer to the vertex reordering
construction as defining the odd dual of a marked simplicial set.
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We close with a discussion of the equivalences between complicial sets.

Definition D.1.18 (equivalences of complicial sets). A map 𝑓∶ 𝐴 → 𝐵 be-
tween complicial sets is an equivalence if it extends to the data of a homotopy
equivalence with the marked 1-simplex Δ[1]♯ serving as the interval:3 that is, if
there exist maps 𝑔∶ 𝐵 → 𝐴,

𝐴 𝐵

𝐴 𝐴Δ[1]♯ and 𝐵 𝐵Δ[1]♯

𝐴 𝐵
𝑔𝑓

𝛼

ev0

ev1

𝛽

𝑓𝑔 ev0

ev1

The data of an equivalence of complicial sets transposes to define an instance
of a more general notion of “marked homotopy equivalence,” for which we drop
the requirement that the marked simplicial sets are complicial sets.

Definition D.1.19. A marked homotopy between a pair of maps 𝑓, 𝑔∶ 𝑋 → 𝑌
is given by a map 𝛼∶ 𝑋 ×Δ[1]♯ → 𝑌 that restricts along the endpoint inclusions
𝑋 + 𝑋 ↪𝑟 𝑋 × Δ[1]♯ to the maps 𝑓 and 𝑔, respectively. In the case where 𝑋
and 𝑌 are minimally marked simplicial sets, a map 𝑋 × Δ[1] → 𝑌 extends to
a map 𝑋 × Δ[1]♯ → 𝑌 just when for each 0-simplex 𝑥 ∈ 𝑋, the 1-simplex
(𝑥𝜎0, id[1]) ∈ 𝑋 × Δ[1]♯ maps to a degenerate and hence marked 1-simplex of
𝑌.4

A marked homotopy equivalence consists of:

• a pair of marked maps 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 and
• a pair of marked homotopies 𝛼∶ 𝑋 × Δ[1]♯ → 𝑋 and 𝛽∶ 𝑌 × Δ[1]♯ → 𝑌

between id𝑋 and 𝑔𝑓 and 𝑓𝑔 and id𝑌, respectively.

When 𝑋 and 𝑌 are complicial sets, marked homotopies can be reversed and
composed. Even when this is not the case, we permit ourselves the reverse
the direction of the marked homotopies that comprise a marked homotopy
equivalence without comment.

Digression D.1.20 (the Verity model structure for complicial sets). The cate-
gory of marked simplicial sets bears a cartesian closed, cofibrantly generated
3 Essentially by Lemma D.1.13 equivalences of complicial sets could be defined using the marked

homotopy coherent isomorphism 𝕀♯ instead (see Corollary D.3.13). But one of the advantages of
the complicial sets model of higher categories is that the correct notion of equivalence can be
defined with the simpler data of the marked 1-simplex.

4 The cartesian product of marked simplicial sets is described in more detail in Proposition D.3.3.



D.2 The Join and Slice Constructions 631

model structure whose fibrant objects are exactly the complicial sets and whose
cofibrations are the monomorphisms [129, §6.2-4]. The fibrations and weak
equivalences between fibrant objects are precisely the classes of complicial isofi-
brations and equivalences defined above. In the following sections, we verify
many of these properties for the category of fibrant objects directly, leaving only
the verification of the actual model structure, which follows from Jeff Smith’s
theorem, to the literature.

Exercises
Exercise D.1.i. Prove Lemma D.1.6.

Exercise D.1.ii. Prove that a maximally marked simplicial set defines a com-
plicial set if and only if the underlying simplicial set is a Kan complex.

Exercise D.1.iii. Prove Lemma D.1.13.

Exercise D.1.iv. Let 𝑓∶ 𝐴 → 𝐵 be any map of marked simplicial sets whose
domain 𝐴 is a complicial set. Prove that 𝑓 has the (unique) right lifting property
against the complicial thinness extensions.

Exercise D.1.v.

(i) Prove that the 𝑛-core of a complicial set is a complicial set.
(ii) Find an example of a complicial set whose 𝑛-trivialization for some 𝑛 is

no longer a complicial set.

D.2 The Join and Slice Constructions

In this section, we revisit Joyal’s join and slice constructions in considerably
more detail than given in Definition 4.2.4 and discuss their extension to marked
simplicial sets. We prove that Leibniz joins of monomorphisms and various
classes of anodyne maps again define monomorphisms of the same type. The
combinatorics are slightly easier if we work with augmented simplicial sets in
place of ordinary simplicial sets, an approach that follows the original definition
of the simplicial join by Ehlers and Porter [40].

Definition D.2.1 (ordinal sum). The algebraists’ skeletal category 𝚫+ of finite
ordinals and order-preserving maps – with objects [𝑛] = {0 ≤ 1 ≤ ⋯ ≤ 𝑛} and
[−1] = ∅ – supports a strict (nonsymmetric) monoidal structure (𝚫+,⊕, [−1])
in which ⊕ denotes the ordinal sum defined
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• for objects [𝑛], [𝑚] ∈ 𝚫+ by [𝑛] ⊕ [𝑚] ≔ [𝑛 + 1 + 𝑚],
• for arrows 𝛼∶ [𝑛] → [𝑛′], 𝛽∶ [𝑚] → [𝑚′] by 𝛼 ⊕ 𝛽∶ [𝑛 + 1 + 𝑚] →
[𝑛′ + 1 +𝑚′] where

𝛼 ⊕ 𝛽(𝑖) = {
𝛼(𝑖) if 𝑖 ≤ 𝑛,
𝛽(𝑖 − 𝑛 − 1) + 𝑛′ + 1 otherwise.

By Day convolution [33], the join bifunctor ⊕∶ 𝚫+ × 𝚫+ → 𝚫+ extends to
a (nonsymmetric) monoidal closed structure

(𝑠𝒮𝑒𝑡+, ⋆, Δ[−1], dec𝑙, dec𝑟)

on the category of augmented simplicial sets 𝑠𝒮𝑒𝑡+ ≔ 𝒮𝑒𝑡𝚫
op
+ .

Definition D.2.2 (join of augmented simplicial sets). The join 𝑋 ⋆ 𝑌 of aug-
mented simplicial sets 𝑋 and 𝑌 may be described explicitly as follows:

• Its simplices are pairs (𝑥, 𝑦) ∈ (𝑋 ⋆ 𝑌)𝑟+1+𝑠 with 𝑥 ∈ 𝑋𝑟, 𝑦 ∈ 𝑌𝑠.
• If (𝑥, 𝑦) is a simplex of 𝑋 ⋆ 𝑌 with 𝑥 ∈ 𝑋𝑟 and 𝑦 ∈ 𝑌𝑠 and 𝛼∶ [𝑛] →
[𝑟+1+𝑠] is a simplicial operator in𝚫+, then 𝛼may be uniquely decomposed
as 𝛼 = 𝛼1 ⊕ 𝛼2 with 𝛼1∶ [𝑛1] → [𝑟] and 𝛼2∶ [𝑛2] → [𝑠], and (𝑥, 𝑦) ⋅ 𝛼 ≔
(𝑥 ⋅ 𝛼1, 𝑦 ⋅ 𝛼2).

Note by construction that Δ[𝑛] ⋆ Δ[𝑚] ≅ Δ[𝑛 + 1 + 𝑚], since [𝑛] ⊕ [𝑚] =
[𝑛 + 1 + 𝑚].5

Note that Δ[−1], the marked simplicial set with a single −1-simplex and no
other simplices, is a two-sided unit for the join bifunctor.

Definition D.2.3 (décalage of augmented simplicial sets). The closures dec𝑙
and dec𝑟, known as the left and right décalage constructions, respectively, are
defined as the parametrized right adjoints to the join:

𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+
𝑋⋆−

⊥
dec𝑙(𝑋,−)

and
−⋆𝑋

⊥
dec𝑟(𝑋,−)

so that there is a two-variable adjunction formed by the bifunctors:

𝑠𝒮𝑒𝑡+ × 𝑠𝒮𝑒𝑡+
−⋆− 𝑠𝒮𝑒𝑡+ ,

𝑠𝒮𝑒𝑡op
+ × 𝑠𝒮𝑒𝑡+

dec𝑙(−,−) ∶ 𝑠𝒮𝑒𝑡+ , 𝑠𝒮𝑒𝑡op
+ × 𝑠𝒮𝑒𝑡+

dec𝑟(−,−) 𝑠𝒮𝑒𝑡+ .
5 A general feature of the Day convolution product is that the Yoneda embedding
よ∶ 𝚫+ ↪ 𝒮𝑒𝑡𝚫

op
+ defines a strong monoidal functor.
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Observation D.2.4 (simplicial sets vs augmented simplicial sets). The evident
functor that forgets the augmentation 𝑈∶ 𝑠𝒮𝑒𝑡+ → 𝑠𝒮𝑒𝑡 admits both left and
right adjoints

𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡𝑈

∗
⊥

𝜋0
⊥

where the left adjoint augments a simplicial set 𝑋with its set of path components
𝜋0𝑋, defined by the coequalizer

𝑋1 𝑋0 𝜋0𝑋
𝛿1

𝛿0

and the right adjoint augments a simplicial set “terminally” by adding a single
−1-simplex. The unit of 𝜋0 ⊣ 𝑈 and counit of 𝑈 ⊣ ∗ are both isomorphisms;
hence either adjoint defines a fully faithful embedding 𝑠𝒮𝑒𝑡 ↪ 𝑠𝒮𝑒𝑡+.

Any augmented simplicial set is canonically a coproduct of its terminally
augmented “components”:

Lemma D.2.5. Let 𝑋 be an augmented simplicial set.

(i) For each 𝑖 ∈ 𝑋−1, the subset 𝑋⟨𝑖⟩ comprised of those simplices in any
dimension whose −1-simplex face is 𝑖 forms a terminally augmented
simplicial subset of 𝑋.

(ii) The disjoint union ⨿𝑖∈𝑋−1𝑋⟨𝑖⟩ of these components is isomorphic to 𝑋.

Proof Exercise D.2.i.

Definition D.2.6 (join of simplicial sets). By convention, the join of a pair of
simplicial sets is defined to be the underlying simplicial set of the join of the
trivially augmented simplicial sets. Thus, the join bifunctor is the composite

𝑠𝒮𝑒𝑡 × 𝑠𝒮𝑒𝑡 𝑠𝒮𝑒𝑡

𝑠𝒮𝑒𝑡+ × 𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+

∗×∗

−⋆−

−⋆−

𝑈

Explicitly, 𝑛-simplices of 𝑋 ⋆ 𝑌 are pairs comprised of a 𝑗-simplex of 𝑋 and a
𝑘-simplex of 𝑌 where 𝑗 + 𝑘 = 𝑛 − 1, where in the case 𝑗 = −1 such a “pair”
consists of a single 𝑛-simplex of 𝑌 and in the case 𝑘 = −1 such a “pair” consists
of a single 𝑛-simplex of 𝑋. This recovers Definition 4.2.4.
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As observed in Definition 4.2.4, the join of simplicial sets 𝑋 and 𝑌 admits
canonical embeddings

𝑋 𝑋 ⋆ 𝑌 𝑌

which can be understood as the maps obtained by applying 𝑋 ⋆ − or − ⋆ 𝑌
respectively to the maps Δ[−1] → 𝑌 and Δ[−1] → 𝑋 in 𝑠𝒮𝑒𝑡+ that pick out the
unique −1-simplices in the trivial augmentations.

Lemma D.2.7.

(i) The join bifunctor − ⋆ −∶ 𝑠𝒮𝑒𝑡 × 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 preserves connected
colimits in each variable.

(ii) For any simplicial set 𝑋, the join functors

𝑠𝒮𝑒𝑡 𝑋⋆− 𝑋/𝑠𝒮𝑒𝑡 and 𝑠𝒮𝑒𝑡 −⋆𝑋 𝑋/𝑠𝒮𝑒𝑡

preserve all colimits.

Proof In Definition D.2.6, the join of simplicial sets is defined as the composite
of three functors, two of which possess right adjoints and hence preserve all
colimits. The third functor ∗∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡+ does not possess a right adjoint
but nevertheless preserves connected colimits as is clear from the following
definition: an indexing 1-category 𝐽 is connected just when the colimit of the
constant 𝐽-indexed diagram valued at the singleton set is a singleton. This proves
(i).

Now the forgetful functor 𝑋/𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 strictly creates connected colimits
[104, 3.3.8], so the join functors of (ii) preserve connected colimits. Arbitrary
colimits may be built from connected colimits and coproducts, so to prove
(ii) it remains only to argue that these functors preserve coproducts. While
𝑋 ⋆ (⨿𝑖𝑌𝑖) ≇ ⨿𝑖(𝑋 ⋆ 𝑌𝑖) if the latter coproduct is interpreted in 𝑠𝒮𝑒𝑡, it can
be directly verified that 𝑋 ⋆ (⨿𝑖𝑌𝑖) is the quotient of ⨿𝑖(𝑋 ⋆ 𝑌𝑖) modulo the
identification of the images of each inclusion 𝑋 ↪ 𝑋 ⋆ 𝑌𝑖 with a single copy of
𝑋, which is exactly the construction of the coproduct in the category 𝑋/𝑠𝒮𝑒𝑡.

Definition D.2.8 (slice of simplicial sets). The categories 𝑠𝒮𝑒𝑡 and 𝑋/𝑠𝒮𝑒𝑡 are
locally presentable, so the cocontinuous functors of Lemma D.2.7(ii) have right
adjoints (see [1, 1.57]) the values of which at 𝑓∶ 𝑋 → 𝐴 define Joyal’s sliced
simplicial sets 𝑓/𝐴 and 𝐴/𝑓 characterized by the universal properties described
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in Proposition 4.2.5:

𝑠𝒮𝑒𝑡 𝑋/𝑠𝒮𝑒𝑡
𝑋⋆−

⊥
−/−

{ 𝑌 𝑓/𝐴 } ≔ { 𝑋

𝑋 ⋆ 𝑌 𝐴
𝑓 }

𝑠𝒮𝑒𝑡 𝑌/𝑠𝒮𝑒𝑡
−⋆𝑌

⊥
−/−

{ 𝑋 𝐴/𝑔 } ≔ { 𝑌

𝑋 ⋆ 𝑌 𝐴
𝑔 } .

We think of the slice 𝑓/𝐴 as being the simplicial set of cones under the
diagram 𝑓 and we think of the dual slice 𝐴/𝑓 as being the simplicial set of cones
over the diagram 𝑓. This terminology is reconciled with the terminology of
Definition 4.2.1 in Proposition D.6.4. We can also recover these sliced simplicial
sets from the décalage construction of Definition D.2.3 via Lemma D.2.5:

Lemma D.2.9. For any simplicial map 𝑓∶ 𝑋 → 𝐴, the simplicial sets 𝑓/𝐴 and
𝐴/𝑓 are the terminally augmented components of dec𝑙(𝑋, 𝐴) and dec𝑟(𝑋, 𝐴),
respectively, indexed by the −1-simplex 𝑓∶ 𝑋 → 𝐴.

Proof We identify simplicial sets 𝑋 and 𝐴 with their terminally augmented
simplicial sets. Recall that Δ[−1] is the monoidal unit for the join bifunctor on
𝑠𝒮𝑒𝑡+. Consequently, by adjunction, maps Δ[−1] → dec𝑙(𝑋, 𝐴) or Δ[−1] →
dec𝑟(𝑋, 𝐴) correspond to maps 𝑋 → 𝐴. For another terminally augmented
simplicial set 𝑌, transposing across the adjunction of Definition D.2.3 provides
a correspondence:

{
𝑋 ⋆ Δ[−1] ≅ 𝑋

𝑋 ⋆ 𝑌 𝐴
𝑋⋆! 𝑓 } ≅

⎧

⎨
⎩

Δ[−1]

𝑌 dec𝑙(𝑋, 𝐴)
! 𝑓

⎫

⎬
⎭

which shows that the simplicial subset of dec𝑙(𝑋, 𝐴) comprised of those simpli-
ces whose −1-simplex face is 𝑓 has the universal property that defines 𝑓/𝐴. The
dual argument proves that the simplicial subset of dec𝑟(𝑋, 𝐴) comprised of those
simplices whose−1-simplex face is 𝑓 has the universal property that defines𝐴/𝑓.
In other words, these décalages admit the following canonical decompositions
as disjoint unions of (terminally augmented) slices:

dec𝑟(𝑋, 𝐴) = ∐
𝑓∶ 𝑋→𝐴

𝐴/𝑓 dec𝑙(𝑋, 𝐴) = ∐
𝑓∶ 𝑋→𝐴

𝑓/𝐴

Definition D.2.10 ((left-/right-/inner-)anodyne extensions).

• The set of horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛
cellularly generates the anodyne extensions.



636 The Combinatorics of (Marked) Simplicial Sets

• The set of left horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 ≤ 𝑘 < 𝑛
cellularly generates the left anodyne extensions.

• The set of right horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 < 𝑘 ≤ 𝑛
cellularly generates the right anodyne extensions.

• The set of inner horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛
cellularly generates the inner anodyne extensions.

We refer to the right classes that lift against these maps as Kan, left, right,
and inner fibrations, respectively. By an easy direct calculation:

Lemma D.2.11. The Leibniz join of a horn inclusion and a boundary inclusion
is isomorphic to a single horn inclusion:

(Λ𝑘[𝑛] ↪ Δ[𝑛]) ⋆̂ (𝜕Δ[𝑚] ↪ Δ[𝑚]) ≅ Λ𝑘[𝑛 + 1 + 𝑚] ↪ Δ[𝑛 + 1 + 𝑚]
(𝜕Δ[𝑛] ↪ Δ[𝑛]) ⋆̂ (Λ𝑘[𝑚] ↪ Δ[𝑚]) ≅ Λ𝑛+𝑘+1[𝑛 + 1 + 𝑚] ↪ Δ[𝑛 + 1 + 𝑚]

Proof Since the join bifunctor is the Day convolution of the ordinal sum
[𝑛] ⊕ [𝑚] = [𝑛 + 1 + 𝑚], Δ[𝑛] ⋆ Δ[𝑚] ≅ Δ[𝑛 + 1 + 𝑚]. The domain of the
first Leibniz tensor is the simplicial set

Λ𝑘[𝑛] ⋆ Δ[𝑚] ∪
Λ𝑘[𝑛]⋆𝜕Δ[𝑚]

Δ[𝑛] ⋆ 𝜕Δ[𝑚].

We use Definition D.2.2 to identify this with a simplicial subset of Δ[𝑛+1+𝑚].
Since 𝜕Δ[𝑚] contains all the codimension-one faces of Δ[𝑚], the Δ[𝑛]⋆𝜕Δ[𝑚]
component contains the 𝑗th face of Δ[𝑛+1+𝑚] for each index 𝑗 > 𝑛. Similarly,
since Λ𝑘[𝑛] contains all codimension-one faces of Δ[𝑛]-except one, the Λ𝑘[𝑛]⋆
Δ[𝑚] component contains the 𝑖th face of Δ[𝑛 + 1 + 𝑚] for each index 𝑖 ≤ 𝑛
except 𝑖 = 𝑘. Thus, we see that only the 𝑘th face and the 𝑛 + 1 +𝑚-simplex are
missing, which allows us to identify the domain of this Leibniz join with the
horn Λ𝑘[𝑛 + 1 + 𝑚].

Consequently:

Corollary D.2.12. If 𝑓∶ 𝑋 → 𝐴 is any simplicial map and 𝐴 is a quasi-cate-
gory, then 𝑓/𝐴 and 𝐴/𝑓 are quasi-categories.

Proof By Lemma D.2.9, to prove that 𝑓/𝐴 is a quasi-category, it suffices to
show that the augmented simplicial set dec𝑙(𝑋, 𝐴) admits fillers for all inner
horns, considered as trivially augmented simplicial sets. For this, it suffices to
solve the transposed lifting problem, and argue that 𝐴 admits extensions along
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the Leibniz join (∅ ↪ 𝑋) ⋆̂ (Λ𝑘[𝑛] ↪ Δ[𝑛]) for all 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛:

Λ𝑘[𝑛] dec𝑙(𝑋, 𝐴) 𝑋 ⋆ Λ𝑘[𝑛] 𝐴

Δ[𝑛] 𝑋 ⋆ Δ[𝑛]

↭

By Lemma C.5.9, the inclusion ∅ ↪ 𝑋 is cellularly generated by the inclusions
𝜕Δ[𝑚] ↪ Δ[𝑚] for 𝑚 ≥ 0, and by Lemma D.2.11 the Leibniz joins of these
maps with inner horn inclusions are inner anodyne extensions. By Proposition
C.2.9(vii), the Leibniz join (∅ ↪ 𝑋) ⋆̂ (Λ𝑘[𝑛] ↪ Δ[𝑛]) is then inner anodyne,
so the lifting problem above-right admits a solution, which transpose to define a
solution to the lifting problem above-left.

Our next aim is to prove that the slice quasi-categories are equivalent to
the quasi-categories of cones introduced in §4.2. As sketched there, this result
hinges on a suitable equivalence between the join construction and the so-called
“fat join” construction of Definition 4.2.2, which we now extend to augmented
simplicial sets. Recall from Lemma D.2.5 that an augmented simplicial set
𝑋 canonically decomposes into a coproduct 𝑋 ≅ ⨿𝑖∈𝑋−1𝑋⟨𝑖⟩ of terminally
augmented simplicial sets, indexed by the set of −1-simplices.

Definition D.2.13 (fat join and décalage of augmented simplicial sets). For
augmented simplicial sets 𝑋 ≅ ⨿𝑖∈𝑋−1𝑋⟨𝑖⟩ and 𝑌 ≅ ⨿𝑗∈𝑌−1𝑌⟨𝑗⟩ their fat join is
constructed by the pushout:

(𝑋 × 𝑌) ⊔ (𝑋 × 𝑌) (𝑋 × 𝑌−1) ⊔ (𝑋−1 × 𝑌)

𝑋 × 𝟚 × 𝑌 𝑋 ⋄ 𝑌

𝜋𝑋⊔𝜋𝑌

⌜
𝑋⋄𝑌 ≔ ∐

(𝑖,𝑗)∈𝑋−1×𝑌−1

𝑋⟨𝑖⟩⋄𝑌⟨𝑗⟩

where 𝑋⟨𝑖⟩ ⋄ 𝑌⟨𝑗⟩ is the terminally augmented simplicial set defined by the fat
join of Definition 4.2.2. This construction is arranged so that the bifunctor
− ⋄ −∶ 𝑠𝒮𝑒𝑡+ × 𝑠𝒮𝑒𝑡+ → 𝑠𝒮𝑒𝑡+ preserves all colimits in each variable, not
simply the connected ones preserved by the bifunctor−⋄−∶ 𝑠𝒮𝑒𝑡×𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡.

Explicitly, the set of 𝑛-simplices (𝑋 ⋄ 𝑌)𝑛 is the quotient of the set 𝑋𝑛 ×
𝚫([𝑛], [1]) × 𝑌𝑛 of 𝑛-simplices of 𝑋 × 𝟚 × 𝑌 modulo the relation that identifies
triples

• (𝑥, 0, 𝑦) ∼ (𝑥, 0, 𝑦′) where 0∶ [𝑛] → [1] is the constant operator and 𝑦 and
𝑦′ are in the same component of 𝑌 ≅ ⊔𝑗∈𝑌−1𝑌⟨𝑗⟩ and

• (𝑥, 1, 𝑦) ∼ (𝑥′, 1, 𝑦) where 1∶ [𝑛] → [1] is the constant operator and 𝑥 and
𝑥′ are in the same component of 𝑋 ≅ ⊔𝑖∈𝑋−1𝑋⟨𝑖⟩.
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By cocontinuity and the adjoint functor theorems, the fat join bifunctor on
𝑠𝒮𝑒𝑡+ has both left and right closures fatdec𝑙(𝑋, 𝐴) and fatdec𝑟(𝑋, 𝐴), called
left and right fat décalage, respectively, whose handedness we fix by declaring
that if 𝑋 is an augmented simplicial set then 𝑋 ⋄− ⊣ fatdec𝑙(𝑋, −) and −⋄𝑋 ⊣
fatdec𝑟(𝑋, −).

There is a canonical comparison map from the fat join to the join as previewed
in the discussion surrounding Proposition 4.2.7.

Lemma D.2.14. There exists a canonical map of augmented simplicial sets

𝑠𝑋,𝑌∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌

natural in 𝑋 and 𝑌 that in particular defines a natural transformation

𝑠𝑛,𝑚∶ Δ[𝑛] ⋄ Δ[𝑚] → Δ[𝑛] ⋆ Δ[𝑚] ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+

that is an isomorphism6 if 𝑛 or 𝑚 equals −1 and otherwise arises as a quotient
of the map defined by its order-preserving action on vertices:

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛 + 1 + 𝑚]

(𝑖, 0, 𝑘) 𝑖
(𝑖, 1, 𝑘) 𝑘 + 𝑛 + 1

̄𝑠𝑛,𝑚

Note that ̄𝑠𝑛,𝑚 takes simplices related under the congruence described in Def-
inition D.2.13 to the same simplex and thus induces a unique map 𝑠𝑛,𝑚∶ Δ[𝑛] ⋄
Δ[𝑚] → Δ[𝑛] ⋆ Δ[𝑚] on the quotient simplicial set. In the proof, we give a
general construction of the map 𝑠𝑋,𝑌 that can be shown to coincide with this
description in the case where 𝑋 and 𝑌 are standard simplices.

Proof Identifying the set 𝑋−1 with the augmented simplicial set ⨿𝑋−1Δ[−1],
the Yoneda lemma supplies a canonical map 𝑋−1 → 𝑋 of augmented simplicial
sets, which gives rise to a canonical map

(𝑋 × 𝑌) ⊔ (𝑋 × 𝑌) (𝑋 × 𝑌−1) ⊔ (𝑋−1 × 𝑌)

𝑋 × 𝟚 × 𝑌 𝑋 ⋄ 𝑌 𝑋 ⋆ 𝑌

𝟚

𝜋⊔𝜋

⌜

𝜋

𝑠𝑋,𝑌

(D.2.15)
Note that the fibers of both𝑋⋄𝑌 and𝑋⋆𝑌 over the endpoints 0, 1 of 𝟚 are𝑋×𝑌−1
6 Note that 𝑋 ⋄ Δ[−1] ≅ 𝑋 ⋆ Δ[−1] ≅ 𝑋 ≅ Δ[−1] ⋄ 𝑋 ≅ Δ[−1] ⋆ 𝑋.
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and 𝑋−1 × 𝑌, respectively, and the map 𝑠𝑋,𝑌 commutes with the inclusions of
these fibers.

The map 𝑠𝑋,𝑌 is defined on those 𝑛-simplices of 𝑋 ⋄ 𝑌 that map surjectively
onto 𝟚 by sending a triple (𝜎 ∈ 𝑋𝑛, 𝛼∶ [𝑛] ↠ [1], 𝜏 ∈ 𝑌𝑛) representing an 𝑛-
simplex of 𝑋 ⋄𝑌 to the pair (𝜎|{0,…,𝑘} ∈ 𝑋𝑘, 𝜏|{𝑘+1,…,𝑛} ∈ 𝑌𝑛−𝑘−1) representing
an 𝑛-simplex of 𝑋 ⋆ 𝑌, where 𝑘 ∈ [𝑛] is the maximal vertex in 𝛼−1(0).

We now prove that the natural comparison between the fat join of simplices
and the join of simplices defines a component of a marked homotopy equivalence
(see Definition D.1.19).

Proposition D.2.16. For each 𝑛,𝑚 ≥ −1, the map of augmented simplicial
sets

𝑠𝑛,𝑚∶ Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋆ Δ[𝑚] ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+

is a marked homotopy retract equivalence which is an isomorphism in the case
𝑛 = −1 or 𝑚 = −1.

Proof To define a section and left homotopy inverse to 𝑠𝑛,𝑚, we consider a
map determined by its order-preserving action on vertices:

Δ[𝑛 + 1 + 𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]

𝑖 {
(𝑖, 0, 0) if 𝑖 ≤ 𝑛,
(𝑛, 1, 𝑖 − 𝑛 − 1) if 𝑖 > 𝑛.

̄𝑡𝑛,𝑚

and note immediately that that ̄𝑠𝑛,𝑚 ∘ ̄𝑡𝑛,𝑚 = id. The obverse composite is given
by the explicit formula:

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]

(𝑖, 0, 𝑘) (𝑖, 0, 0)
(𝑖, 1, 𝑘) (𝑛, 1, 𝑘)

̄𝑡𝑛,𝑚∘ ̄𝑠𝑛,𝑚

Now we may define a related order-preserving endo-map ̄𝑢𝑛,𝑚 on [𝑛] × [1] ×
[𝑚] by

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]

(𝑖, 0, 𝑘) (𝑖, 0, 0)
(𝑖, 1, 𝑘) (𝑖, 1, 𝑘)

̄ᴂ𝑛,𝑚

which is of interest because in the pointwise ordering on such maps we have
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̄𝑢𝑛,𝑚 ≤ ̄𝑡𝑛,𝑚 ∘ ̄𝑠𝑛,𝑚 and ̄𝑢𝑛,𝑚 ≤ id[𝑛]×[1]×[𝑚], representing simplicial homo-
topies:

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]

(Δ[𝑛] × Δ[1] × Δ[𝑚]) × Δ[1] (Δ[𝑛] × Δ[1] × Δ[𝑚]) × Δ[1]

Δ[𝑛] × Δ[1] × Δ[𝑚]

𝛿0

̄𝑡𝑛,𝑚∘ ̄𝑠𝑛,𝑚

𝛿1 𝛿1

̄ᴂ𝑛,𝑚

𝛿0

idΔ[𝑛]×Δ[1]×Δ[𝑚]
̄ℎ𝑛,𝑚 ̄𝑘𝑛,𝑚

Passing to quotients under the congruence defined in Definition D.2.13, this
induces simplicial maps 𝑡𝑛,𝑚∶ Δ[𝑛]⋆Δ[𝑚] → Δ[𝑛]⋄Δ[𝑚] and 𝑢𝑛,𝑚∶ Δ[𝑛]⋄
Δ[𝑚] → Δ[𝑛] ⋄ Δ[𝑚] so that 𝑠𝑛,𝑚 ∘ 𝑡𝑛,𝑚 = idΔ[𝑛]⋆Δ[𝑚], and simplicial homo-
topies ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 that assemble into a diagram:

Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋄ Δ[𝑚]

(Δ[𝑛] ⋄ Δ[𝑚]) × Δ[1] (Δ[𝑛] ⋄ Δ[𝑚]) × Δ[1]

Δ[𝑛] ⋄ Δ[𝑚]

𝛿0

𝑡𝑛,𝑚∘𝑠𝑛,𝑚

𝛿1 𝛿1

ᵆ𝑛,𝑚

𝛿0

idΔ[𝑛]⋄Δ[𝑚]ℎ𝑛,𝑚 𝑘𝑛,𝑚

To see that the maps ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 define marked homotopies, Definition
D.1.19 tells us that we must verify, for each 0-simplex [𝑖, 𝑗, 𝑘]∼ of Δ[𝑛] ⋄ Δ[𝑚],
that the 1-simplex ([𝑖, 𝑗, 𝑘]∼ ⋅ 𝜎0, id[1]) of (Δ[𝑛] ⋄ Δ[𝑚]) × Δ[1] is mapped by
ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 to degenerate, and thus marked, simplices in Δ[𝑛] ⋄ Δ[𝑚]. We
argue by cases in the index 𝑗. If 𝑗 = 0, then ̄𝑢𝑛,𝑚(𝑖, 0, 𝑘) = (𝑖, 0, 0) ∼ (𝑖, 0, 𝑘) =
̄𝑡𝑛,𝑚 ∘ ̄𝑠𝑛,𝑚(𝑖, 0, 𝑘), so the components of both ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 are degenerate.

If 𝑗 = 1, then ̄𝑢𝑛,𝑚(𝑖, 1, 𝑘) = (𝑖, 1, 𝑘) ∼ (𝑛, 𝑖, 𝑘) = ̄𝑡𝑛,𝑚 ∘ ̄𝑠𝑛,𝑚(𝑖, 1, 𝑘), so again
the components of both ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 are degenerate. Thus, 𝑠𝑛,𝑚 extends to a
marked homotopy retract equivalence with equivalence inverse 𝑡𝑛,𝑚.

The marked simplicial homotopy equivalence of Proposition D.2.16 witnesses
a pointwise weak equivalence in a suitable sense between two diagrams in
𝑠𝒮𝑒𝑡𝚫+×𝚫+

+ considered in Lemma D.2.14. This is the key ingredient in the proof
that the canonical map of augmented simplicial sets 𝑠𝑋,𝑌∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌
is also a weak equivalence in a suitable sense, but this conclusion requires an
exploration of the connection between the homotopy theory of marked simplicial
sets and the homotopy theory of quasi-categories. We make this connection in
§D.4 and then resume this line of reasoning in §D.6.
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We close this section with one final result, a marked analogue of Lemma
D.2.11. The join construction of Definition D.2.6 is extended to marked simpli-
cial sets in [128].

Definition D.2.17 (join of marked simplicial sets). The simplicial join lifts to
a join bifunctor

𝑠𝒮𝑒𝑡+ × 𝑠𝒮𝑒𝑡+ ⋆ 𝑠𝒮𝑒𝑡+

in which a simplex (𝛼, 𝛽)∶ Δ[𝑛] → 𝐴 ⋆ 𝐵, with components 𝛼∶ Δ[𝑘] → 𝐴
and 𝛽∶ Δ[𝑛 − 𝑘 − 1] → 𝐵, is marked in 𝐴 ⋆ 𝐵 if and only if at least one of the
simplices 𝛼 or 𝛽 is marked in 𝐴 or 𝐵.

Lemma D.2.18.

(i) The Leibniz join of a complicial horn extension and a boundary inclusion
is isomorphic to a single complicial horn extension:

(Λ𝑘[𝑛]↪𝑟Δ𝑘[𝑛])⋆̂(𝜕Δ[𝑚]↪𝑟Δ[𝑚]) ≅ Λ𝑘[𝑛+1+𝑚]↪𝑟Δ𝑘[𝑛+1+𝑚]

unless 𝑘 = 𝑛, in which case (Λ𝑛[𝑛] ↪𝑟 Δ𝑛[𝑛]) ⋆̂ (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) is
a pushout of Λ𝑛[𝑛 + 1 + 𝑚] ↪𝑟 Δ𝑛[𝑛 + 1 + 𝑚].

(ii) The Leibniz joins below are complicial thinness extensions

(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) ⋆̂ (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡) ≅
Δ𝑘[𝑛 + 1 + 𝑚]′ ↪𝑒 Δ𝑘[𝑛 + 1 + 𝑚]″

(Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) ⋆̂ (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) ≅
Δ𝑘[𝑛 + 1 + 𝑚]′ ↪𝑒 Δ𝑘[𝑛 + 1 + 𝑚]″

unless 𝑘 = 𝑛, in which case the Leibniz joins are instead pushouts of
Δ𝑘[𝑛 + 1 + 𝑚]′ ↪𝑒 Δ𝑘[𝑛 + 1 + 𝑚]″, while (Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) ⋆̂
(Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡) is the identity map.

Since the join is antisymmetric – with (𝐴 ⋆ 𝐵)op ≅ 𝐵op ⋆ 𝐴op – the cases
where the left and right maps of each Leibniz join are exchanged are easily
deduced from the cases considered here.

Proof The underlying map of simplicial sets in (i) is identified in Lemma
D.2.11, so it remains only to consider the markings. Similarly, in each of the
three Leibniz joins considered in (ii), the underlying map of simplicial sets is a
Leibniz join of a monomorphism with an identity, and is thus an identity, so it
remains only to consider the markings in the resulting entire inclusion. Since a
simplex in a join of marked simplicial sets is marked if and only if either of its
components are, this description lends itself readily to a case analysis. We leave
the details to Exercise D.2.ii or to [129, 38].
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The slice construction of Definition D.2.8 also extends to marked simplicial
sets. We adopt new notation for this construction because it is not typically
the case that the underlying simplicial set of the marked join is the slice of
corresponding map of underlying simplicial sets.

Lemma D.2.19. For any map of marked simplicial sets 𝑓∶ 𝑋 → 𝐴, there exist
marked simplicial sets 𝑓⫽𝐴 and 𝐴⫽𝑓 characterized by the universal properties

⎧⎪
⎨⎪
⎩

𝑋

𝑋 ⋆ 𝑌 𝐴

𝑓
⎫⎪
⎬⎪
⎭

≅ { 𝑌 𝑓⫽𝐴 }
⎧⎪
⎨⎪
⎩

𝑋

𝑌 ⋆ 𝑋 𝐴

𝑓
⎫⎪
⎬⎪
⎭

≅ { 𝑌 𝐴⫽𝑓 } .

Proof Exercise D.2.iv.

Exercises
Exercise D.2.i. Prove Lemma D.2.5.

Exercise D.2.ii ([129, 38]). Finish the proof of Lemma D.2.18.

Exercise D.2.iii. Generalize the last case of Lemma D.2.18(ii) by showing that
the Leibniz join of two entire inclusions is an identity.

Exercise D.2.iv. Prove Lemma D.2.19.

D.3 Leibniz Stability of Cartesian Products

We now turn our attention to analogous Leibniz constructions defined with
respect to the cartesian product, which in the context of marked simplicial sets
is called the Gray tensor product in [129]. We warm up with a basic result about
the geometry of the Leibniz product.

Lemma D.3.1. The Leibniz product of any pair of monomorphisms of simplicial
sets is a monomorphism.

Proof Products, pushouts, and monomorphisms in 𝑠𝒮𝑒𝑡 are determined point-
wise in the category of sets, so this result follows from the fact that for monomor-
phisms 𝑆 ↪ 𝑇 and 𝑈 ↪ 𝑉 of sets, the Leibniz product

(𝑆 ↪ 𝑇) ×̂ (𝑈 ↪ 𝑉) ≅ (𝑆 × 𝑉 ∪
𝑆×𝑈

𝑇 × 𝑈 ↪ 𝑇 × 𝑉)

is a monomorphism, which is clear by inspection.
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Remark D.3.2 (why “Leibniz”). The inclusion defined by the Leibniz product
of a pair of simplex boundary inclusions

(𝜕Δ[𝑛] ↪ Δ[𝑛]) ×̂ (𝜕Δ[𝑚] ↪ Δ[𝑚]) ≅
𝜕Δ[𝑛] × Δ[𝑚] ∪

𝜕Δ[𝑛]×𝜕Δ[𝑚]
Δ[𝑛] × 𝜕Δ[𝑚] ↪ Δ[𝑛] × Δ[𝑚]

corresponds geometrically to the inclusion of the boundary 𝜕(Δ[𝑛] × Δ[𝑚]) ↪
Δ[𝑛] × Δ[𝑚] of the prism. The identification

𝜕(Δ[𝑛] × Δ[𝑚]) ≅ 𝜕Δ[𝑛] × Δ[𝑚] ∪
𝜕Δ[𝑛]×𝜕Δ[𝑚]

Δ[𝑛] × 𝜕Δ[𝑚]

is formally similar to various identities that are commonly called “the Leibniz
rule.”

To prove an analogous result for marked simplicial sets, we first require the
following observation:

Proposition D.3.3. The category of marked simplicial sets is cartesian closed
with

• cartesian product defined by marking a simplex in the cartesian product
of the underlying simplicial sets just when both components are marked
simplices

• internal hom 𝑌𝑋 defined to be the simplicial set whose 𝑛-simplices are maps
of marked simplicial sets 𝜎∶ 𝑋 × Δ[𝑛] → 𝑌, where 𝜎 is marked just when
this map extends to a map of marked simplicial sets:

𝑋 × Δ[𝑛] 𝑌

𝑋 × Δ[𝑛]𝑡

𝜍

𝑒
𝜍

Proof It is clear from the universal property of the product and its closure
that the cartesian product and internal hom must be defined in this way if these
objects exist. To verify the adjunction, recall from Proposition D.1.5 that marked
simplicial sets embed as a reflexive full subcategory of a category of presheaves
𝒮𝑒𝑡𝑡𝚫

op
. By Example A.1.4, the category 𝒮𝑒𝑡𝑡𝚫

op
is cartesian closed and moreover

this embedding preserves the products and internal homs as just defined. Now
we conclude that these define the functors of a two-variable adjunction on 𝑠𝒮𝑒𝑡+

by restricting the corresponding natural isomorphisms from 𝒮𝑒𝑡𝑡𝚫
op

to its full
subcategory.

The result of Lemma D.3.1 extends to the marked context. Our proof uses a
simple observation that is also deployed elsewhere.
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Lemma D.3.4. The Leibniz product of any map of marked simplicial sets with
an entire inclusion is an entire inclusion.

Proof By definition the Leibniz product of 𝑓∶ 𝑋 → 𝑌 and 𝑖∶ 𝑈 ↪𝑒 𝑉 is the
induced map of marked simplicial sets

𝑋 × 𝑈 𝑋 × 𝑉

𝑌 × 𝑈 •

𝑌 × 𝑉

𝑒
𝑋×𝑖

𝑓×𝑈

⌜ 𝑓×𝑉

𝑒

𝑒𝑌×𝑖

Note that the forgetful functor (−)0∶ 𝑠𝒮𝑒𝑡+ → 𝑠𝒮𝑒𝑡 preserves products and
pushouts, and recall that a map of marked simplicial sets is entire just when the
underlying map is an isomorphism. Since the product of a simplicial set with an
isomorphism is an isomorphism, the maps𝑋×𝑈 ↪𝑒 𝑋×𝑉 and 𝑌×𝑈 ↪𝑒 𝑌×𝑉
are entire. Since pushouts of isomorphisms are isomorphisms, it follows that
the remaining horizontal map is also entire. Finally, since isomorphisms obey
the 2-of-3 property, the Leibniz product map must also be entire.

Lemma D.3.5. The Leibniz product of two regular inclusions is again a regular
inclusion.

Proof By Lemma D.3.1, the underlying simplicial set of the Leibniz product
of two regular inclusions 𝐴 ↪𝑟 𝐵 and 𝐶 ↪𝑟 𝐷 is the monomorphism

𝐴 × 𝐷 ∪
𝐴×𝐶

𝐵 × 𝐶 𝐵 × 𝐷.

Note, in particular, that the inclusions of the components 𝐴×𝐷 and 𝐵×𝐶 jointly
surject onto the domain of this map. Our task is to show that any 𝑛-simplex in
𝐴 × 𝐷 ∪

𝐴×𝐶
𝐵 × 𝐶 that is marked in 𝐵 × 𝐷 is marked in 𝐴 × 𝐷 ∪

𝐴×𝐶
𝐵 × 𝐶. We

argue by cases and assume without loss of generality that the 𝑛-simplex is in
the image of the inclusion from 𝐵 × 𝐶. In this case, the regularity of the map
𝐵 × 𝐶 ↪𝑟 𝐵 × 𝐷 implies that it is marked in 𝐴 × 𝐷 ∪

𝐴×𝐶
𝐵 × 𝐶 as claimed.

A generic monomorphism of marked simplicial sets is neither regular nor
entire, but the generating monomorphisms of marked simplicial sets have one of
these properties. Thus, by Lemmas D.3.4 and D.3.5, we immediately conclude:

Lemma D.3.6. For any 𝑛,𝑚 ≥ 0, the Leibniz products

(𝜕Δ[𝑛] ↪𝑟 Δ[𝑛])×̂(𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]), (𝜕Δ[𝑛] ↪𝑟 Δ[𝑛])×̂(Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡),
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and (Δ[𝑛] ↪𝑒 Δ[𝑛]𝑡) ×̂ (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡)

are monomorphisms of marked simplicial sets.

As a corollary, we can characterize Leibniz products of arbitrary monomor-
phisms of marked simplicial sets by invoking a very general argument that is
repeated throughout this chapter.

Corollary D.3.7.

(i) The Leibniz product of any pair of monomorphisms of marked simplicial
sets is again a monomorphism.

(ii) The Leibniz exponential of any trivial fibration of marked simplicial sets
with any monomorphism is again a trivial fibration.

Proof In the terminology of Lemma C.2.11, the two statements combine to
assert that the two-variable adjunction defined by the cartesian product and
internal hom is a Leibniz two-variable adjunction with respect to the (mono-
morphism, trivial fibration) weak factorization system. By Remark C.2.12 this
follows from the properties established in Lemmas D.1.6 and D.3.6.

Considerably harder is to show the Leibniz stability of the class of marked
anodyne extensions with the class of marked monomorphisms. We prove a
slightly more specific result that also describes the cases of inner, left, or right
marked anodyne extensions, which restrict the inequalities 0 ≤ 𝑘 ≤ 𝑛 to
0 < 𝑘 < 𝑛, 𝑘 < 𝑛, or 0 < 𝑘, respectively.

Proposition D.3.8. For 𝑛 ≥ 1, 𝑚 ≥ 0, and 0 < 𝑘 ≤ 𝑛 each of the Leibniz
products is a right marked anodyne extension and is an inner marked anodyne
extension if 𝑘 < 𝑛.

(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) ×̂ (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚])
(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) ×̂ (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡)

(Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) ×̂ (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚])
(Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) ×̂ (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡)

On account of the symmetry of the cartesian product, it is immaterial whether
the horn inclusion or the simplex boundary inclusion appears on the left or right.
The proof of this result requires some special notation to describe the cartesian
product of simplices.

Digression D.3.9 (on shuffles). Since Δ[𝑛] is the nerve of the poset [𝑛], an
𝑟-simplex 𝑖∶ Δ[𝑟] → Δ[𝑛] may equally be encoded by the ordered sequence of
vertices 𝑖0 ≤ ⋯ ≤ 𝑖𝑟 ∈ [𝑛] appearing in its image.
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By the universal property of the product, an 𝑟-simplex inΔ[𝑛]×Δ[𝑚] is given
by an 𝑟-simplex 𝑖∶ Δ[𝑟] → Δ[𝑛] and an 𝑟-simplex 𝑗∶ Δ[𝑟] → Δ[𝑚]. Since
Δ[𝑛] × Δ[𝑚] is the nerve of the poset [𝑛] × [𝑚], such simplices correspond
bijectively to ordered sequences of pairs

(𝑖0, 𝑗0) ≤ (𝑖1, 𝑗1) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟) (D.3.10)

with each 𝑖𝑠 ∈ [𝑛] and each 𝑗𝑡 ∈ [𝑚], and is degenerate just when one of these
inequalities is an equality.

The nondegenerate 𝑛 + 𝑚-simplices of the simplicial set Δ[𝑛] × Δ[𝑚] are
called shuffles; these are the simplices of maximal dimension. An 𝑛+𝑚-simplex
(𝑖, 𝑗) defines a shuffle just when 𝑖𝑡 + 𝑗𝑡 = 𝑡 for all 𝑡 ∈ [𝑛 + 𝑚]. If the objects
of [𝑛] × [𝑚] are arranged in a rectangular grid, the shuffles are those maximal-
length nondegenerate paths that start from (0, 0) and end with (𝑛,𝑚), by taking
steps which add one to exactly one coordinate at a time.

The first case of the following proof is an adaptation of an argument of Dugger
and Spivak [36, A.1] to the marked context.

Proof By Lemma D.3.5, the Leibniz product (Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛])×̂(𝜕Δ[𝑚] ↪𝑟
Δ[𝑚]) is the regular inclusion

Λ𝑘[𝑛] × Δ[𝑚] ∪
Λ𝑘[𝑛]×𝜕Δ[𝑚]

Δ𝑘[𝑛] × 𝜕Δ[𝑚] 𝑟 Δ
𝑘[𝑛] × Δ[𝑚].

A nondegenerate 𝑟-simplex (D.3.10) ofΔ𝑘[𝑛]×Δ[𝑚] is missing from the domain
of the Leibniz product inclusion just when

• its component {𝑖0,… , 𝑖𝑟} ⊃ [𝑛]\{𝑘} and
• its component {𝑗0,… , 𝑗𝑟} ⊃ [𝑚].

We filter this inclusion as a sequence of regular inclusions

Λ𝑘[𝑛]×Δ[𝑚] ∪
Λ𝑘[𝑛]×𝜕Δ[𝑚]

Δ𝑘[𝑛]×𝜕Δ[𝑚] ≕ 𝑌−1 ↪𝑟 ⋯↪𝑟 𝑌𝑚 = Δ𝑘[𝑛]×Δ[𝑚]

and argue that each 𝑌 𝑡 ↪ 𝑌 𝑡+1 is right or inner marked anodyne, as appropriate.
Starting from 𝑌−1 ≔ Λ𝑘[𝑛] × Δ[𝑚] ∪

Λ𝑘[𝑛]×𝜕Δ[𝑚]
Δ𝑘[𝑛] × 𝜕Δ[𝑚], we define

𝑌 𝑡 to be the smallest regular simplicial subset of Δ𝑘[𝑛] × Δ[𝑚] that contains
𝑌 𝑡−1 together with every simplex (D.3.10) that contains the vertex (𝑘, 𝑡). Since
every missing simplex is a face of a simplex that contains one of the vertices
(𝑘, 0),… , (𝑘,𝑚), it is clear from this description that 𝑌𝑚 = Δ𝑘[𝑛] × Δ[𝑚].

It remains only to analyze the regular inclusions 𝑌 𝑡−1 ↪𝑟 𝑌 𝑡, which we do
by producing another filtration

𝑌 𝑡−1 = 𝑌 𝑡,𝑛−1 ↪𝑟 𝑌 𝑡,𝑛 ↪𝑟 ⋯↪𝑟 𝑌 𝑡,𝑛+𝑚 = 𝑌 𝑡.
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Note that every simplex of Δ𝑘[𝑛] × Δ[𝑚] that contains the vertex (𝑘, 𝑡) and has
dimension 𝑛 − 1 or less is contained in 𝑌−1, so the simplices containing the
vertex (𝑘, 𝑡) that are attached to 𝑌 𝑡−1 to form 𝑌 𝑡 have dimensions between 𝑛 and
𝑛 + 𝑚. With this in mind, we define 𝑌 𝑡,𝑟 to be the smallest regular simplicial
subset of Δ𝑘[𝑛] × Δ[𝑚] containing 𝑌 𝑡,𝑟−1 and all simplices of dimension 𝑟 that
contain the vertex (𝑘, 𝑡). In particular, 𝑌 𝑡,𝑛−1 = 𝑌 𝑡−1 and 𝑌 𝑡,𝑛+𝑚 = 𝑌 𝑡.

We now argue that each regular inclusion in this filtration is a pushout of
a coproduct of complicial horn extensions followed by complicial thinness
extensions

∐
𝜏∈𝑆𝑡,𝑟

Λℓ𝜏[𝑟] 𝑌 𝑡,𝑟−1

∐
𝜏∈𝑆𝑡,𝑟

Δℓ𝜏[𝑟] • ∐
𝜏∈𝑇𝑡,𝑟

Δℓ𝜏[𝑟]′

𝑌 𝑡,𝑟 ∐
𝜏∈𝑇𝑡,𝑟

Δℓ𝜏[𝑟]″

𝑟 ⌜ 𝑟

𝑒 𝑒⌝

indexed by the sets 𝑆𝑡,𝑟 of 𝑟-simplices containing the vertex (𝑘, 𝑡) and not already
present in 𝑌 𝑡,𝑟−1 and 𝑇 𝑡,𝑟 ⊂ 𝑆𝑡,𝑟 defined to be the subset of those 𝑟-simplices 𝜏
so that 𝜏𝛿ℓ𝜏 is marked in Δ𝑘[𝑛] × Δ[𝑚]. Moreover, for each 𝜏 ∈ 𝑆𝑡,𝑟, we will
see that that 0 < ℓ𝜏 and if 𝑘 < 𝑛 then ℓ𝜏 < 𝑟. This will show that the Leibniz
product is a right marked anodyne extension, which is an inner marked anodyne
extension if 𝑘 < 𝑛.

To see this, let 𝜏 ∈ 𝑆𝑡,𝑟 be the 𝑟-simplex

(𝑖0, 𝑗0) ≤ ⋯ ≤ (𝑖ℓ𝜏, 𝑗ℓ𝜏) = (𝑘, 𝑡) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟)

containing (𝑘, 𝑡) as its ℓ𝜏th vertex; for readability we write ℓ for ℓ𝜏 going forward.
Since the set {𝑖0,… , 𝑖𝑟} ⊃ [𝑛] and 0 < 𝑘 we must also have 0 < ℓ, and if 𝑘 < 𝑛,
we must also have ℓ < 𝑟. We will argue that:

• Each face of 𝜏 except the ℓth is contained in 𝑌 𝑡,𝑟−1.
• The ℓth face of 𝜏 is not in 𝑌 𝑡,𝑟−1.
• The 𝑟-simplex 𝜏 is a ℓ-admissible simplex of Δ𝑘[𝑛] × Δ[𝑚].
• If 𝜏𝛿ℓ is marked in Δ𝑘[𝑛] × Δ[𝑚] then so is 𝜏𝛿ℓ−1 and 𝜏𝛿ℓ+1 (in the case
ℓ < 𝑟).

Thus, the union of 𝜏 with 𝑌 𝑡,𝑟−1 may be formed as a pushout of a complicial
horn extension Λℓ[𝑟] ↪𝑟 Δℓ[𝑟] as claimed.

For the first item, note that each codimension-one face except for 𝜏𝛿ℓ has
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dimension 𝑟 − 1 and contains the vertex (𝑘, 𝑡) and thus lies in 𝑌 𝑡,𝑟−1 as claimed.
To see that 𝑌 𝑡,𝑟−1 does not also contain the face 𝜏𝛿ℓ, we consider the vertex
(𝑖ℓ−1, 𝑗ℓ−1). If 𝑖ℓ−1 = 𝑘 then by nondegeneracy, 𝑗ℓ−1 < 𝑡, in which case we
would have 𝜏 ∈ 𝑌 𝑡−1, a contradiction. Thus 𝑖ℓ−1 < 𝑘. Now if 𝑖ℓ−1 ≤ 𝑘−2, then
we would have 𝜏 ∈ 𝑌−1, again a contradiction. So it must be that 𝑖ℓ−1 = 𝑘 − 1.
Now if 𝑗ℓ−1 < 𝑡, then 𝜏 would be a face of the 𝑟 + 1-dimensional simplex

(𝑖0, 𝑗0) ≤ ⋯ ≤ (𝑖ℓ−1, 𝑗ℓ−1) ≤ (𝑘, 𝑡 − 1) ≤ (𝑖ℓ, 𝑗ℓ) = (𝑘, 𝑡) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟)

which is contained in 𝑌 𝑡−1, a contradiction. So we conclude that (𝑖ℓ−1, 𝑗ℓ−1) =
(𝑘 − 1, 𝑡).

From this computation we see that the vertices of 𝜏𝛿ℓ satisfy {𝑖0,… , 𝑖ℓ−1 =
𝑘 − 1, 𝑖ℓ+1,… , 𝑖𝑟} ⊃ [𝑛]\{𝑘} and {𝑗0,… , 𝑗ℓ−1, 𝑗ℓ+1,… , 𝑗𝑟} ⊃ [𝑚]. Thus, 𝜏𝛿ℓ is
not in 𝑌−1. Furthermore, 𝜏𝛿ℓ was not added in along the way to 𝑌 𝑡,𝑟−1, since
it is not a face of a simplex containing the vertex (𝑘, 𝑠) for any 𝑠 < 𝑡. This
completes our second task.

We have shown that it is possible to attach 𝜏 to 𝑌 𝑡,𝑟−1 along with its ℓth face
by filling a suitable horn. It remains only to argue that the horn Λℓ[𝑟] → 𝑌 𝑡,𝑟−1

along which we are attaching 𝜏 is admissible. Since the inclusion 𝑌 𝑡,𝑟−1 ↪𝑟
Δ𝑘[𝑛] × Δ[𝑚] is regular it suffices to show that each simplex containing the
vertices (𝑖ℓ−1, 𝑗ℓ−1), (𝑖ℓ, 𝑗ℓ), and (𝑖ℓ+1, 𝑗ℓ+1) – or just the first two of these
in the case ℓ = 𝑟 – is marked in Δ𝑘[𝑛] × Δ[𝑚]. We have seen above that
(𝑖ℓ−1, 𝑗ℓ−1) = (𝑘−1, 𝑡) and (𝑖ℓ, 𝑗ℓ) = (𝑘, 𝑡). In the case ℓ < 𝑟, since 𝜏 is missing
from 𝑌−1, 𝑖ℓ+1 must equal 𝑘 or 𝑘 + 1. But now the component in Δ[𝑚] of this
simplex is degenerate, containing the sequence 𝑡 ≤ 𝑡, while the component in
Δ𝑘[𝑛] is either degenerate, contains the sequence 𝑘−1 ≤ 𝑘 ≤ 𝑘+1, or contains
the sequence 𝑘 − 1 ≤ 𝑘 in the case ℓ = 𝑟 in which case 𝑘 = 𝑛. Thus both
components are marked simplices, which means that their product is marked in
Δ𝑘[𝑛] × Δ[𝑚] as required.

Finally, we must argue that the simplices attached by the pushout contain all
the markings present in the regular subset 𝑌 𝑡,𝑟 ↪𝑟 Δ𝑘[𝑛] × Δ[𝑚]. The only
simplices present in 𝑌 𝑡,𝑟 but not 𝑌 𝑡,𝑟−1 are in dimensions 𝑟 and 𝑟−1. The newly
attached 𝑟-simplices are all marked, so we need only concern ourselves with the
(𝑟 − 1)-simplex

(𝑖0, 𝑗0) ≤ ⋯ ≤ (𝑖ℓ−1, 𝑗ℓ−1) = (𝑘 − 1, 𝑡) ≤ (𝑖ℓ+1, 𝑗ℓ+1) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟)

arising as the ℓ-face for each 𝜏 ∈ 𝑆𝑡,𝑟 when this simplex is marked in Δ𝑘[𝑛] ×
Δ[𝑚].

There are two cases depending on whether 𝑖ℓ+1 = 𝑘 + 1 or 𝑖ℓ+1 = 𝑘. In the
former case, the fact that this simplex is marked tells us that there is a duplication
present in the sequence 𝑖0 ≤ ⋯ ≤ 𝑖ℓ𝜏−1 ≤ 𝑖ℓ𝜏+1 ≤ ⋯ ≤ 𝑖𝑟 and also in the
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sequence 𝑗0 ≤ ⋯ ≤ 𝑗ℓ𝜏−1 ≤ 𝑗ℓ𝜏+1 ≤ … ≤ 𝑗𝑟. When we substitute 𝑖ℓ = 𝑘 in the
first sequence for 𝑖ℓ−1 or 𝑖ℓ+1 either the duplication remains or we now have the
subsequence 𝑘 − 1 ≤ 𝑘 ≤ 𝑘 + 1. Either way, this tells us that the component
of the faces 𝜏𝛿ℓ−1 and 𝜏𝛿ℓ+1 is marked in Δ𝑘[𝑛]. Similarly, when we substitute
𝑗ℓ = 𝑡 for 𝑗ℓ−1 = 𝑡, the sequence is unchanged, and when we substitute for 𝑗ℓ+1
our sequence now contains a duplication 𝑡 ≤ 𝑡. Either way, this tells us that
the component of the faces 𝜏𝛿ℓ−1 and 𝜏𝛿ℓ+1 is marked in Δ[𝑚]. In conclusion,
the simplex 𝜏∶ Δℓ[𝑟] → Δ𝑘[𝑛] × Δ[𝑚] extends along Δ𝑘[𝑛] ↪𝑒 Δ𝑘[𝑛]′, so we
obtain the desired marking of its ℓth face by extending along the entire inclusion
Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″ included in the second pushout.

In the case where 𝑖ℓ+1 = 𝑘, the sequence of vertices for 𝜏𝛿ℓ−1 contains 𝑘 ≤ 𝑘
in its first component and the same sequence of vertices as 𝜏𝛿ℓ in its second
component. Thus, 𝜏𝛿ℓ−1 is marked. The sequence of vertices for 𝜏𝛿ℓ+1 contains
𝑘 − 1 ≤ 𝑘 ≤ 𝑘 + 1 in its first component and 𝑡 ≤ 𝑡 in its second component.
Thus, 𝜏𝛿ℓ+1 is marked, and once more we obtain the desired marking of its
ℓth face by extending along the entire inclusion Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″ included in
the second pushout. This completes the proof that the first Leibniz product is a
marked anodyne extension.

By Lemma D.3.4, the remaining three Leibniz products are entire inclu-
sions, so all that is required is to verify that the additional markings present
in the codomains are the results of complicial thinness extensions. We treat
simultaneously the two cases involving Leibniz products

(Δ𝑘[𝑛]′ 𝑒 Δ
𝑘[𝑛]″) ×̂ (𝐴 𝐵)

of a complicial horn extension with a marked monomorphism. The only marked
simplex of Δ𝑘[𝑛]″ that is not marked in Δ𝑘[𝑛]′ is the face 𝛿𝑘∶ Δ[𝑛 − 1]𝑡 →
Δ𝑘[𝑛]″, which implies that we have a pullback and pushout square

∐
𝜏∈𝑆

Δ[𝑛 − 1] Δ𝑘[𝑛]′ × 𝐵 ∪
Δ𝑘[𝑛]′×𝐴

Δ𝑘[𝑛]″ × 𝐴

∐
𝜏∈𝑆

Δ[𝑛 − 1]𝑡 Δ𝑘[𝑛]″ × 𝐵
𝑒

⌟

⌜ 𝑒

(𝛿𝑘,𝜏)

where 𝑆 is the set of marked (𝑛 − 1)-simplices in 𝐵 that are not present or
not marked in 𝐴. We argue that for any marked (𝑛 − 1)-simplex 𝜏 ∈ 𝐵, the
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degenerate 𝑛-simplex 𝜏𝜎𝑘−1 admits the indicated markings:

Δ[𝑛] Δ𝑘[𝑛]″

Δ[𝑛 − 1]𝑡 𝐵

𝜍𝑘−1

𝑒

𝜏

because the 𝑘 − 1th and 𝑘th faces equal 𝜏, and so are marked, and any face that
contains the vertices 𝑘 − 1 and 𝑘 is degenerate and so is also marked; these
conditions cover all of the required marked faces. Now it is clear that the pushout
square above factors through the left-hand pushout diagram

∐
𝜏∈𝑆

Δ[𝑛 − 1] ∐
𝜏∈𝑆

Δ𝑘[𝑛]′ Δ𝑘[𝑛]′ × 𝐵 ∪
Δ𝑘[𝑛]′×𝐴

Δ𝑘[𝑛]″ × 𝐴

∐
𝜏∈𝑆

Δ[𝑛 − 1]𝑡 ∐
𝜏∈𝑆

Δ𝑘[𝑛]″ Δ𝑘[𝑛]″ × 𝐵
𝑒

⌟

⌜ 𝑒 ⌜ 𝑒

𝛿𝑘 (id,𝜏𝜍𝑘−1)

demonstrating that the Leibniz product inclusion is a pushout of coproducts of
suitable complicial thinness extensions.

The final case of

(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) ×̂ (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡) ≅
Λ𝑘[𝑛] × Δ[𝑚]𝑡 ∪

Λ𝑘[𝑛]×Δ[𝑚]
Δ𝑘[𝑛] × Δ[𝑚] ↪𝑒 Δ𝑘[𝑛] × Δ[𝑚]𝑡

is again an entire inclusion. Since the only simplex that is marked in Δ[𝑚]𝑡
but not in Δ[𝑚] is the top dimensional 𝑚-simplex, the only simplices that are
marked in the codomain but not in the domain are𝑚-simplices (𝜏, id)∶ Δ[𝑚]𝑡 →
Δ𝑘[𝑛] × Δ[𝑚]𝑡 in which the image of 𝜏 either

• contains [𝑛] or
• contains [𝑛]\{𝑘} but not {𝑘} and is degenerate.

In particular, this Leibniz product inclusion is an identity if 𝑚 < 𝑛. In the case
𝑚 = 𝑛, there are 𝑚+ 1 simplices that are marked in Δ𝑘[𝑚] × Δ[𝑚]𝑡 but not in
the domain, corresponding to the 𝑚𝑚-simplices that are degenerate on the 𝑘th
face of Δ𝑘[𝑚] and the top dimensional 𝑚-simplex.

We factor the inclusion as a finite composite of pushouts of coproducts of
maps Δ𝑠[𝑚 + 1]′ ↪𝑒 Δ𝑠[𝑚 + 1]″ for varying 0 < 𝑠 ≤ 𝑚 + 1, where each
𝑠 < 𝑚 + 1 if 𝑘 < 𝑛. This will prove that this Leibniz product is a complicial
thinness extension of the appropriate kind.

We can classify the missing marked simplices in terms of their component
𝜏∶ Δ[𝑚]𝑡 → Δ𝑘[𝑛], which we may represent as a sequence 𝑖0,… , 𝑖𝑚 of vertices
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of [𝑛] that either contains [𝑛] or contains [𝑛]\{𝑘} and has repetitions. We induct
over a partial ordering of these simplices in decreasing order of the sum∑𝑚

𝑡=0 𝑖𝑡.
7

For a simplex 𝜏 with maximal vertex sum ∑𝑚
𝑡=0 𝑖𝑡 among those simplices that

remain to be marked, let 𝑠 be minimal so that 𝑖𝑠 ≥ 𝑘; when 𝑘 = 𝑛 it is possible
that all 𝑖𝑡 < 𝑘 = 𝑛, which gives a second case that we will consider in a moment.
Then we consider the 𝑚+ 1-simplex:

Δ𝑠[𝑚 + 1]″ (𝜏𝜍𝑠,𝜍𝑠−1) Δ𝑘[𝑛] × Δ[𝑚]𝑡.

By construction, the 𝑠 + 1th face is marked in Δ𝑘[𝑛] × Δ[𝑚], while the 𝑠 − 1th
face has strictly greater vertex sum, and so is marked by the inductive hypothesis.
The faces containing the 𝑠 − 1, 𝑠, and 𝑠 + 1 vertices are all degenerate and thus
marked. This proves that the face 𝜏 can be marked by forming an extension
Δ𝑠[𝑚 + 1]′ ↪𝑒 Δ𝑠[𝑚 + 1]″.

In the case where 𝜏 is a simplex where all 𝑖𝑡 < 𝑘 = 𝑛, then we consider the
𝑚+ 1-simplex

Δ𝑚+1[𝑚 + 1]″ (𝜒,𝜍𝑚) Δ𝑛[𝑛] × Δ[𝑚]𝑡.

where 𝜒∶ Δ[𝑚+1] → Δ𝑛[𝑛] is the simplex spanned by the vertices 𝑖0,… , 𝑖𝑚 =
𝑛−1, 𝑖𝑚+1 = 𝑛. Here the 𝑚th face has strictly greater sum, and so is marked by
the inductive hypothesis. The faces containing the𝑚th and𝑚+1th vertices have
a degenerate component in Δ[𝑚] and have a component in Δ𝑛[𝑛] that contains
the last two vertices 𝑛 − 1 and 𝑛. Thus, all such simplices are marked. This
proves that the face 𝜏 can be marked by forming an extension Δ𝑚+1[𝑚+ 1]′ ↪𝑒
Δ𝑚+1[𝑚 + 1]″.

As in the proof of Corollary D.3.7, by Remark C.2.12 the result of Proposition
D.3.8 extends to Leibniz products of marked anodyne extensions with marked
monomorphisms. We derive a few consequences of this in Corollary D.3.12,
but first explain how this result implies its unmarked analogue.

Corollary D.3.11. Let 𝑖∶ 𝐴 ↪ 𝐵 and 𝑗∶ 𝐾 ↪ 𝐿 be monomorphisms of
simplicial sets. If either 𝑖 or 𝑗 is also anodyne (or, respectively, left-, right-, or
inner-anodyne), then so is the Leibniz product

𝐴 × 𝐿 ∪𝐴×𝐾 𝐵 × 𝐾 𝐵 × 𝐿
𝑖×̂𝑗

7 Here the vertex sum of an 𝑚-simplex 𝜏 is greater than the vertex sum of an 𝑚-simplex 𝜏′ if and
only if 𝜏 has greater “depth” in the sense defined in [129, 68]. The inductive argument of [129,
§5.2] involves Leibniz products of inner or left horn inclusions and starts by considering
simplices of lowest depth; ours involves an inner or right horn inclusion and starts by
considering simplices of highest depth.



652 The Combinatorics of (Marked) Simplicial Sets

Proof The maximal marking functor (−)♯∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡+ sends (left/right/in-
ner) horn inclusions to (left/right/inner) marked anodyne extensions, and as a
left adjoint, therefore carries all (left/right/inner) anodyne extensions of sim-
plicial sets to (left/right/inner) marked anodyne extensions. As a left and right
adjoint, the maximal marking functor also preserves Leibniz products. Simi-
larly, the forgetful functor (−)0∶ 𝑠𝒮𝑒𝑡+ → 𝑠𝒮𝑒𝑡 preserves products and colimits
and carries the (left/right/inner) marked anodyne extensions to the classes of
anodyne extensions introduced in Definition D.2.10. Thus, this result follows
immediately from the first case of Proposition D.3.8 and Remark C.2.12.

Recall from Definition D.1.14 that a marked map between complicial sets
is a complicial isofibration if it has the right lifting property with respect to
the complicial horn extensions and complicial thinness extensions of Definition
D.1.9.

Corollary D.3.12.

(i) For any quasi-category 𝐴 and simplicial set 𝑋, 𝐴𝑋 is again a quasi-cate-
gory.

(ii) For any complicial set 𝐴 and marked simplicial set 𝑋, 𝐴𝑋 is again a
complicial set.

(iii) For any complicial isofibration 𝑝∶ 𝐸 ↠ 𝐵 and any monomorphism of
marked simplicial sets 𝑖∶ 𝑋 ↪ 𝑌, the Leibniz exponential {̂𝑖, 𝑝}∶ 𝐸𝑌 ↠
𝐸𝑋 ×

𝐵𝑋
𝐵𝑌 is a complicial isofibration.

(iv) For any complicial isofibration 𝑝∶ 𝐸 ↠ 𝐵 and any marked anodyne
extension 𝑖∶ 𝑋 ↪ 𝑌, the Leibniz exponential {̂𝑖, 𝑝}∶ 𝐸𝑌 ∼ 𝐸𝑋 ×

𝐵𝑋
𝐵𝑌 is

a trivial fibration of complicial sets.

Proof The second statement is a special case of the third statement, which, to-
gether with the fourth statement, follows by transposing the result of Proposition
D.3.8 across the Leibniz version of the two variable adjunction of Proposition
D.3.3 (see Proposition C.2.9). The first statement follows similarly by applying
Corollary D.3.11 in place of Proposition D.3.8.

In particular, by Lemma D.1.13, for any complicial set 𝐴, 𝐴𝕀♯ → 𝐴Δ[1]♯ is a
trivial fibration of complicial sets. Thus the notion of equivalence of complicial
sets can be redefined as follows:

Corollary D.3.13. If 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 are inverse equivalences
of complicial sets, then there exists a homotopy equivalence with the marked
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homotopy coherent isomorphism serving as the interval:

𝐴 𝐵

𝐴 𝐴𝕀♯ 𝐵 𝐵𝕀♯

𝐴 𝐵
𝑔𝑓

𝛼

ev0

ev1

𝛽

𝑓𝑔 ev0

ev1

Conversely, such data restricts to exhibit an equivalence of complicial sets.

Proof The data of Definition D.1.18 can be lifted as follows:

𝐴𝕀♯ 𝐵𝕀♯

𝐴 𝐴Δ[1]♯ 𝐵 𝐵Δ[1]♯
∼ ∼𝛼̂

𝛼

̂𝛽

𝛽

We would like to prove the analogous statement to Corollary D.3.12(iii)
and (iv) for isofibrations between quasi-categories, which requires analogous
statements to Proposition D.3.8 and Corollary D.3.11 analyzing Leibniz products
of monomorphisms of simplicial sets with the inclusion 𝟙 ↪ 𝕀. We shall deduce
this by considering the relationship between isomorphisms in quasi-categories
and marked edges in complicial sets, which is the subject of the next section.

Exercises
Exercise D.3.i. State and prove the unmarked analogue of Corollary D.3.7.

Exercise D.3.ii. The Leibniz product of a regular inclusion with a noninvertible
entire inclusion is entire but not necessarily regular. Find examples that illustrate
both possibilities and state and prove a characterization of those Leibniz products
of this form that are necessarily regular. Would this have simplified the proof of
Proposition D.3.8?

Exercise D.3.iii. If 𝑓∶ 𝑋 → 𝑌 is a marked homotopy equivalence and 𝐴 is a
complicial set, prove that the restriction map 𝑓∗∶ 𝐴𝑌 → 𝐴𝑋 is an equivalence
of complicial sets.

D.4 Isomorphisms in Naturally Marked Quasi-Categories

By Exercise D.1.ii, Kan complexes can be regarded as a special case of com-
plicial sets: namely Kan complexes coincide with the complicial sets that are
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maximally marked. In this section, we discover that quasi-categories can simi-
larly be identified with certain 1-trivial complicial sets (see Definition D.1.16)
whose marked 1-simplices are determined by the underlying simplicial set. In
Theorem D.4.14, we prove that the category of quasi-categories may be identi-
fied with the 1-trivial complicial sets whose marked 1-simplices are saturated
in a precise sense to be introduced.

The markings on the 1-simplices in a complicial set cannot be arbitrarily
assigned: every marked edge must be an equivalence in a sense that we now
introduce.

Definition D.4.1. A 1-simplex 𝑓 in a marked simplicial set is an equivalence
if there exist a pair of thin 2-simplices as displayed

𝑥 𝑦

𝑦 𝑦 𝑥 𝑥

𝑓≃ 𝑔′≃𝑔 𝑓

Note the notion of equivalence is defined relative to the choice of markings on
the 2-simplices. A very similar notion is defined for the edges of a quasi-category
in Definition 1.1.13 under the name “isomorphism.”

Lemma D.4.2. Every marked edge in a complicial set is an equivalence.

Proof If 𝑓 is a marked edge in any complicial set 𝐴, then the Λ2[2]-horn with
0th face 𝑓 and 1st face degenerate is admissible, so 𝑓 has a right equivalence
inverse. A dual construction involving a Λ0[2]-horn shows that 𝑓 has a left
equivalence inverse:8

𝑥 𝑦

𝑦 𝑦 𝑥 𝑥

∼

𝑓≃ ∼≃∼ ∼𝑓

This observation suggests two ways to mark the edges in the nerve of a
1-category.

Lemma D.4.3. The nerve of a 1-category defines a complicial set by marking
all simplices in dimension greater than one and then either defining:

(i) the marked edges to be the identity arrows only or
(ii) the marked edges to be all isomorphisms.

Proof Exercise D.4.ii.
8 Note also that the complicial thinness extensions imply further that these one-sided inverses are

also marked, so they admit further inverses of their own.
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The first of these options defines the minimal 1-trivial marking that makes
the nerve of a 1-category into a complicial set. By Lemma D.4.2, the latter
option defines the maximal marking that makes the nerve of a 1-category into a
complicial set. We now introduce terminology to describe “maximally marked”
1-trivial complicial sets.

Definition D.4.4. A complicial set is 1-saturated if every equivalence it
contains among its edges is marked.9

This motivates a definition of the canonical marking of a quasi-category, which
is called the “natural marking” in [78]. Namely, we assign a quasi-category its
unique 1-saturated 1-trivial marking:

Definition D.4.5. For any quasi-category 𝐴, its natural marking is defined
by:

• marking all simplices in dimension greater than one
• marking exactly those edges that are isomorphisms, in the sense of Definition

1.1.13, or equivalently marking all those edges that are equivalences, in the
sense of Definition D.4.1.

The natural marking for quasi-categories is convenient for stating and proving
an important combinatorial result due to Joyal:

Proposition D.4.6. Any naturally marked quasi-category 𝐴 admits fillers for
outer complicial horn extensions for 𝑛 ≥ 1:

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ0[𝑛] Δ𝑛[𝑛]
𝑟 𝑟

In the original [61], the result is stated without reference to markings as
follows: a quasi-category admits fillers for special outer horns, left horns
Λ0[𝑛] → 𝐴 whose initial {01}-edge is mapped to an isomorphism in 𝐴 and right
horns Λ𝑛[𝑛] → 𝐴 whose final {𝑛 − 1𝑛}-edge is mapped to an isomorphism in
𝐴.

Many proofs of Proposition D.4.6 are possible; for instance, see [36, §B] or
the original [61]. We choose to use combinatorial results of Verity [129, §4.2],
which we present in stages, that use an alternate (a posteriori equivalent) notion
9 Since the characterization of equivalences among the 1-simplices requires prior agreement

about which 2-simplices are marked, we typically apply Definition D.4.4 to 1-trivial complicial
sets, in which case we say a 1-saturated 1-trivial complicial set is simply “saturated.” This is a
special case of a general notion of saturated complicial set discussed in Digression D.4.21.
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of homotopy coherent isomorphism, which a homotopy type theorist would
recognize by the name “half adjoint equivalence” [125, §4.2].

Notation D.4.7 (subcomplexes of the coherent isomorphism). Recall the co-
herent isomorphism is the simplicial set 𝕀 defined as the nerve of the free-living
isomorphism. It has exactly two nondegenerate simplices in each dimension. If
we label its vertices as “−” and “+,” then its remaining nondegenerate simpli-
ces are uniquely determined by their vertices, which are given by alternating
sequences of “−” and “+” starting from either vertex. As marked simplicial
sets, we give 𝕀 and its subcomplexes the maximal marking.

Following the notation introduced in [129, 42], we write 𝐸+𝑛 , 𝐸−𝑛 ⊂ 𝕀 for the
simplicial subsets generated by the 𝑛-simplices − + −⋯± and + − +⋯∓,
respectively. Both simplicial subsets include uniquely into both 𝐸+𝑛+1 and 𝐸−𝑛+1
and these inclusions factor as follows

Λ0[𝑛 + 1] 𝐸±𝑛 Λ𝑛+1[𝑛 + 1] 𝐸±𝑛

Δ0[𝑛 + 1] • Δ0[𝑛 + 1]′ Δ𝑛+1[𝑛 + 1] • Δ𝑛+1[𝑛 + 1]′

𝐸±𝑛+1 Δ0[𝑛 + 1]″ 𝐸∓𝑛+1 Δ𝑛+1[𝑛 + 1]″

𝑟 ⌜ 𝑟 ⌜

𝑒⌝ 𝑒⌝

proving that any inclusion 𝐸±𝑛 ↪ 𝐸±𝑚 or 𝐸±𝑛 ↪ 𝐸∓𝑚 with 𝑚 > 𝑛 is a marked
anodyne extension.

The following result gives a criterion under which an inner complicial fibra-
tion – a marked map that is only assumed to have the right lifting property against
the inner complicial horn extensions and inner complicial thinness extensions –
in fact defines a complicial isofibration.

Proposition D.4.8. Let 𝑝∶ 𝐴 ↠ 𝐵 be an inner complicial fibration whose
codomain 𝐵 is a complicial set. Then 𝑝 is a complicial isofibration if and only if
𝑝 admits lifts against the inclusions 𝐸−0 ↪ 𝐸−1 and 𝐸−1 ↪ 𝐸−3 .

Proof Any complicial isofibration admits lifts against the marked anodyne
extensions 𝐸−0 ↪ 𝐸−1 and 𝐸−1 ↪ 𝐸−3 . Thus, the heart of this result, and the
only part that remains to be proven, is the assertion that any inner complicial
fibration that admits lifts against this pair of inclusions and whose codomain is a
complicial set necessarily also admits fillers for outer complicial horn extensions
and outer complicial thinness extensions.

We begin by arguing that an inner complicial fibration 𝑝∶ 𝐴 ↠ 𝐵 satisfying
the conditions of the statement also admits lifts against the dual inclusion 𝐸−0 ↪
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𝐸+1 . Given a lifting problem such as presented by the maps 𝑎 and 𝑏 in the square
below:

𝐸−0 𝐴

𝐸−1 𝐸+1 𝐵

𝐸−3

𝑎

𝑝

𝑏

there exists the dashed extension of 𝑏 along 𝐸+1 ↪ 𝐸−3 , since this inclusion is
marked anodyne and 𝐵 is a complicial set. Now the inclusion 𝐸−0 ↪ 𝐸−3 factors
as indicated 𝐸−0 ↪ 𝐸−1 ↪ 𝐸−3 and since 𝑝 is assumed to lift against both maps,
the dotted lift exists as well, which restricts to define a solution to the original
lifting problem.

With this result in hand, it follows that the odd dual of 𝑝∶ 𝐴 ↠ 𝐵 satisfies the
same lifting properties as 𝑝∶ 𝐴 ↠ 𝐵 does, since the odd dual of 𝐸−0 ↪ 𝐸−1 is
𝐸−0 ↪ 𝐸+1 , while the odd dual of𝐸−1 ↪ 𝐸−3 is isomorphic to itself. So it suffices to
show that 𝑝 admits lifts against left complicial horn extensions Λ0[𝑛] ↪𝑟 Δ0[𝑛]
and left complicial thinness extensions Δ0[𝑛]′ ↪𝑒 Δ0[𝑛]″ since its odd dual
will then share these properties, which implies that 𝑝 also admits lifts against
right complicial horn extensions and right complicial thinness extensions. The
case Λ0[1] ↪ Δ0[1] is the map 𝐸−0 ↪ 𝐸−1 so it suffices also to assume 𝑛 > 1, in
which case we have an isomorphism

Λ0[𝑛] ↪ Δ0[𝑛] ≅ (Λ0[1] ↪ Δ0[1]) ⋆̂ (𝜕Δ[𝑛 − 2] ↪ Δ[𝑛 − 2])

by Lemma D.2.18. Writing 𝑚 = 𝑛 − 2 for concision, consider a lifting problem
as presented by the maps 𝑎 and 𝑏:

𝐸−0 ⋆ Δ[𝑚] ∪ 𝐸−1 ⋆ 𝜕Δ[𝑚] 𝐴

𝐸−1 ⋆ Δ[𝑚] 𝐸−2 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−3 ⋆ 𝜕Δ[𝑚] 𝐸−3 ⋆ Δ[𝑚] 𝐵

𝑎

𝑖 𝑝

𝑗

𝑏

By Lemma D.2.18, the map 𝑗 is a marked anodyne extension, so since 𝐵 is a
complicial set, the dashed extension exists. To show that the dotted lift exists
as well, we argue that the map 𝑖 is cellularly generated by the inner complicial
horn extensions and the map 𝐸−1 ↪ 𝐸−3 . To see this, factor the map 𝑖 as the
composite of the three vertical maps in the middle column of the diagram of
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pushout squares

𝐸−1 𝐸−0 ⋆ Δ[𝑚] ∪ 𝐸−1 ⋆ 𝜕Δ[𝑚]

𝐸−3 • 𝐸−1 ⋆ 𝜕Δ[𝑚] ∪ 𝐸−3 ⋆∅

𝐸−0 ⋆ Δ[𝑚] ∪ 𝐸−2 ⋆ 𝜕Δ[𝑚] • 𝐸−3 ⋆ 𝜕Δ[𝑚]

𝐸−2 ⋆ Δ[𝑚] 𝐸−2 ⋆ Δ[𝑚] ∪ 𝐸−3 ⋆ 𝜕Δ[𝑚]

⌜

⌝

⌜

(D.4.9)
The first attached cell is the map 𝐸−1 ↪ 𝐸−3 itself. As observed in D.4.7, 𝐸−1 ↪
𝐸−3 is a right anodyne extension, so by Lemma D.2.18 the second attached cell
(𝐸−1 ↪ 𝐸−3 ) ⋆̂ (∅ ↪ 𝜕Δ[𝑚]) is an inner anodyne extension. Similarly 𝐸−0 ↪ 𝐸−2
is a right anodyne extension, so the final attached cell (𝐸−0 ↪ 𝐸−2 ) ⋆̂ (𝜕Δ[𝑚] ↪
Δ[𝑚]) is also an inner anodyne extension. Thus, 𝑝 admits lifts against left
complicial horn extensions as claimed.

To see that 𝑝∶ 𝐴 ↠ 𝐵 also admits outer complicial thinness extensions we
make use of the isomorphism

(Λ0[1] ↪ Δ0[1]) ⋆̂ (Δ[𝑚] ↪ Δ[𝑚]𝑡) ≅ Δ0[𝑚 + 2]′ ↪ Δ0[𝑚 + 2]″

of Lemma D.2.18, recalling that Λ0[1] ↪ Δ0[1] is the inclusion 𝐸−0 ↪ 𝐸−1 . So
we may consider a lifting problem as presented by the maps 𝑎 and 𝑏:

𝐸−0 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−1 ⋆ Δ[𝑚] 𝐴

𝐸−1 ⋆ Δ[𝑚]𝑡 𝐸−2 ⋆ Δ[𝑚] ∪ 𝐸−3 ⋆ Δ[𝑚] 𝐸−3 ⋆ Δ[𝑚]𝑡 𝐵

𝑎

𝑖 𝑝

𝑗

𝑏

By Lemma D.2.18, the map 𝑗 is a marked anodyne extension, so since 𝐵 is a
complicial set, the dashed extension exists. To show that the dotted lift exists as
well, we argue that the map 𝑖 is cellularly generated by the inner complicial horn
extensions, the inner complicial thinness extensions, and the map 𝐸−1 ↪ 𝐸−3 .
To see this, factor the map 𝑖 as the composite of the three vertical maps in the
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middle column of the diagram of pushout squares

𝐸−1 𝐸−0 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−1 ⋆ Δ[𝑚]

𝐸−3 • 𝐸−1 ⋆ Δ[𝑚] ∪ 𝐸−3 ⋆∅

𝐸−0 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−2 ⋆ Δ[𝑚] • 𝐸−3 ⋆ Δ[𝑚]

𝐸−2 ⋆ Δ[𝑚]𝑡 𝐸−2 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−3 ⋆ Δ[𝑚]

⌜

⌝

⌜

The first attached cell is the map 𝐸−1 ↪ 𝐸−3 itself. As observed in D.4.7, 𝐸−1 ↪
𝐸−3 is a right marked anodyne extension, so by Lemma D.2.18 the second
attached cell (𝐸−1 ↪ 𝐸−3 ) ⋆̂ (∅ ↪ Δ[𝑚]) is an inner marked anodyne extension.
Similarly 𝐸−0 ↪ 𝐸−2 is a right anodyne extension, so the final attached cell
(𝐸−0 ↪ 𝐸−2 ) ⋆̂ (Δ[𝑚] ↪ Δ[𝑚]𝑡) is also an inner complicial thinness extension.
Thus, 𝑝 admits lifts against left complicial thinness extensions as claimed.

Since the inclusions 𝐸−0 ↪ 𝐸−1 and 𝐸−1 ↪ 𝐸−3 are left marked anodyne
extensions, Proposition D.4.8 has the following immediate corollary.

Corollary D.4.10. Let 𝑝∶ 𝐴 ↠ 𝐵 be an inner complicial fibration whose
codomain 𝐵 is a complicial set. Then if 𝑝 is a left complicial fibration or a right
complicial fibration, then 𝑝 is a complicial isofibration.

Note that in the proof of Proposition D.4.8, lifts against the inclusion 𝐸−0 ↪
𝐸−1 are only needed to construct lifts for the outer complicial horn extensions
Λ0[1] ↪ Δ0[1] and Λ1[1] ↪ Δ1[1]. Thus, even if this lifting condition is
dropped, the outer complicial horn extensions in higher dimensions can still
be constructed. The argument just given supplies a proof of a special case of
“special outer horn filling” that is useful in proving the general version.

Lemma D.4.11. Let 𝑝∶ 𝐴 ↠ 𝐵 be an inner complicial fibration whose codo-
main 𝐵 is a complicial set. Then 𝑝 admits fillers for left horns

Λ0[𝑛] 𝐴

Δ0[𝑛] 𝐵

𝑎

𝑝

𝑏

with 𝑛 > 1 provided 𝑎 carries the {01} edge of the horn Λ0[𝑛] to a degenerate
simplex in 𝐴.
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Proof Writing 𝑚 = 𝑛 − 2, by Lemma D.2.18, we have an isomorphism

Λ0[𝑚 + 2] ↪ Δ0[𝑚 + 2] ≅ (Λ0[1] ↪ Δ0[1]) ⋆̂ (𝜕Δ[𝑚] ↪ Δ[𝑚])

so once more we are asked to consider a lifting problem as presented by the
maps 𝑎 and 𝑏:

𝐸−0⋆Δ[𝑚]∪𝐸−1⋆𝜕Δ[𝑚] 𝐸−0⋆Δ[𝑚]∪𝐸−1⋆𝜕Δ[𝑚] ∪
𝐸−
1

𝐸−3 𝐴

𝐸−1⋆Δ[𝑚] 𝐸−2⋆Δ[𝑚]∪𝐸−3⋆𝜕Δ[𝑚] 𝐸−3⋆Δ[𝑚] 𝐵

𝑎

𝑖

𝑘

ℓ
𝑝

𝑗

𝑏

The map 𝑗 is a marked anodyne extension, so since 𝐵 is a complicial set, the
lower dashed extension exists, and we are left to solve a lifting problem between
the map 𝑖 and the map 𝑝. To do so, we factor the map 𝑖 as a composite of the
three middle vertical morphisms displayed in (D.4.9) and let 𝑘 denote the first
of these morphisms while ℓ denotes the composite of the second two. We next
solve the lifting problem between 𝑘 and 𝑝 by defining the image of the attached
𝐸−3 to be a degenerate 3-simplex; note that 𝑘 is constructed by attaching this 𝐸−3
to the 𝐸−1 that corresponds to the initial edge of the horn Λ0[𝑚 + 2], which 𝑎
maps to a degenerate edge.

Now to construct the dotted lift, it remains only to solve the lifting problem
between ℓ and 𝑝, and the diagram (D.4.9) reveals that this can be done, as it
expresses the map ℓ as the composite of pushouts of inner complicial horn
extensions.

Corollary D.4.12. A marked simplicial set 𝐴 that admits fillers for inner com-
plicial horn extensions and inner complicial thinness extensions is a complicial
set if and only if it admits extensions along Δ[1]♯ ↪ sk2 𝕀♯.

Proof Applying Proposition D.4.8 to the inner complicial fibration 𝐴 → 1, to
conclude that 𝐴 is a complicial set, we need only construct extensions along
the maps 𝐸−0 ↪ 𝐸−1 and 𝐸−1 ↪ 𝐸−3 . The former is automatic, since 𝐸−0 ↪ 𝐸−1
is isomorphic to Δ[0] ↪ Δ[1]♯, which admits a retraction, so to complete our
proof we will show that if 𝐴 admits extensions along the map 𝐸−1 ↪ 𝐸−3 under
the stated hypotheses.

The domain map Δ[1]♯ ≅ 𝐸−1 → 𝐴 defines a marked 1-simplex 𝑓∶ 𝑥 → 𝑦 in
𝐴, which by hypothesis we may extend to a map sk2 𝕀♯ → 𝐴, which specifies
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marked 2-simplices

𝑦 𝑥

𝑥 𝑥 𝑦 𝑦

𝑓−1

𝛼 𝛼′
𝑓𝑓 𝑓−1

The 2-simplices 𝛼 and 𝛼′ can be understood as defining 2-dimensional equiva-
lences 𝛼∶ id𝑥 ≃ 𝑓−1𝑓 and 𝛼′∶ id𝑦 ≃ 𝑓𝑓−1. It is not necessarily be the case
that the pair of 2-simplices 𝛼 and 𝛼′ form the two nondegenerate 2-simplex
faces of a map 𝐸−3 → 𝐴, which would amount to the additional requirement
that the triangle identity composite (𝛼′)−1𝑓 ⋅ 𝑓𝛼 is equivalent to id𝑓,10 but we
will construct a replacement 𝛽 of 𝛼′ so that 𝛼 and 𝛽 form the nondegenerate
2-simplices of 𝐸−3 → 𝐴.11

The 3-simplex 𝐸−3 will be constructed as the 2nd face of the filler to a horn
Λ2[4] → 𝐴 that we now build. As orientation for the construction given below,
we first summarize the end result:

• the 0th, 2nd, and 3rd vertices will be 𝑥, while the 1st and 4th vertex will be
𝑦;

• all of the edges will be either id𝑥, id𝑦, 𝑓, or 𝑓−1, with the positioning of
these determined uniquely by the vertices;

• the faces {0, 1, 2} and {0, 1, 3} are 𝛼, while the face {1, 2, 4} is 𝛼′;
• the faces {0, 2, 3}, {0, 1, 4}, {0, 3, 4}, and {1, 2, 3} are degenerate; and
• the missing faces {0, 2, 4} called 𝛾, {2, 3, 4} called ̄𝛾, and {1, 3, 4} called 𝛽

will be filled in in this order, with the desired 3-simplex 𝐸−3 appearing as the
2nd face of the horn.

The 4th face is the degenerated 3-simplex 𝛼𝜎2. The 3rd face is constructed
by filling the horn Λ1[3] → 𝐴 depicted below:

𝑦 𝑥 𝑦 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓−1

𝑓
𝛾≃ ≃

𝑓−1

𝛼′ ≃

=

𝑓𝑓
𝛼≃

𝑓 𝑓

𝑓

By a complicial thinness extension, the face 𝛾 defined by filling this horn is
marked. Next, the 1st face is constructed by filling a horn Λ0[3] → 𝐴, as
10 This is why the marked simplicial sets 𝐸−

3 and 𝐸+
3 might be referred to as “half adjoint

equivalences.”
11 This should be compared with the proof of Proposition 2.1.12 via Lemma 2.1.11.
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permitted by Lemma D.4.11.

𝑥 𝑥 𝑥 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓

= ≃
𝑓

𝛾̄≃

𝛾≃ 𝑓=
𝑓 𝑓

This produces another marked 3-simplex ̄𝛾 defined by filling this horn. The 0th
face is constructed by filling the horn Λ1[3] → 𝐴 depicted below:

𝑥 𝑥 𝑥 𝑥

𝑦 𝑦 𝑦 𝑦

𝑓
𝛽≃ ≃

𝑓

𝛾̄≃

𝛼′ ≃ 𝑓𝑓−1 =

𝑓−1

𝑓−1

The face defined by filling this horn is the replacement 2-simplex 𝛽. These four
3-simplices define a map Λ2[4] → 𝐴 whose filler defines a 3-simplex face as
depicted below:

𝑦 𝑥 𝑦 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓−1

𝑓

= ≃

𝑓−1

𝛽≃

=

𝑓𝑓
𝛼≃

𝑓 𝑓

𝑓

(D.4.13)
This defines the required extension 𝐸−3 → 𝐴.

With Corollary D.4.12 in hand, we can now prove Joyal’s special outer horn
filling result.

Proof of Proposition D.4.6 Let 𝐴 be a naturally marked quasi-category. We
demonstrate that the unique map !∶ 𝐴 → 1 satisfies the hypotheses of Corollary
D.4.12. For the inner complicial horn extensions, all of the nondegenerate
marked simplices are in dimension two and higher, so 𝐴 admits fillers for these,
simply because quasi-categories are simplicial sets that admit fillers for all inner
horns. Since the composite of a pair of isomorphisms in a quasi-category is again
an isomorphism, 𝐴 admits extensions along Δ1[2]′ ↪𝑒 Δ1[2]″. The remaining
complicial thinness extensions of (D.1.11) are entire inclusions that differ only
in markings of simplices in dimension at least two; since all such simplices are
thin in the natural marking, 𝐴 admits these extensions as well. Thus, 𝐴 → 1 is
an inner complicial fibration
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To conclude, we need only argue that 𝐴 admits extensions of the form

Δ[1]♯ 𝐴

sk2 𝕀♯

𝑓

Since 𝐴 is naturally marked, the attaching map 𝑓∶ 𝑥 → 𝑦 defines an isomorph-
ism in 𝐴. By Definition 1.1.13, this means there exist 2-simplices

𝑦 𝑥

𝑥 𝑥 𝑦 𝑦

𝑓−1

𝛼 𝛼′
𝑓𝑓 𝑓−1

which provide the data of the required extension sk2 𝕀♯ → 𝐴.

This proves the hard direction of the following characterization of quasi-cate-
gories as complicial sets:

Theorem D.4.14. The natural marking of a quasi-category is a complicial set
and indeed is the maximal marking that turns a quasi-category into a complicial
set. Conversely, the underlying simplicial set of any complicial set with all
simplices above dimension one marked is a quasi-category.

Proof Proposition D.4.6 demonstrates that a naturally marked quasi-category
admits fillers for outer complicial horn extensions and its proof demonstrates
that it admits fillers for inner complicial horn extensions as well. As argued there,
since naturally marked quasi-categories are 1-trivial, the complicial thinness
extensions in dimension greater than 1 are automatic, while the three complicial
thinness extensions in dimension 1 ask that the isomorphisms in a quasi-category
satisfy the 2-of-3 property, which is true. Thus, naturally marked quasi-categories
are complicial sets. By Lemma D.4.2, it is not possible to mark any additional
edges in 𝐴 and retain the property of being a complicial set, so the natural
marking is the maximal one.

The converse is elementary, and left to the reader in Exercise D.4.i.

We now give a few sample applications of Theorem D.4.14, revisiting some
results that were proven in §1.1 using Proposition D.4.6. For instance, we return
to Corollary 1.1.15:

Corollary D.4.15. A quasi-category 𝐴 is a Kan complex if and only if its
homotopy category is a groupoid.

Proof It is clear that the homotopy category of a Kan complex is a groupoid,
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so we focus our attention on the converse. By Theorem D.4.14, a quasi-category
may be regarded as a complicial set, with every simplex above dimension 1
marked, and where the marked edges are exactly the isomorphisms defined to
be those 1-simplices that represent isomorphisms in the homotopy category. If
the homotopy category of 𝐴 is a groupoid, then this tells us that 𝐴 is maximally
marked, and Exercise D.1.ii observes that a maximally marked complicial set
defines a Kan complex.

For our next result, we revisit Corollary 1.1.16 and eliminate the reference to
the maximal Kan complex spanned by the isomorphisms in a quasi-category –
the existence of which follows from special outer horn lifting – from the proof
given there.

Corollary D.4.16. An arrow 𝑓 in a quasi-category 𝐴 is an isomorphism if
and only if it extends to a homotopy coherent isomorphism

𝟚 𝐴

𝕀

𝑓

Proof When the quasi-category 𝐴 is regarded as a naturally marked complicial
set, the isomorphism 𝑓 defines a marked map 𝑓∶ 𝟚♯ → 𝐴. By Lemma D.1.13,
the injection 𝟚♯ ↪ 𝕀♯ is a marked anodyne extension, and thus 𝐴 lifts against
this map. Forgetting markings, this proves that every isomorphism in 𝐴 extends
to a homotopy coherent isomorphism. The converse is obvious from Definition
1.1.13.

Next, we prove the two statements appearing in Corollary 1.1.22.

Lemma D.4.17. If 𝐴 is a naturally marked quasi-category and 𝑋 is a minimally
marked simplicial set, then 𝐴𝑋 is a naturally marked quasi-category.

Proof By Proposition D.3.3, 𝑛-simplices in 𝐴𝑋 correspond to maps 𝑋 ×
Δ[𝑛] → 𝐴. Since the domain is minimally marked, it follows that the underlying
simplicial set of 𝐴𝑋 coincides with the exponential of the underlying simplicial
sets and hence, by Corollary D.3.12(i) defines a quasi-category.

To see that every simplex of dimension greater than one is marked in 𝐴𝑋

consider an extension problem

𝑋 × Δ[𝑛] 𝐴

𝑋 × Δ[𝑛]𝑡
𝑒
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for 𝑛 > 1. By Proposition D.3.3, the only simplices that are marked in 𝑋×Δ[𝑛]𝑡
but not in 𝑋 × Δ[𝑛] are 𝑛-simplices, and since all 𝑛-simplices in 𝐴 are marked,
it is clear that the desired extension exists.

By Corollary D.3.12(ii), 𝐴𝑋 is a complicial set, so by Lemma D.4.2 every
marked edge in 𝐴𝑋 is an isomorphism. It remains only to show that every
isomorphism 𝑓∶ Δ[1] → 𝐴𝑋 in the quasi-category 𝐴𝑋 is marked, admitting an
extension as indicated below-right:

∐
𝑥∈𝑋0

Δ[1] 𝑋 × Δ[1] 𝐴

∐
𝑥∈𝑋0

Δ[1]𝑡 𝑋 × Δ[1]𝑡

𝑓𝑥

𝑒

⌟

⌜

𝑓

𝑒(𝑥𝜍0,id)

(D.4.18)

By Proposition D.3.3, the only simplices that are marked in 𝑋 × Δ[1]𝑡 but not
in 𝑋 × Δ[1] are 1-simplices whose component in 𝑋 is degenerate and whose
component in Δ[1]𝑡 is the nondegenerate 1-simplex, as indicated by the square
above-left that is both a pullback and a pushout. The images of such simplices
in 𝐴 define the “components” of 𝑓, as indicated by the top composite above.

If 𝑓 is an isomorphism in 𝐴𝑋 then each of its components 𝑓𝑥, the image of
𝑓 under the evaluation function ev𝑥∶ 𝐴𝑋 → 𝐴, are clearly also isomorphisms,
which is the case if and only if each 𝑓𝑥 is marked in 𝐴. These components 𝑓𝑥 are
marked in 𝐴 if and only if the dotted lift exists, and by the universal property of
the pushout, this is equivalent to the existence of the dashed lift, as required.

As a consequence of Lemma D.4.17, we can prove an oft-cited result:

Corollary D.4.19. For any quasi-category 𝐴 and simplicial set 𝑋, an edge in
𝐴𝑋 is an isomorphism if and only if each of its components in 𝐴, indexed by the
vertices of 𝑋, are isomorphisms.

Proof Regarding 𝐴 as a naturally marked quasi-category and 𝑋 as a minimally
marked simplicial set, by Lemma D.4.17 a 1-simplex in 𝐴𝑋 is marked if and only
if it defines an isomorphism in the quasi-category 𝐴𝑋. So the statement asserts
that a 1-simplex is marked in 𝐴𝑋 if and only if its components are marked in 𝐴.
By the definition, given in Proposition D.3.3, of the markings in the exponential,
a 1-simplex 𝑓∶ Δ[1] → 𝐴𝑋 is marked if and only if the dashed extension of
(D.4.18) exists. By the pushout given there, this is equivalent to the existence of
the dotted extensions, which say exactly that each component 𝑓𝑥 is marked in
𝐴.
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We close by observing that marked homotopy equivalences induce equiva-
lences of naturally marked quasi-categories.

Lemma D.4.20. Let 𝐴 be a quasi-category and let 𝐼 → 𝐽 be a map of simpli-
cial sets that extends to a marked homotopy equivalence between minimally
marked simplicial sets. Then the induced map 𝐴𝐽 ∼ 𝐴𝐼 is an equivalence of
quasi-categories.

Proof Equip 𝐴 with its natural marking so that by Theorem D.4.14 it defines a
complicial set. By Exercise D.3.iii,𝐴𝐽 ∼ 𝐴𝐼 is then an equivalence of complicial
sets. By Corollary D.3.13 the data of this equivalence may be given by the maps

𝐴𝐽 → 𝐴𝐼, 𝐴𝐼 → 𝐴𝐽, 𝐴𝐼 → (𝐴𝐼)𝕀♯, 𝐴𝐽 → (𝐴𝐽)𝕀♯,

and upon forgetting the markings, this data defines an equivalence of quasi-cate-
gories in the sense of Definition 1.1.23.12

Digression D.4.21 (on equivalences and saturation for higher simplices). Lem-
ma D.4.2 demonstrates that the marked edges in a complicial set should be
interpreted as equivalences, in a suitable sense. A similar interpretation is
appropriate for the higher dimensional marked simplices as well. Consequently,
we may interpret the condition that a complicial set is 𝑛-trivial as demanding
that all simplices in dimension 𝑟 > 𝑛 are weakly invertible.

Having understood that every marked simplex in a complicial set is an equiv-
alence, we are lead to consider complicial sets that satisfy the converse of this
condition, in which every equivalence is marked. Such saturated complicial
sets are especially important, and we suggest the terminology 𝑛-complicial
set to describe an 𝑛-trivial saturated complicial set (see [105] and [89] for the
precise definition and some discussion). The Kan complexes are precisely the
0-complicial sets by Exercise D.1.ii, while the quasi-categories are precisely the
1-complicial sets by Theorem D.4.14. As this pattern suggests, the 𝑛-complicial
sets define a well-behaved model for (∞, 𝑛)-categories in the sense that the
full subcategory of such defines a cartesian closed ∞-cosmos, as we prove
Proposition E.3.9.

Exercises
Exercise D.4.i. Prove that the underlying simplicial set of any 1-trivial compli-
cial set is a quasi-category.13

12 Note that 𝐴𝕀 ≅ 𝐴𝕀♯ when 𝐴 is a naturally marked quasi-category.
13 A converse of sorts to this result appears in Theorem D.4.14.
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Exercise D.4.ii. Prove Lemma D.4.3.

Exercise D.4.iii. Let Δ[3]eq denote the “2-of-6 3-simplex,” in which the edges
{02} and {13} and all simplices in dimension greater than 1 are marked. Show
that:

(i) A 1-simplex in a complicial set 𝐴 is an equivalence if and only if it
defines the {12}-edge of a 3-simplex Δ[3]eq → 𝐴.

(ii) A complicial set is 1-saturated if and only if it admits extensions along
the entire inclusion

Δ[3]eq 𝐴

Δ[3]♯
𝑒

D.5 Isofibrations between Quasi-Categories

Our aim in this section is to explain the relevance of Proposition D.3.8 to the
theory of quasi-categories. In particular, this finally enables us to complete the
combinatorial work required to supply proofs of the Leibniz stability results
stated in §1.1. The missing ingredient is a relative version of Theorem D.4.14,
which admits a similar proof:

Theorem D.5.1. A map between quasi-categories defines an isofibration if and
only if it defines a complicial isofibration when those quasi-categories are given
their natural markings. In particular, an isofibration between naturally marked
quasi-categories admits fillers for outer complicial horn extensions for 𝑛 ≥ 1:

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ0[𝑛] 𝐵 Δ𝑛[𝑛] 𝐵
𝑟 𝑟

Proof We leave it to the reader to verify that, upon forgetting the markings, a
complicial isofibration between naturally marked quasi-categories defines an
isofibration between quasi-categories. The content is in the converse, so consider
an isofibration 𝑝∶ 𝐴 ↠ 𝐵 between quasi-categories which have been given
their natural markings. By Theorem D.4.14, the quasi-categories 𝐴 and 𝐵 are
complicial sets, so by Proposition D.4.8, to prove that 𝑝∶ 𝐴 ↠ 𝐵 is a complicial
isofibration it suffices to show that it has the right lifting property against the
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inner complicial horn extensions, inner complicial thinness extensions, and the
two maps 𝐸−0 ↪ 𝐸−1 and 𝐸−1 ↪ 𝐸−3 .

The inner complicial horn and thinness extensions are straightforward, as in
the proof of Proposition D.4.6. To construct a lift

𝟙 ≅ 𝐸−0 𝐴

𝟚♯ ≅ 𝐸−1 𝐵

𝕀

𝑝

𝑏

we use Lemma D.1.13, recalled as Corollary D.4.16, to extend the codomain to
a homotopy coherent isomorphism and then solve the composite lifting problem.

The construction of the lift against 𝐸−1 ↪ 𝐸−3 is considerably more laborious.
To begin, we argue that since 𝐴 and 𝐵 are complicial sets and 𝑝 is an inner
complicial fibration, then 𝑝 admits lifts against the complicial horn extension
Λ0[2] → Δ0[2]. To see this, we identify the codomain Δ0[2] with the second
face of the 3-simplex 𝐸−2 ⋆ Δ[0] and consider the lifting problem presented by
the exterior diagram

Λ0[2] 𝐸−0 ⋆ Δ[0] ∪ 𝐸−2 ⋆∅ 𝐴

Δ0[2] • 𝐸−2 ⋆ Δ[0] 𝐵

𝑖013

⌜

𝑎

𝑘 𝑝

𝛿2

𝑏

𝑗

The inclusion 𝑖013 is marked anodyne, so the top dashed extension exists since
𝐴 is a complicial set. This induces the dotted map by the universal property
of the pushout. Since the map 𝑗 is also marked anodyne, the bottom dashed
extension exists since 𝐵 is a complicial set. These dashed maps define a new
lifting problem between the composite map 𝑘 and 𝑝 and since 𝑘 is an inner
marked anodyne extension, the dotted lift exists, solving the original lifting
problem.

Now we can use the fact that 𝑝 admits lifts along Λ0[2] ↪ Δ0[2] to construct



D.5 Isofibrations between Quasi-Categories 669

lifts along the horizontal composite map

𝐸+1 𝐸+2

𝐸−1 𝐸−2 𝐸−2 ∪
𝐸+
1

𝐸+2
⌜

since the observation made in Notation D.4.7 reveals that both maps 𝐸±1 ↪ 𝐸±2
are composites of pushouts of Λ0[2] ↪ Δ0[2] and Δ0[2]′ ↪ Δ0[2]″; since 𝐴
is a complicial set, the complicial thinness extension comes for free. Now lifts
against the composite 𝐸−1 ↪ 𝐸−2 ∪

𝐸+
1

𝐸+2 have the effect of giving the data of a

right inverse and also a right inverse to the right inverse to an isomorphism in 𝐴,
lifting the corresponding data in 𝐵. To solve a lifting problem against 𝐸−1 ↪ 𝐸−3

𝐸−1 𝐴

𝐸−2 ∪
𝐸+
1

𝐸+2 𝐸−3 𝐵

𝑓

𝑝(𝛼,𝛼′)

𝜏

we first construct the outer lift, defining a pair of 2-simplices in 𝐴:

𝑦 𝑥

𝑥 𝑥 𝑦 𝑦

𝑓−1

𝛼 𝛼′
(𝑓−1)−1𝑓 𝑓−1

We now extend the data of the lifted 𝐸−2 ∪
𝐸+
1

𝐸+2 → 𝐴 to construct a 3-simplex

𝐸−3 → 𝐴 lifting 𝜏∶ 𝐸−3 → 𝐵 using a mild modification of the construction in
the proof of Corollary D.4.12. We define a complicial inner horn extension

Λ2[4] 𝐴

Δ2[4] 𝐵

𝑝

𝜏𝜍2

so that the lift of the 2nd face defines the simplex 𝐸−3 → 𝐴 that we seek. It
remains only to define an appropriate horn Λ2[4] → 𝐴 over 𝜏𝜎2∶ Δ2[4] → 𝐵.
The 4th face is 𝛼𝜎2. The 3rd face is constructed by lifting along a Λ1[3]-horn
whose 3rd face is 𝛼, whose 0th face is 𝛼′, and whose 2nd face is degenerate.
Writing 𝛾 for the face defined by filling this horn, the 1st face is constructed by
filling a Λ0[3]-horn whose 2nd face is 𝛾 and 1st and 3rd faces are degenerate;
this lift is permitted by Lemma D.4.11. The 0th face is constructed by filling



670 The Combinatorics of (Marked) Simplicial Sets

the Λ1[3]-horn whose faces have all already been described. The face defined
by filling this horn is the replacement 2-simplex 𝛽 – a replacement for 𝛼′ –
which witnesses that 𝑓 is a right inverse to its right inverse 𝑓−1. These four
3-simplices define a map Λ2[4] → 𝐴 over 𝜏𝜎2 whose filler defines a 3-simplex
face of the form displayed in (D.4.13). This defines the required lift along
𝐸−1 ↪ 𝐸−3 . Now Proposition D.4.8 completes the proof that isofibrations between
quasi-categories are complicial isofibrations.

With this result in hand, we may now integrate the class of isofibrations
between quasi-categories into the results of §D.3, proving Propositions 1.1.20
and 1.1.29, restated here for convenience.

Proposition D.5.2.

(i) There is a solution to any lifting problem between the Leibniz product
of a monomorphism 𝑖∶ 𝑋 ↪ 𝑌 and the map 𝟙 ↪ 𝕀 and any isofibration
𝑓∶ 𝐴 ↠ 𝐵.

(ii) If 𝑖∶ 𝑋 ↪ 𝑌 is a monomorphism and 𝑓∶ 𝐴 ↠ 𝐵 is an isofibration, then
the induced Leibniz exponential map 𝑖 ⋔̂ 𝑓∶ 𝐴𝑌 ↠ 𝐵𝑌 ×𝐵𝑋 𝐴𝑋 is again
an isofibration.

(iii) If 𝑖∶ 𝑋 ↪ 𝑌 is a monomorphism and 𝑓∶ 𝐴 ∼ 𝐵 is a trivial fibration,
then the induced Leibniz exponential map 𝑖 ⋔̂ 𝑓∶ 𝐴𝑌 ∼ 𝐵𝑌 ×𝐵𝑋 𝐴𝑋 is
again a trivial fibration.

(iv) If 𝑖∶ 𝑋 ↪ 𝑌 is in the class cellularly generated by the inner horn
inclusions and the map 𝟙 ↪ 𝕀 and 𝑓∶ 𝐴 ↠ 𝐵 is an isofibration, then the
induced Leibniz exponential map 𝑖 ⋔̂ 𝑓∶ 𝐴𝑌 ∼ 𝐵𝑌 ×𝐵𝑋 𝐴𝑋 is a trivial
fibration.

Proof It suffices to construct the lift of (i) in marked simplicial sets and then
forget the markings. By Lemma D.1.13, 𝟙 ↪ 𝕀 is a marked anodyne extension,
when 𝕀 is assigned its natural maximal marking. Thus by Proposition D.3.8, the
Leibniz product of the minimally marked monomorphism 𝑖 with this map is
again a marked anodyne extension. By Theorem D.5.1, an isofibration defines
a complicial isofibration between naturally marked quasi-categories, so the
postulated lift exists.

Parts (ii) and (iv) follow from the conclusion of (i) and a similar result, Corol-
lary D.3.11, by transposing lifting problems across the two-variable adjunction
between the Leibniz product and the Leibniz exponential.

Part (iii) follows by a similar argument from an easier observation made
in Lemma D.3.1: that the Leibniz product of two monomorphisms is again a
monomorphism.
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Theorems D.4.14 and D.5.1 permit the use of complicial techniques to solve
lifting problems involving isofibrations between quasi-categories. The results
of this section suggest that these techniques are particularly fruitful when iso-
morphisms are involved. We now develop a few specific applications of this
principle, which are used to prove the final missing result from §1.1.

To that end we consider a pair of cosimplicial marked simplicial sets

Δ[•]♯ 𝕀[•]♯ ∈ (𝑠𝒮𝑒𝑡+)𝚫

the former of which is given by the maximally marked simplices Δ[𝑛]♯ and the
latter of which is given by the maximally marked contractible groupoids 𝕀[𝑛]♯

on objects 0, 1,… , 𝑛.

Lemma D.5.3. The natural inclusion Δ[•]♯ ↪ 𝕀[•]♯ is a Reedy monomorphism
in (𝑠𝒮𝑒𝑡+)𝚫 between Reedy monomorphic cosimplicial objects that is moreover
a pointwise weak equivalence in the Verity model structure.

Proof When 𝑠𝒮𝑒𝑡+ is identified with its image in 𝒮𝑒𝑡𝑡𝚫
op

, the first half of the
statement follows the relative version of Lemma C.5.19 stated as Exercise C.5.ii:
any pointwise monomorphism between “unaugmentable” cosimplicial objects
is a Reedy monomorphism between Reedy monomorphic cosimplicial objects.
As the equalizers of the face maps 𝛿0, 𝛿1∶ Δ[0]♯ → Δ[1]♯ and 𝛿0, 𝛿1∶ 𝕀[0]♯ →
𝕀[1]♯ are empty, both Δ[•]♯ and 𝕀[•]♯ are unaugmentable, so we conclude that
these simplicial objects are Reedy monomorphic and the natural inclusion is a
Reedy monomorphism.

Finally to prove that Δ[𝑛]♯ → 𝕀[𝑛]♯ is a pointwise weak equivalence, we
appeal to the 2-of-3 property and argue that both Δ[𝑛]♯ and 𝕀[𝑛]♯ are marked
homotopy equivalent to 𝟙 ∈ 𝑠𝒮𝑒𝑡+. The inverse equivalences are given by
0∶ 𝟙 → Δ[𝑛]♯ and 0∶ 𝟙 → 𝕀[𝑛]♯ and the marked homotopies Δ[𝑛]♯ × Δ[1]♯ →
Δ[𝑛]♯ and 𝕀[𝑛]♯×Δ[1]♯ → 𝕀[𝑛]♯ are both defined by the map on objects (𝑖, 0) ↦
0 and (𝑖, 1) ↦ 𝑖.

Our intent is to use the simplicial objects Δ[•]♯ and 𝕀[•]♯ to “freely invert” the
simplices of a simplicial set 𝐾. To see how this works, consider also the cosim-
plicial object Δ[•] ∈ 𝑠𝒮𝑒𝑡𝚫 defined by the Yoneda embedding. By the coYoneda
lemma, the weighted colimit colim𝐾 Δ[•] ≅ 𝐾 recovers the original simplicial
set 𝐾. Similarly, since the maximal marking functor (−)♯∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡+ is
a left adjoint, the weighted colimit colim𝐾 Δ[•]♯ ≅ 𝐾♯ equips the simplicial
set 𝐾 with the maximal marking. Finally, we define ̃𝐾♯ ≔ colim𝐾 𝕀[•]♯ using
the weighted colimit bifunctor. The idea of this functor is that it replaces each
𝑛-simplex of 𝐾 by 𝕀[𝑛]♯, a “homotopy coherent composite of 𝑛 isomorphisms.”
As the notation suggests, ̃𝐾♯ is also maximally marked.
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Proposition D.5.4. For any simplicial set 𝐾, the natural map 𝐾♯ → ̃𝐾♯ is a
trivial cofibration in the Verity model structure .

Proof Any simplicial set 𝐾 is Reedy monomorphic when considered as an
object of 𝒮𝑒𝑡𝚫

op
. Hence, by Corollary C.5.17, the weighted colimit functor

colim𝐾−∶ (𝑠𝒮𝑒𝑡+)𝚫 → 𝑠𝒮𝑒𝑡+

is left Quillen with respect to the Reedy model structure on (𝑠𝒮𝑒𝑡+)𝚫. Lemmas
C.5.13 and D.5.3 prove that Δ[•]♯ ↪ 𝕀[•]♯ is a Reedy trivial cofibration, so it
follows that 𝐾♯ → ̃𝐾♯ is a trivial cofibration as claimed.

We refer to the functor ̃(−)∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 defined by applying colim− 𝕀[•]♯

and forgetting the markings as the “free-inversion functor.”

Example D.5.5. Proposition D.5.4 can be applied to the anodyne extension
Λ1[2] ↪ Δ[2] to prove that composites of homotopy coherent isomorphisms
can be lifted along isofibrations of quasi-categories. By definition Δ̃[2] ≅ 𝕀[2],
the contractible groupoid on three vertices 0, 1, and 2, so we adopt similar
notation Λ̃1[2] ≕ Λ1[𝕀[2]] for the freely inverted horn. Since Λ1[2] is built by
gluing two 1-simplices along a common vertex and the free inversion functor
preserves colimits, we see that Λ1[𝕀[2]] is the union of two homotopy coherent
isomorphisms between 0 and 1 and between 1 and 2. Giving these simplicial
sets their maximal markings, it follows from the 2-of-3 property applied to the
square

Λ1[2]♯ Λ1[𝕀[2]]♯

Δ[2]♯ 𝕀[2]♯

that the inclusion Λ1[𝕀[2]]♯ ↪ 𝕀[2]♯ is a trivial cofibration of marked simplicial
sets. Applying Theorem D.5.1, we conclude that composites of homotopy co-
herent isomorphisms can be lifted along isofibrations between quasi-categories

Λ1[𝕀[2]] 𝐴

𝕀[2] 𝐵

A similar example is left as Exercise D.5.ii. To complete the verification of
the results claimed in §1.1, it remains only to prove Proposition 1.1.28:

Proposition D.5.6. For an isofibration 𝑓∶ 𝐴 ↠ 𝐵 of quasi-categories the
following are equivalent:
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(i) 𝑓 is at trivial fibration
(ii) 𝑓 is both an isofibration and an equivalence
(iii) 𝑓 is a split fiber homotopy equivalence: an isofibration admitting a

section 𝑠 that is also an equivalence inverse via a homotopy from id𝐴 to
𝑠𝑓 that composes with 𝑓 to the constant homotopy from 𝑓 to 𝑓.

Proof For (i)⇒(ii), observe that the simplex boundary inclusions generate the
monomorphisms of simplicial sets under coproduct, pushout, and sequential
composition (see Lemma C.5.9), so the lifting property of (1.1.26) implies that
the trivial fibrations lift against all monomorphisms of simplicial sets, and in
particular against the monomorphisms that detect the class of isofibrations. Thus,
trivial fibrations are isofibrations. By the same lifting property, every trivial
fibration admits a section

𝐴

𝐵 𝐵

≀ 𝑓𝑠

To show that 𝑠 defines an inverse equivalence to 𝑓, observe that the outer
rectangle built from the constant homotopy 𝜋∶ 𝐴 × 𝕀 → 𝐴

𝐴 + 𝐴 𝐴

𝐴 × 𝕀 𝐴 𝐵

(id𝐴,𝑠𝑓)

𝑓≀

𝜋

𝛼

𝑓
∼

commutes since 𝑓𝑠𝑓 = 𝑓. The lift defines a homotopy between id𝐴 and 𝑠𝑓
completing the proof that trivial fibrations are equivalences. And note in fact
that the equivalence just constructed is a split fiber homotopy equivalence,
proving that (i)⇒(iii).

To prove (ii)⇒(iii), suppose that 𝑓 is an isofibration with equivalence inverse
𝑔. By Lemma D.5.7 below, the homotopies 𝛼 from id𝐴 to 𝑔𝑓 and 𝛽 from 𝑓𝑔 to
id𝐵 may be chosen so as to define a “half adjoint equivalence,” meaning that
there exists a map Φ∶ 𝐴 × 𝕀[2] → 𝐵, where 𝕀[2] is the contractible groupoid on
three objects, whose boundary is formed by 𝑓𝛼, 𝛽𝑓, and the constant homotopy
id𝑓 ≔ 𝑓𝜋.14

Applying Proposition D.5.2(i) to the monomorphism ∅ ↪ 𝐵, we find that
14 This is similar but not isomorphic to the notion of half adjoint equivalence encoded by the

marked simplicial sets 𝐸−
3 and 𝐸+

3 .
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we can lift the homotopy 𝛽 between 𝑓𝑔 and id𝐵 along 𝑓

𝐵 𝐴

𝐵 𝐵 × 𝕀 𝐵

𝑔

𝑖0 𝑓
𝑖1

𝑠
𝛾

𝛽

The composite map 𝑠 defines a strict section of 𝑓, while the lift defines a homo-
topy 𝛾 from 𝑔 to 𝑠. Applying Proposition D.3.8, Theorem D.5.1, and Example
D.5.5, we can solve the lifting problem

𝐴 × Λ1[𝕀[2]] 𝐴

𝐴 × 𝕀 𝐴 × 𝕀[2] 𝐵

𝐴

(𝛼,𝛾𝑓)

𝑓

𝛿1

𝜋

𝜂 Ψ

Φ

𝑓

The lift defines a composite homotopy 𝜂 from id𝐴 to 𝑠𝑓 so that 𝑓𝜂 = 𝑓𝜋 is the
constant homotopy. This data exhibits 𝑓 as a split fiber homotopy equivalence.

Finally, for (iii)⇒(i) note that the data of a split fiber homotopy equivalence
defines a retract diagram

𝐴 𝐴𝕀 𝐴

𝐵 𝐵𝕀 ×
𝐵
𝐴 𝐵

𝑓

𝛼

∼ ⟨𝑓𝕀,ev1⟩

ev0

𝑓

⟨Δ,𝑠⟩ ev0𝜋

The central map is the Leibniz cotensor of {1} ↪ 𝕀 with the isofibration 𝑓 and
so is a trivial fibration by Proposition D.5.2. Since the trivial fibrations are
characterized by a right lifting property, Lemma C.2.3 tells us that they are
closed under retracts. Thus 𝑓 is a trivial fibration as desired.

Lemma D.5.7. Any equivalence of quasi-categories

𝐴 𝐵 𝐴

𝐴 × 𝕀 𝐴 𝐵 × 𝕀 𝐵

𝐴 𝐵 𝐵

𝑖0 𝑖0

𝑔

𝑓

𝛼 𝛽

𝑖1

𝑓

𝑔 𝑖1
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can be extended to a half adjoint equivalence of quasi-categories, with an
additional coherence homotopyΦ∶ 𝐴×𝕀[2] → 𝐵 whose boundary is comprised
of the three homotopy coherent isomorphisms:

𝑓𝑔𝑓

𝑓 𝑓

𝛽𝑓
Φ

𝑓𝛼

id𝑓

at the cost of replacing one of the homotopies 𝛼 or 𝛽.

The proof is by a simplicial reinterpretation of the 2-categorical argument
that proves Proposition 2.1.12.

Proof Consider an equivalence of quasi-categories as in the statement. By
Example D.5.5, the homotopies 𝑓𝛼 and 𝛽𝑓 admit some composite defined by
solving the lifting problem

𝐴 × Λ1[𝕀[2]] 𝐵

𝐴 × 𝕀 𝐴 × 𝕀[2]

(𝑓𝛼,𝛽𝑓)

𝜓

𝛿1

Ψ

Restriction along the nonidentity involution 𝕀 → 𝕀 defines the inverse of any
homotopy, denoted by (−)−1. We will replace 𝛼 by the composite 𝛼′ ≔ 𝑔𝜓−1 ⋅ 𝛼
defined by solving the lifting problem

𝐴 × Λ1[𝕀[2]] 𝐴

𝐴 × 𝕀 𝐴 × 𝕀[2]

(𝛼,𝑔𝜓−1)

𝛼′

𝛿1

Ξ

and show that this homotopy defines a half adjoint equivalence with 𝛽.
The witness to the half adjoint equivalence is obtained by solving a final

lifting problem

𝐴 × Λ1[𝕀[3]] 𝐵

𝐴 × 𝕀[2] 𝐴 × 𝕀[3]

Γ

Φ

𝛿1

involving an extension along Λ1[𝕀[3]] ↪ 𝕀[3], whose codomain is the con-
tractible groupoid with four objects 0, 1, 2, 3 and whose domain is the union
of the three faces 𝕀[2] that contain the vertex 1. This is permitted by Exercise
D.5.ii.
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It remains to define the faces of the “horn of homotopy coherent isomor-
phisms” Γ, which is built from the homotopy coherent isomorphisms

𝑓𝑔𝑓

𝑓 𝑓

𝑓𝑔𝑓

𝑓𝛼−1𝑓𝛼

𝑓𝛼′
𝑓𝑔𝜙−1

𝛽𝑓

The 3rd face is 𝑓Ξ∶ 𝐴 × 𝕀[2] → 𝐵 while the second face is the composite

𝐴 × 𝕀[2] 𝐴 × 𝕀 𝐵
𝐴×𝑞 𝑓𝛼

where 𝑞∶ 𝕀[2] → 𝕀 is the unique map defined by 0, 2 ↦ 0 and 1 ↦ 1. It remains
to define the 0th face. For this, we first extend along another hornΛ1[𝕀[3]] ↪ 𝕀[3]
of homotopy coherent isomorphisms in 𝐵𝐴 as depicted below

𝑓

𝑓𝑔𝑓 𝑓

𝑓𝑔𝑓

𝜓−1𝛽𝑓

𝛿

𝑓𝛼−1
𝛽−1𝑓

Here the 0th face is Ψ−1, the 3rd face is the composite

𝐴 × 𝕀[2] 𝐴 × 𝕀 𝐵
𝐴×𝑞 𝛽𝑓

and the 2nd face is the composite

𝐴 × 𝕀[2] 𝐴 × 𝕀[2] × 𝕀 𝐵 × 𝕀 𝐵𝐴×𝑑 Ψ×𝕀 𝛽

where 𝑑∶ 𝕀[2] → 𝕀[2] × 𝕀 is the unique map defined by 0 ↦ (2, 0), 1 ↦ (2, 1),
and 2 ↦ (0, 1). The 𝛿1-face of this horn can be used to define a final horn
Λ1[𝕀[3]] ↪ 𝕀[3] of homotopy coherent isomorphisms in 𝐵𝐴 as depicted below

𝑓𝑔𝑓

𝑓𝑔𝑓 𝑓

𝑓𝑔𝑓

𝛿

𝑓𝛼−1

𝑓𝑔𝜓−1 𝛽𝑓
𝑓𝑔𝜓−1

whose 3rd face is degenerate, whose 2nd face is an inversion that swaps the first
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two vertices of the 𝛿1-face 𝐴 × 𝕀[2] → 𝐵 just defined, and whose 0th face is the
composite

𝐴 × 𝕀[2] 𝐴 × 𝕀[2] × 𝕀 𝐵 × 𝕀 𝐵𝐴×𝑐 Ψ×𝕀 𝛽

where 𝑐∶ 𝕀[2] → 𝕀[2] × 𝕀 is the unique map defined by 0 ↦ (2, 0), 1 ↦ (0, 0),
and 2 ↦ (0, 1). The filler defines the desired 0th face

𝑓𝑔𝑓

𝑓𝑔𝑓 𝑓

𝛽𝑓
Σ

𝑓𝑔𝜓−1

𝑓𝛼−1

that completes the horn Γ∶ 𝐴 × Λ1[𝕀[3]] → 𝐵 whose filler defines the witness
for the half adjoint equivalence between 𝛼′ and 𝛽.

Exercises
Exercise D.5.i. Verify that the underlying map defined by a complicial isofi-
bration between naturally marked quasi-categories is an isofibration of quasi-
categories.

Exercise D.5.ii. Extend the result of Example D.5.5 to show that the maximally
marked “Λ1[3]-horn of homotopy coherent isomorphisms” Λ1[𝕀[3]] ↪ 𝕀[3],
whose codomain is the contractible groupoid on four vertices 0, 1, 2, 3 and
whose domain is the union of the three copies of 𝕀[2] spanned by the subsets
of three of these four vertices that include the vertex 1, is a marked anodyne
extension.

D.6 Equivalence of Slices and Cones

Theorems D.4.14 and D.5.1 also enable us to finally prove the results sketched
in §4.2, which now follow easily from the combinatorial work done in §D.2.
Recall in particular Proposition D.2.16, which shows that the map of augmented
simplicial sets

𝑠𝑛,𝑚∶ Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋆ Δ[𝑚] ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+

is a marked homotopy retract equivalence. By Lemma D.4.20, we now know
that such maps induce equivalences upon mapping into quasi-categories.

In this section, we use these observations to verify that for any augmented
simplicial sets𝑋 and𝑌 the canonical map of augmented simplicial sets 𝑠𝑋,𝑌∶ 𝑋⋄



678 The Combinatorics of (Marked) Simplicial Sets

𝑌 → 𝑋 ⋆ 𝑌 also induces an equivalence on mapping into quasi-categories. For
this, we use the Reedy categorical homotopy theory developed in §C.5. To
begin:

Lemma D.6.1. The latching maps for the diagrams 𝐹⋄, 𝐹⋆ ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+ defined

by
𝐹𝑛,𝑚⋄ ≔ Δ[𝑛] ⋄ Δ[𝑚] and 𝐹𝑛,𝑚⋆ ≔ Δ[𝑛] ⋆ Δ[𝑚]

are the maps

(𝜕Δ[𝑛] ↪ Δ[𝑛]) ⋄̂ (𝜕Δ[𝑚] ↪ Δ[𝑚])and(𝜕Δ[𝑛] ↪ Δ[𝑛]) ⋆̂ (𝜕Δ[𝑚] ↪ Δ[𝑚]),
(D.6.2)

which are both monomorphisms. Hence, both 𝐹⋄ and 𝐹⋆ are Reedy monomorphic.

Proof For any pair of augmented simplicial sets 𝑋 and 𝑌 we define their
external product 𝑋 𝑌 ∈ 𝒮𝑒𝑡𝚫

op
+×𝚫

op
+ to be the functor that takes an object

([𝑛], [𝑚]) to the set 𝑋𝑛×𝑌𝑚. In particular, the functor represented by ([𝑛], [𝑚])
is Δ[𝑛] Δ[𝑚]. We can view an external product 𝑋 𝑌 as a weight for the
diagrams 𝐹⋄ and 𝐹⋆ and use Definition A.6.2 and cocontinuity of the join and
fat join bifunctors to compute the weighted colimits:

colim𝑋 𝑌 𝐹⋄ ≅ ∫
([𝑛],[𝑚])∈𝚫+×𝚫+

∐
𝑋𝑛×𝑌𝑚

Δ[𝑛] ⋄ Δ[𝑚]

≅ (∫
[𝑛]∈𝚫+

∐
𝑋𝑛

Δ[𝑛]) ⋄ (∫
[𝑚]∈𝚫+

∐
𝑌𝑚

Δ[𝑚])

≅ 𝑋 ⋄ 𝑌

Similarly, colim𝑋 𝑌 𝐹⋆ ≅ 𝑋 ⋆ 𝑌.
By Definition C.4.14, the latching map at the object ([𝑛], [𝑚]) ∈ 𝚫+ × 𝚫+

is the map on weighted colimits induced by the map

(𝜕Δ[𝑛] ↪ Δ[𝑛]) ˆ (𝜕Δ[𝑚] ↪ Δ[𝑚])

of weights. By the weighted colimit calculation just given, we see that the
latching maps for 𝐹⋄ and 𝐹⋆ are the maps (D.6.2).

It remains to verify that these latching maps are monomorphisms. By direct
calculation,

(𝜕Δ[𝑛] ↪ Δ[𝑛]) ⋆̂ (𝜕Δ[𝑚] ↪ Δ[𝑚]) ≅ 𝜕Δ[𝑛 + 1 + 𝑚] ↪ Δ[𝑛 + 1 + 𝑚],

which is clearly a monomorphism, so 𝐹⋆ is Reedy monomorphic.
For the analogous result for the fat join, observe first that

(𝜕Δ[−1] ↪ Δ[−1]) ⋄̂ (𝑋 ↪ 𝑌) ≅ (𝑋 ↪ 𝑌),
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since 𝜕Δ[−1] is the initial object and Δ[−1] is the unit for the fat join. Thus,
it suffices to consider Leibniz products of simplex boundary inclusions with
𝑛,𝑚 ≥ 0, in which case the formula for the fat join simplifies since 𝜕Δ[𝑛]
and Δ[𝑛] are both terminally augmented. Recall from Definition 4.2.2 that
for terminally augmented simplicial sets 𝑋 and 𝑌 and for 𝑛 ≥ 0, (𝑋 ⋄ 𝑌)𝑛 ≅
𝑋𝑛 ⊔ (⨆[𝑛]↠[1] 𝑋𝑛 × 𝑌𝑛) ⊔ 𝑌𝑛. Thus, we see that for any monomorphisms of
terminally augmented simplicial sets 𝑋 ↪ 𝑌 and 𝑈 ↪ 𝑉, the square

(𝑈 ⋄ 𝑋)𝑛 (𝑉 ⋄ 𝑋)𝑛

(𝑈 ⋄ 𝑌)𝑛 (𝑉 ⋄ 𝑌)𝑛

⌟

is a pullback in the category of sets. For any pullback square comprised of
monomorphisms in the category of sets, the pushout inside the square is con-
structed by the joint image of the lower and right-hand legs: in particular the
map (𝑈 ⋄ 𝑌)𝑛 ∪(𝑈⋄𝑋)𝑛 (𝑉 ⋄ 𝑋)𝑛 ↪ (𝑉 ⋄ 𝑌)𝑛 is a monomorphism. Thus, the
Leibniz fat join (𝑈 ↪ 𝑉) ⋄̂ (𝑋 ↪ 𝑌) of two monomorphisms of terminally
augmented simplicial sets is a monomorphism, and in particular the latching
maps of 𝐹⋄ are monomorphisms as claimed.

Recall the natural comparison map of Lemma D.2.14 from the fat join of a
pair of simplicial sets to the join of the pair of simplicial sets. We are now in
the position to prove Proposition 4.2.7.

Proposition D.6.3. For all simplicial sets 𝑋 and 𝑌, the natural map 𝑠𝑋,𝑌∶ 𝑋 ⋄
𝑌 → 𝑋 ⋆ 𝑌 induces an equivalence of quasi-categories 𝐴𝑋⋆𝑌 ∼ 𝐴𝑋⋄𝑌 for all
quasi-categories 𝐴.

Lurie gives an alternate proof of this result in [78, 4.2.1.2].

Proof A direct verification shows that the latching maps of the augmented
bisimplicial set 𝑋 𝑌 ∈ 𝒮𝑒𝑡𝚫

op
+×𝚫

op
+ are monomorphisms.15 Hence by Corollary

C.5.17, the weighted colimit functor

colim𝑋 𝑌−∶ 𝑠𝒮𝑒𝑡𝚫+×𝚫+ 𝑠𝒮𝑒𝑡

is a left Quillen bifunctor from the Reedy version of the Joyal model structure
to the Joyal model structure on simplicial sets.

By Proposition D.2.16 and Lemma D.4.20, the components 𝑠𝑛,𝑚∶ Δ[𝑛] ⋄
Δ[𝑚] → Δ[𝑛] ⋆ Δ[𝑚] are weak equivalences in the Joyal model structure, as
15 This follows because 𝚫+ ×𝚫+ is an elegant Reedy category: every element of a presheaf

indexed by this category is a degeneracy of some nondegenerate element in a unique way [16],
and hence all presheaves are Reedy monomorphic.
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these are characterized as those maps that induce equivalences upon mapping
into an arbitrary quasi-category. So Proposition D.2.16 and Lemma D.6.1 estab-
lish that the natural transformation 𝑠∶ 𝐹⋄ → 𝐹⋆ is a pointwise weak equivalence
between Reedy cofibrant objects in 𝑠𝒮𝑒𝑡𝚫+×𝚫+. By Lemma C.3.4, the induced
map on weighted colimits 𝑠𝑋,𝑌∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌 is then a weak equivalence in
the Joyal model structure, which means exactly that it induces an equivalence
of quasi-categories 𝐴𝑋⋆𝑌 ∼ 𝐴𝑋⋄𝑌 for all quasi-categories 𝐴 as claimed.

In particular, for any quasi-category 𝐴, there are natural equivalences 𝐴𝟙⋆𝐽 ∼

𝐴𝟙⋄𝐽 and 𝐴𝐽⋆𝟙 ∼ 𝐴𝐽⋄𝟙 over 𝐴 × 𝐴𝐽. By Lemma 4.2.3 the codomains pullback
to define the quasi-categories of cones under or over a diagram 𝑑∶ 𝐽 → 𝐴,
respectively. However, as discussed in Warning 4.2.10, the domains do not pull
back to the slice quasi-categories 𝐴/𝑑 and 𝑑/𝐴 of Definition D.2.8. Nonetheless,
we can use the equivalence between the join and fat join constructions to prove
that 𝐴/𝑑 ≃ Hom𝐴𝐽(Δ, 𝑑) and 𝑑/𝐴 ≃ Hom𝐴𝐽(𝑑, Δ) over 𝐴 and do so now.

Proposition D.6.4. For any diagram 𝑑∶ 𝐽 → 𝐴 indexed by a simplicial set 𝐽
and valued in a quasi-category 𝐴, there are natural equivalences

𝐴/𝑑 Hom𝐴𝐽(Δ, 𝑑) 𝑑/𝐴 Hom𝐴𝐽(𝑑, Δ)

𝐴 𝐴

∼

res res

∼

res res

between the slice quasi-categories and the quasi-categories of cones.

Proof Our proof again uses Reedy category theory. To begin, recall the ad-
junction of Definition D.2.8

𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡
−⋆𝐽

⊥
−/−

which gives a correspondence, for a simplicial set 𝐼 and a map 𝑑∶ 𝐽 → 𝐴,
between maps 𝐼 ⋆ 𝐽 → 𝐴 under 𝐽 and maps of simplicial sets 𝐼 → 𝐴/𝑑. A right
adjoint to the fat join functor − ⋄ 𝐽∶ 𝑠𝒮𝑒𝑡 → 𝐽/𝑠𝒮𝑒𝑡 can be calculated similarly.
By the defining pushout of Definition 4.2.2, the data of a map 𝐼 ⋄ 𝐽 → 𝐴 under
𝐽 displayed below-left transposes to the data displayed below-right

(𝐼 × 𝐽) ⊔ (𝐼 × 𝐽) 𝐼 ⊔ 𝐽 𝐼 Hom𝐴𝐽(Δ, 𝑑) 𝐴𝟚×𝐽

𝐼 × 𝟚 × 𝐽 𝐼 ⋄ 𝐽 𝐴 1 × 𝐴 𝐴𝐽 × 𝐴𝐽

𝜋𝐼⊔𝜋𝐽

⌜
−⊔𝑑

⌟

𝑑×Δ
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whence we see that the value of the right adjoint to − ⋄ 𝐽

𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡
−⋄𝐽

⊥
Hom(−)𝐽(Δ,−)

at 𝑑∶ 𝐽 → 𝐴 defines the ∞-category of cones Hom𝐴𝐽(Δ, 𝑑) over 𝑑.
The natural map 𝑠𝑋,𝑌∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌 of Lemma D.2.14 defines a natural

transformation

𝚫 𝐽/𝑠𝒮𝑒𝑡 𝚫 𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡
Δ[•]⋄𝐽

Δ[•]⋆𝐽

⇓𝑠 = よ
−⋄𝐽

−⋆𝐽

⇓𝑠

that by Proposition D.6.3 is a pointwise weak equivalence in the (sliced) Joyal
model structure. Note that by adjunction, Hom𝐴𝐽(Δ, 𝑑) is isomorphic to the
simplicial set defined by mapping from the cosimplicial object Δ[•] ⋄ 𝐽 to
𝑑∶ 𝐽 → 𝐴 in 𝐽/𝑠𝒮𝑒𝑡, and 𝐴/𝑑 is isomorphic to the simplicial set defined by
mapping from the cosimplicial object Δ[•] ⋆ 𝐽 to 𝑑∶ 𝐽 → 𝐴 in 𝐽/𝑠𝒮𝑒𝑡. In
particular, the mate of the natural transformation 𝑠 defines a natural comparison
map ̂𝑠 ∶ 𝐴/𝑑 → Hom𝐴𝐽(Δ, 𝑑). Moreover, since 𝑠Δ[𝑛],∅ is the identity, this natural
comparison map lies over 𝐴. Observe also that the cosimplicial objects Δ[•] ⋄ 𝐽
and Δ[•] ⋆ 𝐽 are both unaugmentable and thus Reedy cofibrant by Lemma
C.5.19.

The hom-bifunctor in the category 𝐽/𝑠𝒮𝑒𝑡 defines a bifunctor

((𝐽/𝑠𝒮𝑒𝑡)𝚫)op × 𝐽/𝑠𝒮𝑒𝑡 𝒮𝑒𝑡𝚫
op
≕ 𝑠𝒮𝑒𝑡

(Δ[•] ⋄ 𝐽, 𝑑) Hom𝐴𝐽(Δ, 𝑑)

(Δ[•] ⋆ 𝐽, 𝑑) 𝐴/𝑑

hom

(𝑠,id) ̂𝑠

(D.6.5)

which carries the map 𝑠 and the object 𝑑∶ 𝐽 → 𝐴 to the map ̂𝑠 ∶ 𝐴/𝑑 →
Hom𝐴𝐽(Δ, 𝑑) over 𝐴.

By Lemma C.2.13, the hom bifunctor for any model category, such as 𝐽/𝑠𝒮𝑒𝑡,
is a right Quillen bifunctor relative to the model structure on 𝒮𝑒𝑡 of Exercise
C.3.iv, with both weak factorization systems taken to be (monomorphism, epi-
morphism). Now since 𝚫 is a Reedy category, Theorem C.5.15 tells us that
the bifunctor (D.6.5) is again right Quillen, with respect to the Reedy model
structure on (𝐽/𝑠𝒮𝑒𝑡)𝚫 and the model structure on 𝒮𝑒𝑡𝚫

op
for which both weak

factorization systems are taken to be (Reedy monomorphism, Reedy epimor-
phism). By Lemma C.5.9, this latter weak factorization system coincides with
the familiar (monomorphism, trivial fibration) weak factorization system on
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𝑠𝒮𝑒𝑡. In particular, this bifunctor carries a Reedy trivial cofibration in its first
variable and a fibrant object 𝑑∶ 𝐽 → 𝐴 in its second variable to a trivial fibra-
tion of simplicial sets. By Ken Brown’s Lemma C.1.10, it follows that (D.6.5)
carries a pointwise weak equivalence between Reedy cofibrant objects to an
equivalence of quasi-categories over𝐴, proving that ̂𝑠 defines the claimed fibered
equivalence of quasi-categories.

In the case 𝐽 = 𝟙, a diagram 𝑎∶ 𝟙 → 𝐴 defines an element of the quasi-cate-
gory 𝐴, and we have the same result with different notion.

Corollary D.6.6. For any element 𝑎∶ 𝟙 → 𝐴 of a quasi-category 𝐴, there
are canonical equivalences 𝐴/𝑎 ∼ Hom𝐴(𝐴, 𝑎) and 𝑎/𝐴 ∼ Hom𝐴(𝑎, 𝐴) over 𝐴.

Proof When 𝐽 = 𝟙, the constant diagram functor Δ∶ 𝐴 → 𝐴𝐽 appearing in
Proposition D.6.4 reduces to the identity functor on 𝐴.

Exercises
Exercise D.6.i. In [78, §1.2.2], Lurie defines the right and left mapping spaces
between a pair of elements 𝑥 and 𝑦 in a quasi-category 𝐴 by the pullbacks:

Hom𝑅
𝐴(𝑥, 𝑦) 𝐴/𝑦 Hom𝐿

𝐴(𝑥, 𝑦) 𝑥/𝐴

1 𝐴 1 𝐴

⌟
𝑝0

⌟
𝑝1

𝑥 𝑦

Show that these simplicial sets are Kan complexes, which are equivalent to the
mapping spaces of Definition 3.4.9:

Hom𝑅
𝐴(𝑥, 𝑦) ≃ Hom𝐴(𝑥, 𝑦) ≃ Hom𝐿

𝐴(𝑥, 𝑦).



Appendix E

∞-Cosmoi Found in Nature

In this appendix we establish concrete examples of ∞-cosmoi found in nature.
Typically, the objects of these ∞-cosmoi are infinite-dimensional categories as
instantiated by some particular nonalgebraic model and the functors between
them are the morphisms of such. In most cases, there is an accompanying model
structure known to the higher categories literature, which lends us appropriate
classes of isofibrations, equivalences, and trivial fibrations. After indicating
where a proof of the existence of a suitable model structure may be found, the
only work that remains for us is to transfer previously established enrichments
to an enrichment over Joyal’s model structure for quasi-categories on simplicial
sets.

The general theory of what we might call “quasi-categorically enriched model
categories” is discussed in §E.1. In particular, we prove that any “quasi-cate-
gorically enriched category of fibrant objects” – a combination of Definitions
C.1.1 and C.3.11 – defines an ∞-cosmos and describe a change-of-base result
that helps produce examples.

In §E.2, we apply these results to establish the∞-cosmoi of (∞, 1)-categories
defined using the complete Segal space, Segal categories, and 1-complicial set
models. These complement the ∞-cosmos of quasi-categories of Proposition
1.2.10. We also prove that the change-of-model functors displayed in (10.0.1)
define cosmological biequivalences.

Finally, in §E.3, we turn our attention to what might be called higher ∞-cate-
gories, establishing ∞-cosmoi whose objects are (∞, 𝑛)- or even (∞,∞)-cate-
gories in various models.

683
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E.1 Quasi-Categorically Enriched Model Categories

Many examples of ∞-cosmoi arise as categories of fibrant objects in a model
category that is enriched over Joyal’s model structure simplicial sets – at least if
all fibrant objects are cofibrant as is surprisingly often the case.1 For example,
the ∞-cosmos of quasi-categories itself arises in this manner, as Joyal’s model
structure is cartesian closed (see Digression 1.1.31). The fibrant objects in the
Joyal model structure are exactly the quasi-categories, the fibrations between
fibrant objects are precisely the isofibrations of Definition 1.1.17, and the weak
equivalences between fibrant objects are exactly the equivalences of Definition
1.1.23.

Proposition E.1.1. Let ℳ be any model category that is enriched over the
Joyal model structure and in which every fibrant object is cofibrant. Then the full
subcategory of fibrant objectsℳ𝑓 inherits the structure of an∞-cosmos in which
the isofibrations are the fibrations between fibrant objects, the equivalences are
the weak equivalences between fibrant objects, and the trivial fibrations are the
trivial fibrations between fibrant objects.

Proof Since the fibrant objects inℳ are also cofibrant, Lemma C.3.12 implies
the simplicially enriched homs between fibrant–cofibrant objects of ℳ are
quasi-categories, which we denote by Fun(𝐴, 𝐵). The same result also implies
that for any fibration 𝑓∶ 𝐴 ↠ 𝐵 between fibrant objects, the induced map
𝑓∗∶ Fun(𝑋, 𝐴) ↠ Fun(𝑋, 𝐵) is an isofibration of quasi-categories.

By Example C.1.4, the fibrant objects and fibrations and weak equivalences
between them define a category of fibrant objects (see Definition C.1.1). In
particular, the unenriched category ℳ𝑓 has a terminal object, small products,
pullbacks of isofibrations, and limits of countable towers of isofibrations, with
each of these limits created inℳ. Sinceℳ admits simplicial tensors, Proposition
A.5.4 implies that these 1-categorical limits are conical, and thus ℳ𝑓 possesses
the conical limits of axiom 1.2.1(i). The stability of the isofibrations under the
1-categorical limits of axiom 1.2.1(ii) then is also part of the category of fibrant
objects structure of Example C.1.4, though in many examples the stability of
the class of isofibrations can also be established via Lemma C.2.3.

It remains to verify the axioms concerning the simplicial cotensors. By hy-
pothesis ℳ is also cotensored over simplicial sets, and since ℳ is an enriched
model category, the cotensor bifunctor is a right adjoint of a Quillen two-variable
adjunction. Directly from the defining axiom of Definition C.3.8, the fibrant
1 This hypothesis – that all fibrant objects are cofibrant – is not essential for the development of
∞-category theory, though it does streamline various proofs. Indeed, the first definition of an
“∞-cosmos” to appear in the literature did not include this requirement [110].
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objects are closed under cotensor with cofibrant objects, but since all objects in
the Joyal model structure are cofibrant, the fibrant objects are closed under sim-
plicial cotensors. Thus ℳ𝑓 possesses all the limits of 1.2.1(i). Leibniz stability
of the isofibrations is a special case of Definition C.3.8, proving that ℳ𝑓 is an
∞-cosmos.

Since all fibrant objects are cofibrant, Fun(𝑋, −)∶ ℳ𝑓 → 𝒬𝒞𝑎𝑡 is the action
on fibrant objects of a right Quillen functor (see Exercise C.3.iii), and thus by
Lemma C.3.4 weak equivalences inℳ𝑓 are sent to the equivalences of Definition
1.2.2. Conversely, by Lemma 1.2.15 each equivalence in the ∞-cosmos admits
the structure of a homotopy equivalence, defined using what Quillen would call
“right homotopies.” Quillen proves that any homotopy equivalence is necessarily
a weak equivalence in the model category [93, §I.1].

Furthermore:

Corollary E.1.2. Any simplicially enriched right Quillen adjoint between
quasi-categorically enriched model categories with all fibrant objects cofibrant
defines a cosmological functor that is a cosmological biequivalence whenever
the Quillen adjoint defines a Quillen equivalence.

Proof A right Quillen adjoint preserves fibrant objects, so a simplicially en-
riched right Quillen adjoint defines a simplicial functor between the subcat-
egories of fibrant objects, satisfying the first requirement of a cosmological
functor. As a right Quillen functor, it preserves fibrations between fibrant ob-
jects, and thus preserves the isofibrations in the∞-cosmoi defined by Proposition
E.1.1. Finally, a simplicially enriched right adjoint preserves both conical and
weighted limits, by Proposition A.6.20. This verifies all of the axioms defining
a cosmological functor.

Now consider a simplicially enriched right Quillen equivalence 𝑈∶ 𝒩 →ℳ,
with left adjoint 𝐹. The action on homs of the functor 𝑈 is isomorphic to the
map defined by precomposition with a counit component:

𝒩(𝑋, 𝑌) ℳ(𝑈𝑋,𝑈𝑌)

𝒩(𝐹𝑈𝑋, 𝑌)

𝑈𝑋,𝑌

−∘𝜖𝑋

≃

where the displayed vertical isomorphism is adjoint transposition. By Lemma
C.3.6, the counit component 𝜖𝑋 is a weak equivalence when 𝑋 is fibrant. When
𝑌 is fibrant, the functor 𝒩(−, 𝑌)∶ 𝒩op → 𝑠𝒮𝑒𝑡 is right Quillen by Exercise
C.3.iii. Hence, by Lemma C.3.4, this functor carries weak equivalences between
cofibrant objects in 𝒩 to equivalences between quasi-categories. Putting all
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this together, we see that when 𝑋 and 𝑌 are fibrant, the diagonal map defines
an equivalence of quasi-categories, and thus 𝑈𝑋,𝑌∶ 𝒩(𝑋, 𝑌) → ℳ(𝑈𝑋,𝑈𝑌)
must be an equivalence of quasi-categories as well. This verifies the local
equivalence property of cosmological biequivalences.

Essential surjectivity is also a consequence of Lemma C.3.6, since the derived
unit supplies a weak equivalence 𝑀 ∼ 𝑈𝑅𝐹𝑀 for any fibrant object 𝑀 ∈ ℳ.
Since 𝑅𝐹𝑀 is a fibrant object in𝒩, this defines an equivalence in the∞-cosmos
ℳ𝑓 involving an object in the image of 𝑈∶ 𝒩𝑓 →ℳ𝑓.

With Proposition E.1.1 in hand, the next question is where do model categories
enriched over the Joyal model structure come from? This question has not
attracted much attention in the literature, but the community has done us a
considerable favor, in many cases, by providing model categories of infinite-
dimensional categories that are enriched over some other cartesian closed model
category. This allows us to apply Theorem C.3.16 to convert a known enrichment
to an enrichment over Joyal’s model structure for quasi-categories. Combining
that result with Proposition E.1.1, we obtain a useful change-of-base result that
produces model categories enriched over the Joyal model structure.

Proposition E.1.3. Let 𝒱 be a cartesian closed model category equipped with
a Quillen adjunction whose right adjoint is valued in the Joyal model structure
and whose left adjoint preserves finite products.

𝑠𝒮𝑒𝑡 𝒱
𝐹

⊥
𝑈

(i) Then for any 𝒱-model category ℳ in which every fibrant object is cofi-
brant, the full subcategory of fibrant objects ℳ𝑓 defines an ∞-cosmos
in which the isofibrations are the fibrations between fibrant objects, the
equivalences are the weak equivalences between fibrant objects, the triv-
ial fibrations are the trivial fibrations between fibrant objects, the functor
spaces are defined by Fun(𝑀,𝑁) ≔ 𝑈ℳ(𝑀,𝑁), where ℳ(𝑀,𝑁) is the
hom-object in 𝒱, and the simplicial cotensor of 𝑀 ∈ ℳ𝑓 with 𝑆 ∈ 𝑠𝒮𝑒𝑡
are defined by the 𝒱-cotensor 𝑀𝐹𝑆.

(ii) Moreover, any right Quillen 𝒱-adjoint between 𝒱-model categories of
this form defines a cosmological functor that is a cosmological biequiva-
lence whenever the Quillen adjoint is a Quillen equivalence.

Proof The adjunction 𝐹 ⊣ 𝑈 is assumed to be Quillen adjunction between
cartesian closed model categories in which the left adjoint preserves finite prod-
ucts. Thus, by Theorem C.3.16, any 𝒱-model category ℳ admits the structure
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of a model category enriched over the Joyal model structure with the same un-
derlying unenriched model category with enriched homs and cotensors defined
by:

Fun(𝑀,𝑁) ≔ 𝑈ℳ(𝑀,𝑁) and 𝑀𝑆 ≔ 𝑀𝐹𝑆,

as claimed. Since the underlying model category is unchanged, every fibrant
object in ℳ is still cofibrant. Thus, by Proposition E.1.1, the full subcategory
of fibrant objects defines an ∞-cosmos.

Again because the change-of-base result does not affect the underlying model
categories, any right Quillen adjoint between 𝒱-model categories remains a
right Quillen adjoint. By Proposition A.7.3, a 𝒱-functor becomes a simplicially
enriched functor under the new enrichments. Corollary E.1.2 now tells us that a
right Quillen𝒱-adjoint gives rise to a cosmological functor that is a cosmological
biequivalence when that Quillen adjoint is a Quillen equivalence.

We often make use of this result in the following special case:

Corollary E.1.4. Let 𝒱 be a cartesian closed model category in which all
fibrant objects are cofibrant that is equipped with a Quillen adjunction whose
right adjoint is valued in the Joyal model structure and whose left adjoint
preserves finite products.

𝑠𝒮𝑒𝑡 𝒱
𝐹

⊥
𝑈

Then the fibrant objects of 𝒱 define a cartesian closed ∞-cosmos 𝒱𝑓 and the
right adjoint defines a cosmological functor 𝑈∶ 𝒱𝑓 → 𝒬𝒞𝑎𝑡 that is naturally
isomorphic to the underlying quasi-category functor and is a cosmological
biequivalence whenever 𝐹 ⊣ 𝑈 is a Quillen equivalence.

Proof When the fibrant objects of 𝒱 are cofibrant, 𝒱 itself satisfies the hy-
potheses of Proposition E.1.3(i) and thus 𝒱𝑓 defines an ∞-cosmos. By Lemma
A.7.7, 𝐹 ⊣ 𝑈 defines a simplicially enriched adjunction between simplicial
sets and the simplicially enriched category 𝑈∗𝒱, so in this way we obtain a
simplicially enriched right Quillen functor 𝑈∶ 𝑈∗𝒱 → 𝑠𝒮𝑒𝑡 between model
categories enriched over the Joyal model structure. By Corollary E.1.2, 𝑈 then
defines a cosmological functor 𝑈∶ 𝒱𝑓 → 𝒬𝒞𝑎𝑡 that is a biequivalence if 𝐹 ⊣ 𝑈
is a Quillen equivalence. Combining Remark A.1.9 with the definition of the
functor spaces of 𝒱𝑓 given in Proposition E.1.3, we obtain the following natural
isomorphism for any 𝑋 ∈ 𝒱𝑓

𝑈(𝑋) ≅ 𝑈(𝑋1) ≅ Fun(1, 𝑋)
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proving that the cosmological functor 𝑈∶ 𝒱𝑓 → 𝒬𝒞𝑎𝑡 is naturally isomorphic
to the underlying quasi-category functor associated to the ∞-cosmos 𝒱𝑓 (see
also Remark 1.3.11).

Proposition E.1.3 inspires the following trivial examples of ∞-cosmoi.

Example E.1.5 (1-categories as ∞-cosmoi). Any complete locally small 1-
category 𝒞 can be made into an ∞-cosmos in which Fun(𝐴, 𝐵) is just the set
of morphisms from 𝐴 to 𝐵. By the Yoneda lemma, the equivalences are then
the isomorphisms in 𝒞 and so by Lemma 1.2.19 all maps must necessarily be
isofibrations. The cotensor of an object 𝐴 ∈ 𝒞 with a simplicial set 𝑆 is defined
by

𝐴𝑆 ≔ 𝐴𝜋0𝑆 ≔∏
𝜋0𝑆

𝐴.

Ignoring the fact that model categories are typically assumed to have colimits
as well as limits, this construction can be seen as a special case of Proposition
E.1.3 applied to the adjunction

𝑠𝒮𝑒𝑡 𝒮𝑒𝑡
𝜋0

⊥
sk0

whose right adjoint embeds 𝒮𝑒𝑡 ↪ 𝑠𝒮𝑒𝑡 as the subcategory of 0-skeletal sim-
plicial sets (see Definition C.5.2). Here the cartesian closed model structure
on 𝒮𝑒𝑡 is not the one considered in Exercise C.3.iv but rather the one in which
the weak equivalences are the isomorphisms and all maps are taken to be both
cofibrations and fibrations. To see that this adjunction is Quillen, note that 𝜋0
vacuously preserves cofibrations, while sk0 carries any map to an isofibration
of quasi-categories: This latter claim follows by adjunction since the defining
lifting properties below-left transpose to the lifting properties below-right:

Λ𝑘[𝑛] sk0 𝐴 𝜋0Λ𝑘[𝑛] 𝐴

Δ[𝑛] sk0 𝐵 𝜋0Δ[𝑛] 𝐵

𝟙 sk0 𝐴 𝜋0𝟙 𝐴

𝕀 sk0 𝐵 𝜋0𝕀 𝐵

∼ ↭ ∃!

∼ ↭ ∃!

Famously, 𝜋0 preserves finite products, so the conditions of the change-of-base
theorem apply. The homotopy 2-category of an ∞-cosmos arising in this way
has only identity 2-cells.
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Example E.1.6 (2-categories as ∞-cosmoi). Categorifying the previous ex-
ample, any 2-category 𝒞 with sufficient limits defines an ∞-cosmos where
Fun(𝐴, 𝐵) is the nerve of the hom-category of morphisms from 𝐴 to 𝐵 in 𝒞. By
Theorem 1.4.7 and Proposition B.6.1, the equivalences are necessarily the equiv-
alences in the 2-category. Inspired by Proposition 1.4.9, we take the isofibrations
to be the isofibrations in the 2-category.

Interpreting “sufficient limits” to mean the limits of axiom 1.2.1(i), the re-
maining axiom 1.2.1(ii) can be verified by hand. Alternatively, again ignoring
the fact that model categories are typically assumed to have colimits as well
as limits, we may apply Proposition E.1.3 to the homotopy category ⊣ nerve
adjunction of Proposition 1.1.11

𝑠𝒮𝑒𝑡 𝒞𝑎𝑡
h

⊥

which is a Quillen adjunction between Joyal’s model structure and the usual
“folk” model structure on categories. Any 2-category admitting suitable finite
limits and colimits is canonically enriched over the folk model structure on
categories, when it is given the “trivial” 𝒞𝑎𝑡-enriched model structure described
by Lack [72], with weak equivalences and fibrations are exactly the equivalences
and isofibrations just described.

It remains to unpack the meaning of the weaselly phrase “sufficient limits.”
By Proposition 6.2.8, the 2-category 𝒞 is required to have all PIE limits, that is
2-categorical products, inserters, and equifiers discussed in Digression 6.2.7.
This implies that 𝒞 admits pseudopullbacks of all maps, by the construction
of Definition 6.2.10, but this does not quite imply that 𝒞 admits 2-pullbacks
of isofibrations. Instead, the proof of Lemma 6.2.14 constructs a bipullback of
an isofibration, with the usual hom-category isomorphism replaced by a hom-
category equivalence. Similar remarks apply to limits of towers of isofibrations.
But in practice, the 2-categories that admit PIE limits such as those considered
in [18] do seem to admit 2-pullbacks of isofibrations and 2-limits of towers of
isofibrations and thus define examples of ∞-cosmoi.

In particular, Example E.1.6 specializes to recover the ∞-cosmos structure
on 𝒞𝑎𝑡 discussed in Proposition 1.2.11. Intriguingly, it also defines an ∞-cos-
mos structure on 𝒞𝑎𝑡op in which the “isofibrations” are those functors that are
injective on objects.2 Combining these observations with the dual ∞-cosmos
2 In the “folk” model structure on 𝒞𝑎𝑡, the fibrations are the isofibrations, the weak equivalences

are the equivalences, and the cofibrations are the injective-on-objects functors.
Injective-on-objects functors satisfy an isomorphism extension property dual to the
isomorphism lifting property that defines the 2-categorical notion of isofibration.
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construction of Definition 1.2.25, we see that the four 2-categorical duals 𝒞𝑎𝑡,
𝒞𝑎𝑡op, 𝒞𝑎𝑡co, and 𝒞𝑎𝑡coop are all ∞-cosmoi.

The ∞-cosmoi of Example E.1.6 admit an abstract characterization as those
∞-cosmoi that are isomorphic (as quasi-categorically enriched categories) to
their homotopy 2-categories. In this case, the weak 2-limits of Chapter 3 are
actually strict and many of our results specialize to known theorems in the
2-categorical literature.

Example E.1.7 (simplicial model categories as∞-cosmoi). The identity functor
id∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 defines a right Quillen adjoint from Quillen’s model structure
for Kan complexes to Joyal’s model structure for quasi-categories; evidently
its left adjoint preserves products. Hence, any Kan complex enriched model
category – or simplicial model category in the usual parlance – may be regarded
as a quasi-categorically enriched model category in which each of the mapping
spaces between fibrant–cofibrant objects happens to be a Kan complex. Thus, any
simplicial model category whose fibrant objects are cofibrant may be regarded
as presenting an ∞-cosmos.

The homotopy 2-categories arising in this manner are all (2, 1)-categories,
with every natural transformation defining a natural isomorphism.

Digression E.1.8 (on accessible ∞-cosmoi). Many of the model categories
one meets in practice, including all of the examples considered in this text,
are combinatorial, meaning that the underlying category is locally presentable
and the model structure is cofibrantly generated. When a model category ℳ
satisfying the hypotheses of Proposition E.1.1 is combinatorial, the resulting
∞-cosmosℳ is an accessible∞-cosmos, a notion being studied by Bourke and
Lack, based on their earlier work [22] with Vokřínek on homotopical adjoint
functor theorems. In fact, it seems likely that all of the constructions of Chapter
6 preserve accessibility, which would mean that every ∞-cosmos considered in
this text is accessible.

There are innumerable applications of this observation that will be explored
in future work, stemming from the specialization of the main theorems of [22] to
this setting. First any accessible ∞-cosmos has all flexible weighted homotopy
colimits, which are defined by a simplicially enriched universal property of
the form of Definition A.6.5 except expressed by an equivalence, rather than
an isomorphism, of quasi-categories.3 This result itself can be understood as
a consequence of a second theorem which says that any cosmological functor
𝑈∶ 𝒦 → ℒ between accessible ∞-cosmoi that is accessible as an unenriched
functor admits a homotopical left adjoint: for every 𝐴 ∈ ℒ, there exists 𝐹𝐴 ∈ 𝒦
3 The fact that all of the simplicial sets of (A.6.6) are quasi-categories is a consequence of the

flexibility of the weight (see Definition 6.2.1 and Proposition 6.2.8).
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and a map 𝜂𝐴∶ 𝐴 → 𝑈𝐹𝐴 inducing an equivalence of quasi-categories

Fun(𝐹𝐴, 𝐵) ∼ Fun(𝐴,𝑈𝐵)

for all 𝐵 ∈ 𝒦. For instance, the cosmological embedding 𝒟𝑖𝑠𝑐(𝒦) ↪ 𝒦 is
accessible whenever 𝒦 is an accessible ∞-cosmos, so this result defines a weak
reflection, that “freely inverts” all of the arrows in an ∞-category.

Exercises
Exercise E.1.i. State and prove a version of Proposition E.1.3 that applies to
enriched categories of fibrant objects, such as considered in Examples E.1.5
and E.1.6, that may have few colimits.

E.2 ∞-Cosmoi of (∞, 1)-Categories

The ∞-cosmos of quasi-categories is established in Proposition 1.2.10. In this
section, we establish three other ∞-cosmoi whose objects define (∞, 1)-catego-
ries – modeled as complete Segal spaces, Segal categories, or 1-complicial sets
– and construct the following biequivalences between them:

𝒞𝒮𝒮 𝒮𝑒𝑔𝑎𝑙

𝒬𝒞𝑎𝑡

1-𝒞𝑜𝑚𝑝

(−)0
disc

(−)0

♮

nervenerve

(−)0

Before giving the formal definition of a complete Segal space, introduced by
Charles Rezk in [100], we explain the idea. To start, a complete Segal space is a
bisimplicial set 𝑋 ∈ 𝒮𝑒𝑡𝚫

op×𝚫op
. It is conventional to regard the simplicial sets

𝑋𝑚 ≔ 𝑋𝑚,• as the “columns” of the bisimplicial set 𝑋, while the simplicial sets
𝑋•,𝑛 define the “rows.” In a complete Segal space, the diagram

𝑋• ≔ 𝑋0 𝑋1 𝑋2 ⋯

defines a simplicial object in the category of Kan complexes. Moreover, for
each 𝑚 ≥ 0, the matching map 𝑋𝑚 → 𝑀𝑚𝑋 whose codomain is the space of
“boundary data” associated with the 𝑚-simplex is a Kan fibration. The spaces
𝑋0 and 𝑋1 are the “spaces of objects and arrows” for the complete Segal space.
The so-called “Segal condition” implies that the space 𝑋𝑛 may be regarded as
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the “space of 𝑛-composable arrows.” A Segal space, satisfying the conditions
enumerated thus far, is then something like an “internal category up to homotopy”
(compare with Definition B.1.8). The final “completeness” condition relates the
spatial structure of 𝑋0 with the categorical structure just defined, expressing the
idea that paths in 𝑋0 should correspond to isomorphisms in 𝑋•.

The formal definition of a complete Segal space has three conditions, which
are most easily described in terms of the weighted limit bifunctor

(𝒮𝑒𝑡𝚫
op
)op × 𝑠𝒮𝑒𝑡𝚫

op
𝑠𝒮𝑒𝑡

lim−−

where 𝑠𝒮𝑒𝑡 is regarded as a 𝒮𝑒𝑡-enriched category. Note that the weights for
𝚫op-indexed diagrams in 𝑠𝒮𝑒𝑡 are 𝚫op-indexed diagrams in 𝒮𝑒𝑡, i.e., simplicial
sets. In more detail:

Definition E.2.1 (complete Segal space).

(i) A simplicial object 𝑋• ∈ 𝑠𝒮𝑒𝑡𝚫
op

is Reedy fibrant just when the induced
map on weighted limits

𝑋𝑚 ≅ limΔ[𝑚] 𝑋 → lim𝜕Δ[𝑚] 𝑋 ≕ 𝑀𝑚𝑋

is a Kan fibration of simplicial sets for all 𝑚 ≥ 0.
(ii) A Reedy fibrant simplicial object 𝑋• is a Segal space just when the

induced map on weighted limits

𝑋𝑛 ≅ limΔ[𝑛] 𝑋 → limΛ𝑘[𝑛] 𝑋

is a trivial fibration of simplicial sets for all 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛.4

(iii) A Segal space 𝑋• is a complete Segal space, just when the induced map
on weighted limits

lim𝕀 𝑋 → limΔ[0] 𝑋 ≅ 𝑋0

is a trivial fibration of simplicial sets, asserting that the “space of iso-
morphisms in 𝑋”5 is equivalent to the space 𝑋0.6

4 By Reedy fibrancy, the induced map is already a Kan fibration, so to demand that it is a trivial
fibration is equivalent to demanding that it is a weak homotopy equivalence. A priori, this
definition is stronger than the usual Segal condition, which requires that the map induced on
weighted limits by the inclusion of the spine of the 𝑛-simplex for each 𝑛 ≥ 2 is a trivial
fibration. The spine inclusions are in the class cellularly generated by the inner horn inclusions,
so by Exercise C.2.v applied to the two-variable adjunction involving the weighted limit, our
condition clearly implies the classical Segal condition. The proof of the converse is more subtle
and can be found as [64, 3.4].

5 Other weights may be used to define the “space of isomorphisms” such as the pushout of

Δ[2] 𝛿0 Δ[1] 𝛿2 Δ[2]. See [100, §11] for a discussion.
6 By the 2-of-3 property, this is equivalent to the arguably more natural condition that the map
Δ∶ 𝑋0 → lim𝕀𝑋, induced by !∶ 𝕀 → Δ[0] is a weak homotopy equivalence.
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The category of bisimplicial sets, as a presheaf category, is cartesian closed
and hence enriched over itself. Among the great supply of product-preserving
functors 𝒮𝑒𝑡𝚫

op×𝚫op
→ 𝒮𝑒𝑡𝚫

op
that may be used to convert this to a simpli-

cial enrichment, there are two of particular interest: column0∶ 𝒮𝑒𝑡𝚫
op×𝚫op

→
𝒮𝑒𝑡𝚫

op
, which sends a bisimplicial set 𝑋 to its space 𝑋0 of 0-simplices and

row0∶ 𝒮𝑒𝑡𝚫
op×𝚫op

→ 𝒮𝑒𝑡𝚫
op

, which passes to set the set of vertices in each space
in the simplicial object. As observed by Joyal and Tierney [64], the former
construction carries a complete Segal space to a Kan complex, while the latter
construction carries a complete Segal space to a quasi-category and will be used
to prove:

Proposition E.2.2. The full subcategory 𝒞𝒮𝒮 ↪ 𝒮𝑒𝑡𝚫
op×𝚫op

of complete Segal
spaces defines a cartesian closed∞-cosmos in which the functor space Fun(𝐴, 𝐵)
is defined to be the underlying quasi-category, formed by the vertices in each
internal hom 𝐵𝐴. With respect to this ∞-cosmos structure:

(i) The underlying quasi-category functor (−)0 ≔ row0∶ 𝒞𝒮𝒮 ∼ 𝒬𝒞𝑎𝑡 is
a cosmological biequivalence.

(ii) A second cosmological biequivalence nerve∶ 𝒬𝒞𝑎𝑡 ∼ 𝒞𝒮𝒮 carries
a quasi-category 𝐴 to the bisimplicial set whose (𝑚, 𝑛)-simplices are
simplicial maps Δ[𝑚] × 𝕀[𝑛] → 𝐴 indexed by the product of the ordinal
category with the ordinal groupoid.

Proof By a theorem of Rezk, the complete Segal spaces form the fibrant objects
in a cartesian closed model structure borne by the category of bisimplicial sets
in which all objects are cofibrant [100]. Precomposition with the adjoint pair of
functors defined by 𝜋1([𝑚] × [𝑛]) ≔ [𝑚] and 𝜄0([𝑚]) ≔ [𝑚] × [0] induces an
adjunction as below-right:

𝚫 𝚫 ×𝚫 𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚫
op×𝚫op

𝜄0
⊥
𝜋1

⇝
𝜋∗1

⊥
𝜄∗0

(E.2.3)

Joyal and Tierney prove that this pair of functors defines a Quillen equivalence
between the model structure for quasi-categories and the model structure for
complete Segal spaces [64, 4.11]. By inspection, the left adjoint preserves finite
products, so Corollary E.1.4 applies to create a cartesian closed ∞-cosmos
structure on the full subcategory 𝒞𝒮𝒮, as detailed in Proposition E.1.3, for
which (−)0 ≔ row0 ≔ 𝜄∗0 is a cosmological biequivalence.

A second adjunction between simplicial sets and bisimplicial sets pointing in
the opposite direction has a left adjoint defined as the left Kan extension of the
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functor

𝚫 ×𝚫 𝒮𝑒𝑡𝚫
op

[𝑚] × [𝑛] Δ[𝑚] × 𝕀[𝑛]

along the Yoneda embedding 𝚫 × 𝚫 ↪ 𝒮𝑒𝑡𝚫
op×𝚫op

; here 𝕀[𝑛] is the nerve of
the groupoid with 𝑛 + 1 objects and one exactly morphism in each hom-set,
obtained by freely inverting the morphisms in the ordinal category 𝕟+𝟙. The
right adjoint is the corresponding “nerve” functor described in the statement of
(ii). Joyal and Tierney also prove that the adjunction

𝒮𝑒𝑡𝚫
op×𝚫op

𝒮𝑒𝑡𝚫
op

lan

⊥
nerve

is a Quillen equivalence with respect to the model structures for complete Se-
gal spaces and quasi-categories [64, 4.12]. To conclude from Corollary E.1.2
that nerve∶ 𝒬𝒞𝑎𝑡 → 𝒞𝒮𝒮 is a cosmological biequivalence it remains only to
show that this functor is simplicially enriched and preserves simplicial coten-
sors, or equivalently, by Proposition A.4.6, that the adjunction lan ⊣ nerve is
simplicially enriched.

To verify this, we make use of the external product bifunctor:

𝒮𝑒𝑡𝚫
op
× 𝒮𝑒𝑡𝚫

op
𝒮𝑒𝑡𝚫

op×𝚫op

(𝐴, 𝐵) (𝐴 𝐵)𝑚,𝑛 ≔ 𝐴𝑚 × 𝐵𝑛

Since any bisimplicial set 𝑋 may be recovered as a canonical colimit of rep-
resentables, it suffices to consider maps from a representable bisimplicial set
Δ[𝑚] Δ[𝑛] to a simplicial set 𝐴. In the simplicial enrichment of 𝒮𝑒𝑡𝚫

op×𝚫op

just defined, the simplicial set of maps from Δ[𝑚] Δ[𝑛] to nerve(𝐴) has
𝑘-simplices defined to be (𝑘, 0)-simplices in nerve(𝐴)Δ[𝑚] Δ[𝑛]. Now

(nerve(𝐴)Δ[𝑚] Δ[𝑛])𝑘,0≔𝒮𝑒𝑡𝚫
op×𝚫op

((Δ[𝑚] Δ[𝑛])×(Δ[𝑘] Δ[0]), nerve(𝐴))

by the definition of the cartesian closed structure on bisimplicial sets, which is

≅ 𝒮𝑒𝑡𝚫
op×𝚫op

((Δ[𝑚] × Δ[𝑘]) Δ[𝑛], nerve(𝐴))

by the definition of the external product, which is

≅ 𝒮𝑒𝑡𝚫
op
(lan((Δ[𝑚] × Δ[𝑘]) Δ[𝑛]), 𝐴)
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by adjunction. Joyal and Tierney prove in [64, 2.11] that the left Kan extension
acts on the external tensor product by lan(𝐵 Δ[𝑛]) ≅ 𝐵 × 𝕀[𝑛]. So we have

≅ 𝒮𝑒𝑡𝚫
op
((Δ[𝑚] × Δ[𝑘]) × 𝕀[𝑛], 𝐴)

≅ 𝒮𝑒𝑡𝚫
op
((Δ[𝑚] × 𝕀[𝑛]) × Δ[𝑘], 𝐴)

≅ 𝒮𝑒𝑡𝚫
op
(lan(Δ[𝑚] Δ[𝑛]) × Δ[𝑘], 𝐴)

≕ (𝐴lan(Δ[𝑚] Δ[𝑛]))𝑘

by the definition of the cartesian closed structure on simplicial sets. This proves
that the adjunction is compatible with the simplicial enrichments, so it follows
from Corollary E.1.2 and [64, 4.12] that nerve∶ 𝒬𝒞𝑎𝑡 → 𝒞𝒮𝒮 is a cosmological
biequivalence.

A second model of (∞, 1)-categories is closely related.

Definition E.2.4 (Segal categories). A Segal precategory is a bisimplicial set
𝑋• ∈ 𝑠𝒮𝑒𝑡𝚫

op
whose space of 0-simplices 𝑋0 is 0-skeletal on the set 𝑋0,0 of its

vertices. A Segal category is a Segal category that is Reedy fibrant and satisfies
the Segal condition of Definition E.2.1.

Definition E.2.4 is mildly stronger than the usual definition first introduced by
Dwyer, Kan, and Smith [38] and further developed by Hirschowitz and Simpson
[56]. The usual convention defines a Segal category to be a Segal precategory
𝑋• so that for each 𝑛 ≥ 2, the map induced on weighted limits by the inclusion
Γ[𝑛] ↪ Δ[𝑛] of the spine of the 𝑛-simplex

𝑋𝑛 ≅ limΔ[𝑛] 𝑋 → 𝑋1 ×
𝑋0
⋯ ×

𝑋0
𝑋1 ≅ limΓ[𝑛] Δ[𝑛]

is a weak homotopy equivalence of simplicial sets – without requiring Reedy
fibrancy. We prefer to include Reedy fibrancy in our notion of Segal category
so that the Segal categories are precisely the fibrant objects in an appropriate
model structure on the category 𝒫𝒞𝑎𝑡 of Segal precategories, which then gives
rise to an ∞-cosmos.

Before we introduce the ∞-cosmos 𝒮𝑒𝑔𝑎𝑙, we explain how to transform a
complete Segal space into a Segal category.

Lemma E.2.5. There is a functor disc∶ 𝑠𝒮𝑒𝑡𝚫
op
→ 𝑠𝒮𝑒𝑡𝚫

op
called discretization

defined by the pullback

disc(𝑋) 𝑋

cosk0(𝑋0,0) cosk0(𝑋0)

⌟
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that lands in the subcategory of Segal precategories, and indeed is right adjoint
to the inclusion𝒫𝒞𝑎𝑡 ↪ 𝑠𝒮𝑒𝑡𝚫

op
. Moreover, the discretization of a Reedy fibrant

Segal space is a Segal category.

Proof Since the “vertex evaluation” map𝑋 → cosk0(𝑋0) is bijective on the 0th
column, the pullback disc(𝑋) → cosk0(𝑋0,0)must be as well. Hence disc(𝑋)0 ≅
𝑋0,0, which proves that disc(𝑋) is a Segal precategory. To prove the adjointness,
note that for any Segal precategory 𝑌 and bisimplicial map 𝑓∶ 𝑌 → 𝑋, the
component 𝑓0∶ 𝑌0 → 𝑋0 factors uniquely through 𝑋0,0 ↪ 𝑋0 by discreteness
of 𝑌. This induces the required unique factorization of 𝑓 through disc(𝑋) ↪ 𝑋.

Finally, any simplicial space that is 0-coskeletal is automatically Reedy fi-
brant and a Segal space since the maps of Definition E.2.1(i) and (ii) are both
isomorphisms. When 𝑋 is Reedy fibrant, the map 𝑋𝑛 → cosk0(𝑋0)𝑛 ≅ 𝑋𝑛

0 is
a Kan fibration, so the pullback that defines the simplicial set disc(𝑋)𝑛 is a
homotopy pullback. Applying Lemma C.1.11 to Quillen’s model structure for
Kan complexes on simplicial sets, the Segal maps (ii) for 𝑋 pull back to define
analogous weak homotopy equivalences for disc(𝑋).

Proposition E.2.6. The full subcategory 𝒮𝑒𝑔𝑎𝑙 ↪ 𝒫𝒞𝑎𝑡 of Segal categories
defines a cartesian closed ∞-cosmos in which the functor space Fun(𝐴, 𝐵) is
defined to be the underlying quasi-category, formed by the vertices in each
internal hom 𝐵𝐴. With respect to this ∞-cosmos structure:

(i) The underlying quasi-category functor (−)0 ≔ row0∶ 𝒮𝑒𝑔𝑎𝑙 ∼ 𝒬𝒞𝑎𝑡
is a cosmological biequivalence.

(ii) There is a cosmological biequivalence disc∶ 𝒞𝒮𝒮 ∼ 𝒮𝑒𝑔𝑎𝑙 that “dis-
cretizes” a complete Segal space into a Segal category.

(iii) Another cosmological biequivalence nerve∶ 𝒬𝒞𝑎𝑡 ∼ 𝒮𝑒𝑔𝑎𝑙 carries
a quasi-category 𝐴 to the bisimplicial set whose (𝑚, 𝑛)-simplices are
simplicial maps Δ[𝑚] × Δ[𝑛] → 𝐴 whose components at each vertex of
Δ[𝑚] are constant.

Proof By Pellissier and Bergner [90, 13, 14], the (Reedy fibrant) Segal cat-
egories form the fibrant objects in a cartesian closed model structure borne
by the category of Segal precategories in which all objects are cofibrant. The
cartesian closed structure on 𝒫𝒞𝑎𝑡 can be defined explicitly, or deduced from
the observation that 𝒫𝒞𝑎𝑡 is a category of presheaves (see Exercise E.2.i).

The adjoint functors of (E.2.3) restrict to an adjunction between simplicial
sets and Segal precategories, which Joyal and Tierney show define a Quillen
equivalence between the model structure for quasi-categories and the model
structure for Segal categories [64, 5.6]. Again by inspection, the left adjoint
preserves finite products, so Corollary E.1.4 applies to create a cartesian closed
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∞-cosmos structure on the full subcategory 𝒮𝑒𝑔𝑎𝑙 for which (−)0 ≔ row0 ≔ 𝜄∗0
is a cosmological biequivalence.

By a theorem of Bergner, the inclusion ⊣ discretization adjunction of Lemma
E.2.5 defines a Quillen equivalence between the model structure for complete
Segal spaces and the model structure for Segal categories [14, §6]. To conclude
from Corollary E.1.2 that disc∶ 𝒞𝒮𝒮 → 𝒮𝑒𝑔𝑎𝑙 is a cosmological biequiva-
lence it remains only to show that this functor is simplicially enriched and
preserves simplicial cotensors, or equivalently, by Proposition A.4.6, that the
adjunction is simplicially enriched. This follows from the fact that this adjunc-
tion commutes with the underlying quasi-category adjunctions for 𝒞𝒮𝒮 and
𝒮𝑒𝑔𝑎𝑙 (see Remark E.2.7). In particular, since the inclusion 𝒫𝒞𝑎𝑡 ↪ 𝑠𝒮𝑒𝑡𝚫

op

preserves binary products, for any bisimplicial set 𝐶 and Segal precategory 𝑆,
disc(𝐶𝑆) ≅ disc(𝐶)𝑆. A similar argument shows that the simplicial cotensors
are preserved. Passing to underlying quasi-categories, this induces the desired
simplicially enriched adjunction, which makes disc∶ 𝒞𝒮𝒮 → 𝒮𝑒𝑔𝑎𝑙 simplicial
and hence cosmological.

A second adjunction between simplicial sets and Segal precategories pointing
in the opposite direction has left adjoint defined by restriction along the diagonal
functor Δ∶ 𝚫op → 𝚫op×𝚫op and right adjoint, which we call “nerve,” given by
right Kan extension along the same followed by discretization. Joyal and Tierney
also prove that this adjunction defines a Quillen equivalence with respect to the
model structures for complete Segal spaces and quasi-categories [64, 5.7]. As
above, to conclude that nerve∶ 𝒬𝒞𝑎𝑡 → 𝒮𝑒𝑔𝑎𝑙 is a cosmological biequivalence
it remains only to argue that this adjunction is simplicially enriched. Since
the functor nerve is the composite of the right adjoint to the diagonal functor
diag∶ 𝒮𝑒𝑡𝚫

op×𝚫op
→ 𝒮𝑒𝑡𝚫

op
followed by discretization and we have already

argued that the latter adjunction is simplicially enriched, it suffices to show that
diag ⊣ ran is simplicially enriched.

To that end, consider a bisimplicial set 𝑋 and a simplicial set 𝐴. By definition

(ran(𝐴)𝑋)𝑘 ≔ (ran(𝐴)𝑋)𝑘,0 ≔ 𝒮𝑒𝑡𝚫
op×𝚫op

(𝑋 × (Δ[𝑘] Δ[0]), ran(𝐴))

≅ 𝒮𝑒𝑡𝚫
op×𝚫op

(diag(𝑋 × (Δ[𝑘] Δ[0])), 𝐴)

≅ 𝒮𝑒𝑡𝚫
op×𝚫op

(diag(𝑋) × Δ[𝑘], 𝐴) ≕ (𝐴diag(𝑋))𝑘,

which is what we wanted to show.

Remark E.2.7. This discretization functor commutes with the underlying quasi-
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category functors:

𝒞𝒮𝒮 𝒮𝑒𝑔𝑎𝑙

𝒬𝒞𝑎𝑡

disc

(−)0 (−)0

as can most easily be seen by considering the left adjoints to these functors at
the level of model categories. However, discretization does not commute with
the nerve constructions on the nose, only up to equivalence. For a quasi-cat-
egory 𝐴, nerve(𝐴) is the Segal category with (𝑚, 𝑛)-simplices given by the
set of simplicial maps Δ[𝑚] × Δ[𝑛] → 𝐴 whose components at each vertex
of Δ[𝑚] are constant. By contrast, disc(nerve(𝐴)) is the Segal category with
(𝑚, 𝑛)-simplices given by the set of simplicial maps Δ[𝑚] × 𝕀[𝑛] → 𝐴 whose
components at each vertex of Δ[𝑚] are constant.

Recall from Digression D.4.21 that a 1-complicial set is a complicial set that
is 1-trivial and saturated (see Definitions D.1.9, D.1.16, and D.4.4). Theorem
D.4.14 identifies quasi-categories with 1-complicial sets – there called “naturally
marked quasi-categories” – so unsurprisingly:

Proposition E.2.8. The full subcategory 1-𝒞𝑜𝑚𝑝 ↪ 1-𝑠𝒮𝑒𝑡+ of 1-complicial
sets defines a cartesian closed ∞-cosmos in which the functor space Fun(𝐴, 𝐵)
is defined to be the underlying quasi-category of the internal hom 𝐵𝐴. With
respect to this ∞-cosmos structure, both the underlying quasi-category functor
(−)0∶ 1-𝒞𝑜𝑚𝑝 ∼ 𝒬𝒞𝑎𝑡 and the natural marking functor (−)♮∶ 𝒬𝒞𝑎𝑡 ∼

1-𝒞𝑜𝑚𝑝 are cosmological.

Proof By independent theorems of Lurie [78, §3.1.3–4] and Verity [129, §6.5],
the naturally marked quasi-categories, which we call 1-complicial sets, form
the fibrant objects in a cartesian closed model structure borne by the category of
marked simplicial sets in which all objects are cofibrant. There is an adjunction

𝑠𝒮𝑒𝑡 1-𝑠𝒮𝑒𝑡+
(−)♭

⊥
(−)0

in which the right adjoint forgets the marking and the left adjoint assigns each
simplicial set the minimal 1-trivial marking, which Lurie proves is a Quillen
equivalence between the model structure for quasi-categories and the model
structure for 1-complicial sets [78, 3.1.5.1]. By inspection, the left adjoint
preserves finite products,7 so Corollary E.1.4 applies to create a cartesian closed
7 Note (Δ[1] × Δ[1])♭ ≠ Δ[1]♭ ×Δ[1]♭ as marked simplicial sets so for the

finite-product-preservation property to hold it is essential that the minimal marking functor
lands in the category of 1-trivial marked simplicial sets.
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∞-cosmos structure on the full subcategory 1-𝒞𝑜𝑚𝑝 so that the forgetful functor
defines a cosmological biequivalence (−)0∶ 1-𝒞𝑜𝑚𝑝 ∼ 𝒬𝒞𝑎𝑡 that coincides
with the underlying quasi-category functor. The fact that the model category of
1-complicial sets is enriched over the model structure for quasi-categories via
this construction is observed already in [78, 3.1.4.5].

For any quasi-categories 𝐴 and 𝐵, observe that there is a natural isomorphism
Fun(𝐴, 𝐵) ≅ Fun(𝐴♮, 𝐵♮) between the functor quasi-category in 𝒬𝒞𝑎𝑡 and
the just-defined functor space in 1-𝒞𝑜𝑚𝑝 between their natural markings; the
point is that simplicial maps 𝐴 → 𝐵 preserve isomorphisms and hence the
natural markings. Verity shows that the natural marking functor (−)♯∶ 𝒬𝒞𝑎𝑡 →
1-𝒞𝑜𝑚𝑝 creates the fibrations between fibrant objects [129, 114–118]. Since
limits in 𝒬𝒞𝑎𝑡 and 1-𝒞𝑜𝑚𝑝 are both created in 𝑠𝒮𝑒𝑡, it follows that the functor
(−)♮∶ 𝒬𝒞𝑎𝑡 → 1-𝒞𝑜𝑚𝑝 is a cosmological biequivalence, and indeed an inverse
isomorphism to (−)0∶ 1-𝒞𝑜𝑚𝑝 → 𝒬𝒞𝑎𝑡.

Exercises
Exercise E.2.i. Joyal and Tierney identify the subcategory𝒫𝒞𝑎𝑡 ↪ 𝒮𝑒𝑡𝚫

op×𝚫op

with the category of presheaves indexed by the 1-categorical quotient 𝚫|2 of
𝚫×𝚫 defined by inverting the maps in the image of the functor [0]×𝚫 ↪ 𝚫×𝚫
[64, 5.4]. Redefine the three adjunctions between 𝒫𝒞𝑎𝑡, 𝒮𝑒𝑡𝚫

op×𝚫op
, and 𝒮𝑒𝑡𝚫

op

appearing in the proof of Proposition E.2.6 from this point of view.

Exercise E.2.ii. Verify that the cosmological biequivalences nerve∶ 𝒬𝒞𝑎𝑡 ∼

𝒞𝒮𝒮 and nerve∶ 𝒬𝒞𝑎𝑡 ∼ 𝒮𝑒𝑔𝑎𝑙 each define sections of the respective underly-
ing quasi-category functors.

E.3 ∞-Cosmoi of (∞, 𝑛)-Categories

In this section, we introduce a variety of ∞-cosmoi whose objects are models
of (∞, 𝑛)-categories for 1 < 𝑛 ≤ ∞. These ∞-cosmoi describe the (∞, 2)-cate-
gories of ∞-categories, ∞-functors, and ∞-natural transformations, omitting
higher-dimensional transformations, though generalized elements and internal
homs allow access to higher-dimensional noninvertible morphisms.

Because the combinatorics entailed in fully specifying a model of (∞, 𝑛)-cat-
egories can be rather involved, to save space, we do not define every one of the
higher categorical notions discussed here, instead providing external references
to where such definitions can be found.

A few of our models of (∞, 𝑛)-categories are defined as presheaves indexed
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by a 1-category 𝚯𝑛 first introduced by Joyal in an unpublished note [60], which
we present in an equivalent form due to Berger [11].

Definition E.3.1. For 0 ≤ 𝑛 ≤ ∞, define a family of 1-categories 𝚯𝑛 induc-
tively as follows.

• 𝚯0 ≔ 𝟙 is the terminal category and 𝚯1 ≔ 𝚫 is the category of finite
nonempty ordinals and order-preserving maps.

• 𝚯𝑛 ≔ 𝚫 ≀ 𝚯𝑛−1, where 𝚫 ≀ −∶ 𝒞𝑎𝑡 → 𝒞𝑎𝑡 is the categorical wreath
product construction. Explicitly, for a 1-category 𝐶, 𝚫 ≀ 𝐶 is the category
whose:
– objects are tuples [𝑛](𝑐1,… , 𝑐𝑛) where [𝑛] ∈ 𝚫 and 𝑐𝑖 ∈ 𝐶.
– morphisms (𝛼; ⃗𝑓)∶ [𝑛](𝑐1,… , 𝑐𝑛) → [𝑚](𝑐′1,… , 𝑐′𝑚) are given by a

simplicial map 𝛼∶ [𝑛] → [𝑚] ∈ 𝚫 together with morphisms 𝑓𝑖,𝑗∶ 𝑐𝑖 →
𝑐′𝑗 ∈ 𝐶 for all 0 < 𝑖 ≤ 𝑛 and 𝛼(𝑖 − 1) < 𝑗 ≤ 𝛼(𝑖).

The objects of 𝚯𝑛 define pasting diagrams of 𝑘-cells for 0 ≤ 𝑘 ≤ 𝑛 while the
morphisms define projection, composition, and degeneracy maps. The functor
𝚯𝑛 ↪ 𝑛-𝒞𝑎𝑡 that sends a pasting diagram to the free strict 𝑛-category that it
generates is full and faithful [11, 3.7].

For instance, the morphism (𝛿2; (𝛿1, !, id))∶ [2]([1], [1]) → [3]([2], [0], [1])
in 𝚯2 corresponds to the 2-functor between the free 2-categories generated by
the pasting diagrams

0 1 2 ↦ 0 1 2 3⇓ ⇓
⇓
⇓

⇓

that sends 0 to 0, 1 to 1, and 2 to 3, and sends the left 2-cell of the domain to the
vertical composite of the leftmost 2-cells of the codomain and the right 2-cell of
the domain to the whiskered composite of the rightmost 2-cell of the codomain
with the central 1-cell.

Lemma E.3.2. For any 1-category with a terminal element 𝑡, the adjunction
below-left induces an adjunction below-right:

𝟙 𝐶 𝚫 ≅ 𝚫 ≀ 𝟙 𝚫 ≀ 𝐶
𝑡
⊥
!

⇝
𝚫≀𝑡
⊥
𝚫≀!

Proof The categorical wreath product defines a 2-functor 𝚫 ≀ −∶ 𝒞𝑎𝑡 →
𝒞𝑎𝑡.

Ara introduced a model of (∞, 𝑛)-categories for each 1 ≤ 𝑛 < ∞ called
𝑛-quasi-categories as presheaves on 𝚯𝑛 characterized by a particular right
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lifting property described in [4, §5]. Ara’s 1-quasi-categories coincide with the
usual quasi-categories.

Proposition E.3.3. For each 𝑛 ≥ 1, the full subcategory 𝑛-𝒬𝒞𝑎𝑡 ↪ 𝒮𝑒𝑡𝚯
op
𝑛 of

𝑛-quasi-categories defines a cartesian closed ∞-cosmos.

Proof Ara constructs a cartesian closed model structure on the category 𝒮𝑒𝑡𝚯
op
𝑛 ,

generalizing the Joyal model structure in the case 𝑛 = 1, in which the fibrant
objects are exactly the 𝑛-quasi-categories and in which the cofibrations are the
monomorphisms [4]; in particular, all objects are cofibrant. Hence, to induce a
cartesian closed ∞-cosmos structure on the full subcategory 𝑛-𝒬𝒞𝑎𝑡 it suffices
to find a Quillen adjunction from this model structure to the model structure for
quasi-categories whose left adjoint 𝒮𝑒𝑡𝚫

op
→ 𝒮𝑒𝑡Θ

op
𝑛 preserves binary products.

To that end, note that [0] ∈ 𝚯𝑛−1 is terminal for all 𝑛 > 1, so Lemma E.3.2
provides an adjunction as below-left and hence an adjunction as below-right

𝚫 𝚯𝑛 𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚯
op
𝑛

𝚫≀[0]
⊥
𝚫≀!

⇝
(𝚫≀!)∗

⊥
(𝚫≀[0])∗

The right adjoint 𝚫 ≀ [0]∶ 𝚫 ↪ 𝚯𝑛 includes 𝚫 as the subcategory of “past-
ing diagrams comprised of only 1-cells”; hence, restriction along this functor
(𝚫 ≀ [0])∗∶ 𝒮𝑒𝑡𝚯

op
𝑛 → 𝒮𝑒𝑡𝚫

op
forgets higher-dimensional cells. The other adjoint

𝚫≀!∶ 𝚯𝑛 → 𝚫 projects onto the first component of the categorical wreath prod-
uct. Note that the corresponding restriction functor between presheaf categories
has its own left adjoint, defined by left Kan extension, and so clearly preserves
products.

Indeed, for the same reason, the left adjoint preserves all limits and hence also
preserves monomorphisms (which can be characterized as those maps whose
kernel pair is given by identities). By a result of Joyal and Tierney [64, 7.15],
to prove that an adjunction is Quillen, it suffices to show that the left adjoint
preserves cofibrations, as we have just done, and the right adjoint preserves
fibrations between fibrant objects. By Lemma C.2.6, this means that we need
only verify that the left adjoint carries the inner horn inclusions {Λ𝑘[𝑛] ↪
Δ[𝑛]}𝑛≥2,0<𝑘<𝑛 and the map 𝟙 ↪ 𝕀 to trivial cofibrations in Ara’s model structure.
In fact, by [64, 3.5], it suffices to consider the spine inclusions {Γ[𝑛] ↪ Δ[𝑛]}𝑛≥2
in place of the inner horn inclusions, which we shall.

To see this, it is helpful to note, as observed in [4, §6], that the left adjoint com-
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mutes with the nerve embeddings of strict 1-categories and strict 𝑛-categories:

𝒞𝑎𝑡 𝑛-𝒞𝑎𝑡

𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚯
op
𝑛

(𝚫≀!)∗

In particular, the left adjoint carries the 1-categorical nerve of 𝟙 ↪ 𝕀 to the
strict 𝑛-categorical nerve of this map and, since the left adjoint also preserves
colimits, it carries the inner horn inclusion Γ[𝑛] ↪ Δ[𝑛] to the corresponding
“spine inclusion” for the object [𝑛]([0],… , [0]) ∈ 𝚯𝑛. As both types of maps
are among Ara’s “localizer of 𝑛-quasi-categories” of [4, 5.17], they are certainly
trivial cofibrations. Hence, the adjunction is Quillen, as claimed, and Corollary
E.1.4 applies to create a cartesian closed ∞-cosmos structure on 𝑛-𝒬𝒞𝑎𝑡.

Another model of (∞, 𝑛)-categories, for 0 ≤ 𝑛 < ∞ is due to Rezk [101]. A
𝚯𝑛-space is a simplicial presheaf on 𝚯𝑛-satisfying Reedy fibrancy, Segal, and
completeness conditions analogous to those of Definition E.2.1. A 𝚯1-space is
exactly a complete Segal space, while a 𝚯0-space is just a Kan complex.

Proposition E.3.4. For each 𝑛 ≥ 1, the full subcategory 𝚯𝑛-𝒮𝑝 ↪ 𝑠𝒮𝑒𝑡𝚯
op
𝑛

of 𝚯𝑛-spaces defines a cartesian closed ∞-cosmos for which the underlying
complete Segal space functor 𝑈∶ 𝚯𝑛-𝒮𝑝 → 𝚯1-𝒮𝑝 ≅ 𝒞𝒮𝒮 is cosmological.

Proof Rezk constructs a cartesian closed model structure on the category
𝑠𝒮𝑒𝑡𝚯

op
𝑛 generalizing his model structure for complete Segal spaces in the case

𝑛 = 1, in which the fibrant objects are exactly the 𝚯𝑛-spaces and in which
the cofibrations are the monomorphisms [101]; in particular, all objects are
cofibrant. Hence, to induce a cartesian closed ∞-cosmos structure on the full
subcategory 𝚯𝑛-𝒮𝑝, it suffices to find a Quillen adjunction between this model
structure and the model structure for complete Segal spaces whose left adjoint
𝑠𝒮𝑒𝑡𝚫

op
→ 𝑠𝒮𝑒𝑡Θ

op
𝑛 preserves binary products. We then apply Corollary E.1.4 to

the composite of this adjunction with the adjunction (E.2.3).
As in the proof of Proposition E.3.3, we obtain the desired adjunction from

Lemma E.3.2 applied to the terminal object [0] ∈ 𝚯𝑛−1.

𝚫 𝚯𝑛 𝑠𝒮𝑒𝑡𝚫
op

𝑠𝒮𝑒𝑡𝚯
op
𝑛

𝚫≀[0]
⊥
𝚫≀!

⇝
(𝚫≀!)∗

⊥
(𝚫≀[0])∗

(E.3.5)

The left adjoint has a further left adjoint given by left Kan extension, and so
preserves products.

It remains only to argue that this adjunction is Quillen. The model structure
for 𝚯𝑛-spaces – and, by specialization, also the model structure for complete
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Segal spaces – is defined as a left Bousfield localization of the injective (or,
equivalently, Reedy) model structures on simplicial presheaves. In the injective
model structure, the cofibrations and trivial cofibrations are defined objectwise
in 𝑠𝒮𝑒𝑡, so the left adjoint is manifestly left Quillen with respect to these model
structures. Consequently, the adjunction is Quillen for the localized model struc-
tures if and only if the right adjoint, which Rezk refers to as the “underlying
simplicial space” functor, preserves fibrant objects, because in that case the
left adjoint preserves the new trivial cofibrations, which are defined in terms of
these. A functor 𝑋 ∈ 𝑠𝒮𝑒𝑡𝚯

op
𝑛 is fibrant if and only if it satisfies Reedy, Segal,

and completeness conditions. Since the adjunction (E.3.5) is Quillen for the
injective/Reedy model structure, the Reedy fibrancy condition is preserved, and
Rezk proves that the Segal condition is preserved as well [101, 7.2]. The com-
pleteness condition for 𝚯𝑛-spaces is created from the completeness condition
for underlying simplicial spaces [101, §7], so this is preserved as well. Hence,
the right adjoint (E.3.5) restricts to a functor 𝑈∶ 𝚯𝑛-𝒮𝑝 → 𝒞𝒮𝒮, which we call
the underlying complete Segal space functor.

Corollary E.1.4 applies to create a cartesian closed ∞-cosmos structure on
𝚯𝑛-𝒮𝑝. By Lemma A.7.7, the adjunction (E.3.5) is enriched over bisimplicial
sets, and so Proposition E.1.3 can be used to prove that the underlying complete
Segal space functor is cosmological.

There is another model for (∞, 𝑛)-categories that generalizes the complete
Segal space model for (∞, 1)-categories, which makes use of the notion of a
Rezk object valued in a model category:

Definition E.3.6. Let ℳ be a model category.

(i) A simplicial object 𝑋• ∈ ℳ𝚫op is Reedy fibrant just when the induced
map on weighted limits

𝑋𝑚 ≅ limΔ[𝑚] 𝑋 → lim𝜕Δ[𝑚] 𝑋 ≕ 𝑀𝑚𝑋

is a fibration for all 𝑚 ≥ 0.
(ii) A Reedy fibrant simplicial object 𝑋• is a Segal object just when the

induced map on weighted limits

𝑋𝑛 ≅ limΔ[𝑛] 𝑋 → limΛ𝑘[𝑛] 𝑋

is a trivial fibration for all 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛.
(iii) A Segal object 𝑋• is a Rezk object, just when the induced map on

weighted limits
lim𝕀 𝑋 → limΔ[0] 𝑋 ≅ 𝑋0

is a trivial fibration.
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A map 𝑝∶ 𝑋• → 𝑌• ∈ ℳ𝚫op is a Rezk isofibration if the relative analogues of
the maps appearing in (i), (ii), and (iii) formed by the Leibniz weighted limit
of 𝑝 with the appropriate maps of weights are, respectively, fibrations, trivial
fibrations, and a trivial fibration.

Our formulation of Definition E.2.1, which departs slightly from Rezk’s
framing of his conditions, is intended to make it clear that the complete Segal
spaces are precisely the Rezk objects valued in Quillen’s model structure for
Kan complexes.

Proposition E.3.7. Suppose ℳ is a Cisinski model category.8 Then the full
subcategory ℛ𝑒𝑧𝑘ℳ ↪ℳ𝚫op of Rezk objects defines an ∞-cosmos.

Proof We prove this result directly from Proposition E.1.1 by proving that a left
Bousfield localization of the Reedy model structure on ℳ𝚫op defines a Cisinski
model structure that is enriched over the model structure for quasi-categories in
which the fibrant objects are exactly the Rezk objects.

To begin, observe that the category ℳ𝚫op is simplicially enriched, tensored,
and cotensored, with hom-spaces suggestively denoted by “Fun”

(⊗, {, },Fun)∶ 𝑠𝒮𝑒𝑡 ×ℳ𝚫op →ℳ𝚫op

in such a way that the Leibniz tensors of monomorphisms of simplicial sets with
(trivial) Reedy cofibrations are (trivial) Reedy cofibrations [35, 4.4]. We apply
Jeff Smith’s theorem [8] to prove that ℳ𝚫op admits a model structure in which

• the cofibrations are the monomorphisms,
• the fibrant objects are the Rezk objects,
• the fibrations between fibrant objects are the Rezk isofibrations, and
• weak equivalences are the Rezk weak equivalences, those maps𝑤∶ 𝑈 → 𝑉

that induce equivalences of quasi-categories 𝑤∗∶Fun(𝑉, 𝑋) →Fun(𝑈, 𝑋)
for all Rezk objects 𝑋.

Note that by adjunction, a map 𝑝∶ 𝑋 → 𝑌 ∈ ℳ𝚫op is a Rezk isofibration if
and only if for all monomorphisms 𝑚∶ 𝐴 → 𝐵 ∈ ℳ, the induced map

Fun(𝐵, 𝑋) Fun(𝐴, 𝑋) ×
Fun(𝐴,𝑌)

Fun(𝐵, 𝑌)
F̂un(𝑚,𝑝)

of simplicial sets is an isofibration of quasi-categories. By Corollary D.3.11 and
8 A Cisinski model structure is a combinatorial model structure on a Grothendieck topos in

which the cofibrations are exactly the monomorphisms. It follows that the Reedy model structure
on ℳ𝚫op coincides with the injective model structure, and in particular that all objects are
cofibrant [27, 16].
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Proposition D.5.2, this is the case if and only if this map has the right lifting
property with respect to maps in the set 𝙸×̂𝙹 where

𝙸 ≔ {𝜕Δ[𝑛] ↪ Δ[𝑛]}𝑛≥0 and 𝙹 ≔ {Λ𝑘[𝑛] ↪ Δ[𝑛]}𝑛≥2,0<𝑘<𝑛 ∪ {𝟙 ↪ 𝕀}.

By adjunction again, and Proposition C.2.9(i), 𝑝 is a Rezk isofibration if and only
if it has the right lifting property with respect to the sets of maps (𝑖×̂𝑗)∗̂𝑚 ≅
𝑗⊗̂(𝑖∗̂𝑚) for all 𝑖 ∈ 𝙸, 𝑗 ∈ 𝙹, and 𝑚 among the generating cofibrations in
ℳ, where ∗ denotes the pointwise tensor ∗∶ 𝑠𝒮𝑒𝑡 × ℳ → ℳ𝚫op. Since by
Proposition C.5.8 the Reedy cofibrations in ℳ𝚫op are generated by the set of
maps 𝑖∗̂𝑚 for 𝑖 ∈ 𝙸 and as 𝑚 ranges over the generating cofibrations in ℳ, we
conclude by adjunction that 𝑝 is a Rezk isofibration between Rezk objects if
and only if

Fun(𝑉, 𝑋) Fun(𝑈, 𝑋) ×
Fun(𝑈,𝑌)

Fun(𝑉, 𝑌)
F̂un(𝑐,𝑝)

is an isofibration for all monomorphisms 𝑐∶ 𝑈 → 𝑉 in ℳ𝚫op.
Now it is easy to verify the conditions of Jeff Smith’s theorem. The Rezk

weak equivalences are accessible and satisfy the 2-of-3 property. We argue that
the Rezk weak equivalences contain all Reedy weak equivalences and hence the
Reedy trivial fibrations, characterized by the right lifting property against the
monomorphisms. Transposing the observations already made in [35, 4.4] about
the Reedy model structure onℳ𝚫op, we see that for any Reedy trivial cofibration
𝑤∶ 𝑈 → 𝑉 and Rezk object 𝑋,𝑤∗∶ Fun(𝑉, 𝑋) → Fun(𝑈, 𝑋) is an equivalence
of quasi-categories. By Ken Brown’s lemma C.1.10, the same is true when 𝑤 is
a mere Reedy weak equivalence. Note that a map 𝑤∶ 𝑈 → 𝑉 is both a Rezk
weak equivalence and a cofibration just when 𝑤∗∶ Fun(𝑉, 𝑋) → Fun(𝑈, 𝑋) is
a trivial fibration between quasi-categories. This characterization proves that
the class of Rezk weak equivalences and cofibrations is stable under pushout
and transfinite composition. Jeff Smith’s theorem now implies that the model
structure for Rezk objects exists.

To see that the model structure for Rezk objects is enriched over the model
structure for quasi-categories, we must verify the three conditions for

(⊗, {, },Fun)∶ 𝑠𝒮𝑒𝑡 ×ℳ𝚫op →ℳ𝚫op

to define a Quillen two-variable adjunction (see Definition C.3.8). The cofi-
brations in the localized model structure for Rezk objects are the same as the
cofibrations for the Reedy model structure on ℳ𝚫op, so we already know that
Leibniz tensors of cofibrations are cofibrations. To verify the remaining 2/3rds
of this axiom, we appeal to a result of Dugger [35, 3.2], which tells us that in the
presence of the first 1/3rd, to verify that Leibniz tensors of monomorphisms of
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simplicial sets with trivial cofibrations are trivial cofibrations, it suffices to show
that the simplicial cotensor (−)𝐾∶ ℳ𝚫op →ℳ𝚫op preserves fibrations between
fibrant objects. For left Bousfield localizations, Rezk isofibrations between Rezk
objects coincide with Reedy fibrations between Rezk objects [55, 3.3.16]. It is
easy to verify directly that (−)𝐾 preserves Rezk objects, and the preservation of
Reedy fibrations is one of the facts we knew already.

For the final 1/3rd of the Quillen two-variable adjunction, we use the second
part of Dugger’s [35, 3.2], which tells us that in the presence of the first 2/3rds, we
need only verify that for all Rezk objects 𝑍 and trivial cofibrations of simplicial
sets 𝑗∶ 𝐽 → 𝐾, the map 𝑍𝑗∶ 𝑍𝐾 → 𝑍𝐽 is a Rezk weak equivalence (assuming
ℳ𝚫op is left proper, which is the case here since all objects are cofibrant). In
fact, we can show that this map is a trivial fibration, by checking the right lifting
property against the monomorphisms 𝑐∶ 𝑈 → 𝑉 ∈ ℳ𝚫op. Transposing, we see
that 𝑐 lifts against 𝑍𝑗 if and only if 𝑗 lifts against 𝑐∗∶ Fun(𝑉, 𝑍) → Fun(𝑈, 𝑍).
But we verified already that 𝑐∗ is an isofibration between quasi-categories, so
the desired lifting property holds.

The model structure for Rezk objects on ℳ𝚫op remains a Cisinski model
structure, so this construction can be iterated. Barwick’s 𝑛-fold complete Segal
space model of (∞, 𝑛)-categories is formed by iterating the Rezk objects con-
struction 𝑛 times [6]. Specializing Proposition E.3.7, we conclude that for all
𝑛 ≥ 1, there exist ∞-cosmoi 𝒞𝒮𝒮𝑛 of 𝑛-fold complete Segal spaces.

Remark E.3.8. If ℳ is a left proper combinatorial model category, the proof
just given constructs a model structure on ℳ𝚫op whose fibrant objects are the
Rezk objects that is enriched as a model category over the model structure
for quasi-categories. The only hitch is that without the Cisinski condition, it is
possible that not all fibrant objects are cofibrant. Nonetheless, this generalization
can be understood as defining an ∞-cosmos in a weaker sense developed in
[110, §2].

Verity constructs a general family of cartesian model structures on the cat-
egory of marked simplicial sets whose fibrant objects are complicial sets of
various flavors and whose fibrations are the corresponding notions of complicial
isofibration [129, §9.3]. One of these model structures presents the ∞-cosmos
of Proposition E.2.8. Here, we consider model structures whose fibrant objects,
called 𝑛-complicial sets, model (∞, 𝑛)-categories for 0 ≤ 𝑛 ≤ ∞, where the
“∞-complicial sets” are the complicial sets of Definition D.1.9 that are saturated
in a sense alluded to in Digression D.4.21 and elaborated upon in the proof.
The definitions are arranged so that a 0-complicial set is a (maximally marked)
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Kan complex, a 1-complicial set is a (naturally marked) quasi-category, and a
𝑚-complicial set is an 𝑛-complicial set whenever 𝑚 < 𝑛.

Proposition E.3.9. For each 0 ≤ 𝑛 ≤ ∞, the category of 𝑛-complicial sets
defines a cartesian closed ∞-cosmos 𝑛-𝒞𝑜𝑚𝑝. Moreover, whenever 𝑚 < 𝑛, the
functor core∶ 𝑛-𝒞𝑜𝑚𝑝 → 𝑚-𝒞𝑜𝑚𝑝 that discards all simplices in dimension
𝑘 > 𝑚 that are not marked is cosmological.

Proof For a suitable class of monomorphisms 𝙹, Verity defines a cartesian
closed model structure on the category of marked simplicial sets whose fibrant
objects and fibrations between them are the 𝙹-complicial sets and 𝙹-complicial
isofibrations, characterized by a right lifting property against 𝙹 [129, §9.3]. The
cofibrations are the monomorphisms so in particular all objects are cofibrant. In
more detail, for the 𝑛-complicial sets, the class of monomorphisms is defined to
be

𝙹𝑛 ≔ {Λ𝑘[𝑚] ↪𝑟 Δ𝑘[𝑚]}𝑚≥1,𝑘∈[𝑚]
∪ {Δ𝑘[𝑚]′ ↪𝑒 Δ𝑘[𝑚]″}𝑚≥2,𝑘∈[𝑚]

∪

{Δ[𝑟] ↪𝑒 Δ[𝑟]𝑡}𝑟>𝑛 ∪ {Δ[𝑗] ⋆ Δ[3]eq ⋆ Δ[𝑘] ↪ Δ[𝑗] ⋆ Δ[3]♯ ⋆ Δ[𝑘]}
𝑗,𝑘≥−1

The first set of maps are the complicial horn extensions (D.1.10) while the second
set defines the complicial thinness extensions (D.1.11). The third set imposes
the condition that all simplices in dimension greater than 𝑛 are marked (see
Notation D.1.4), while the final condition is saturation, which in the presence
of the other conditions, implies that all equivalences are marked (see Exercise
D.4.iii and [105]). To apply Verity’s theorem, the sets 𝙹𝑛 must satisfy some
technical conditions spelled out in [129, 91–92], which have been verified in
this case by Ozornova and Rovelli [89, 1.26]. By construction, the 𝑛-complicial
sets live in the subcategory 𝑛-𝑠𝒮𝑒𝑡+ of 𝑛-trivial marked simplicial sets, with all
simplices in dimension greater than 𝑛 marked, and we may restrict the cartesian
closed model structures to these subcategories.

The ∞-cosmoi 0-𝒞𝑜𝑚𝑝 and 1-𝒞𝑜𝑚𝑝 are isomorphic to the ∞-cosmoi 𝒦𝑎𝑛
and 𝒬𝒞𝑎𝑡, respectively, so for now we consider 2 ≤ 𝑛 ≤ ∞. To define the ∞-
cosmos 𝑛-𝒞𝑜𝑚𝑝, we apply Proposition E.1.3 to convert these self enrichments
into an enrichment over quasi-categories via a string of Quillen adjunctions
whose left adjoints preserve binary products:

𝑠𝒮𝑒𝑡 1-𝑠𝒮𝑒𝑡+ 2-𝑠𝒮𝑒𝑡+ ⋯ 𝑛-1-𝑠𝒮𝑒𝑡+ 𝑛-𝑠𝒮𝑒𝑡+⋯
(−)♭

⊥
(−)0

⊥
core1

⊥ ⊥ ⊥
core𝑛−1
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In the limiting case, we also consider adjunctions

𝑛-𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+⊥
core𝑛

where core𝑛𝑋 ↪ 𝑋 is the simplicial subset containing only those simplices
whose faces in dimension greater than 𝑛 are marked. By adjunction, these
functors carry (𝑛 + 1)-complicial sets to 𝑛-complicial sets (see Exercise D.1.v).
Since the left adjoints preserve monomorphisms and products, this is enough to
verify that the adjunctions are Quillen. Corollary E.1.4 now induces the desired
∞-cosmoi and Corollary E.1.2 supplies the cosmological core functors.

Building on past work of Hirschowitz–Simpson [56] and Pellissier [90], Simp-
son iterates the construction of the model structure for Segal categories [116,
§19.2–4]. When the base model category is taken to be Quillen’s model structure
for Kan complexes, the 𝑛-th iteration defines the Segal 𝑛-categories, though
Simpson also considers more general model categorical bases. Under suitable
hypotheses, satisfied in the case of Segal 𝑛-categories, the model structure so
produced is cartesian closed and has all objects cofibrant, which strongly sug-
gests that there exists an ∞-cosmos spanned by its fibrant objects: the Reedy
fibrant Segal 𝑛-categories. We leave the confirmation of this as an exercise for
the interested reader.

Exercises
Exercise E.3.i. Given an explicit formulation of the “relative analogue” of the
conditions (i), (ii), and (iii) used in Definition E.3.6 to define the notion of Rezk
isofibration.

Exercise E.3.ii. Investigate potential ∞-cosmos structures on the Segal 𝑛-cate-
gories of Hirschowitz and Simpson [56].

Exercise E.3.iii. Search for cosmological biequivalences between the ∞-cos-
moi constructed in this section (and please share your discoveries with the
authors).



Appendix F

The Analytic Theory of Quasi-Categories

The aim in this final appendix is to prove that the synthetic theory of quasi-
categories is compatible with the analytic theory pioneered by André Joyal,
Jacob Lurie, and many others. In §F.1, we prove an equivalence between the syn-
thetic and analytic definitions of a terminal element in a quasi-category. In §F.2,
we extend these results to an equivalence between the synthetic and analytic
definitions of limits of diagrams of arbitrary shape valued in a quasi-category.

In §F.3, we provided a new analytic characterization of those isofibrations
between quasi-categories that admit a right adjoint right inverse. This is used
in §F.4 to compare the synthetic and analytic definitions of cartesian fibrations
of quasi-categories and cartesian arrows. Finally, in §F.5, we prove that the
synthetic and analytic definitions of an adjunction agree, despite their quite
different forms.

F.1 Initial and Terminal Elements

In this section, we complete the argument sketched in Digression 4.3.14 and
prove that the synthetic definition of a terminal element in a quasi-category
coincides with the analytic definition first introduced by Joyal [61, 4.1]. We
prove the equivalence between four synthetic definitions of a terminal element
– (i) which appeared first in Definition 2.2.1; (ii) which is Lemma 2.2.2; (iii)
which appears as Proposition 4.3.13; and (iv) which appears commonly in the
literature (see, e.g., [88]) – and two analytic definitions of a terminal element
(v) and (vi), which Joyal proves are equivalent [61, 4.2].

Proposition F.1.1. For a quasi-category𝐴 and element 𝑡∶ 1 → 𝐴 the following
are equivalent:

709
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(i) The element 𝑡 defines a right adjoint to the unique functor:

1 𝐴
𝑡
⊥
!

(ii) There exists a natural transformation

𝐴 𝐴

1!
⇓𝜂

𝑡

so that the component 𝜂𝑡 is an isomorphism.
(iii) The domain projection functor

Hom𝐴(𝐴, 𝑡) 𝐴∼𝑝0

defines a trivial fibration.
(iv) For any element 𝑎∶ 1 → 𝐴, the mapping space Hom𝐴(𝑎, 𝑡) is con-

tractible.
(v) The projection functor

𝐴/𝑡 𝐴∼

whose domain is the slice of 𝐴 over 𝑡 is a trivial fibration.
(vi) Any sphere in 𝐴 whose final vertex is 𝑡 admits a filler:

1 𝜕Δ[𝑛] 𝐴

Δ[𝑛]

{𝑛}

𝑡

When these conditions hold, 𝑡 defines a terminal element of 𝐴.

Proof Unpacking (i), all that is required to define an adjunction ! ⊣ 𝑡 is to define
a unit natural transformation 𝜂∶ id𝐴 ⇒ 𝑡! so that the component 𝜂𝑡 = id𝑡 is an
identity. But as proven in Lemma 2.2.2, if 𝜂𝑡 is invertible then it is necessarily
an identity. This proves the equivalence of (i) and (ii).

Proposition 4.3.13 establishes the equivalence of (i) and (iii) in any∞-cosmos.
By Corollaries 12.2.13 and 5.5.14, the domain projection functor is a trivial fibra-
tion if and only if its fibers Hom𝐴(𝑎, 𝑡) are contractible, proving the equivalence
of (iii) and (iv).

By Corollary D.6.6, for any vertex 𝑡 in a quasi-category, there is an equivalence

𝐴/𝑡 Hom𝐴(𝐴, 𝑡)

𝐴

∼

𝑝0
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between the canonical projection from the slice construction of Proposition 4.2.5
and the domain projection isofibration. Consequently, by the 2-of-3 property, one
isofibration is an equivalence if and only if the other is, proving the equivalence
of (iii) and (v).

By Definition 1.1.25, the projection 𝐴/𝑡 ↠ 𝐴 is a trivial fibration if and only
if the following right lifting property holds for all 𝑛 ≥ 0

𝜕Δ[𝑛] 𝐴/𝑡

Δ[𝑛] 𝐴

ᵆ

𝑣

𝑤

Via the adjunction

𝑠𝒮𝑒𝑡 Δ[0]/𝑠𝒮𝑒𝑡
−⋆Δ[0]

⊥
−/−

the sphere 𝑢∶ 𝜕Δ[𝑛] → 𝐴/𝑡 transposes into a map Λ𝑛+1[𝑛 + 1] → 𝐴 with final
vertex 𝑡, with the simplex 𝑣∶ Δ[𝑛] → 𝐴 providing a filler for the open face of the
horn. Thus, the lifting problem transposes to define a sphere 𝜕Δ[𝑛+1] → 𝐴with
final vertex 𝑡. The desired lift 𝑤∶ Δ[𝑛] → 𝐴/𝑡 exists just when this transposed
sphere admits a filler. In this way, we see that the right lifting properties

𝜕Δ[𝑛] 𝐴/𝑡 1 𝜕Δ[𝑛] 𝐴

Δ[𝑛] 𝐴 Δ[𝑛]
∀𝑛 ≥ 0 ↭

{𝑛}

𝑡

∀𝑛 ≥ 1

are transposes, proving the equivalence of (v) and (vi).

There is a relative extension of Joyal’s characterization (vi):

Lemma F.1.2. Suppose 𝐸 and 𝐵 are quasi-categories which possess a terminal
element and 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration which preserves them: if 𝑡 is terminal
in 𝐸 then 𝑝𝑡 is terminal in 𝐵. Then any lifting problem of the following form has
a solution

1 𝜕Δ[𝑛] 𝐸

Δ[𝑛] 𝐵

{𝑛}

𝑡

ᵆ

𝑝

𝑣

Proof Using the universal property of the terminal object 𝑡 in𝐸 and Proposition
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F.1.1(vi), we may extend the sphere 𝑢 to a map 𝑤∶ Δ[𝑛] → 𝐸. This defines two
maps 𝑝𝑤, 𝑣∶ Δ[𝑛] → 𝐵 with a common boundary 𝑝𝑢∶ 𝜕Δ[𝑛] → 𝐵, which we
may use to define a sphere ℎ∶ 𝜕Δ[𝑛 + 1] → 𝐵 with ℎ𝛿𝑛+1 = 𝑝𝑤 and ℎ𝛿𝑛 = 𝑣
by starting with the degenerate simplex 𝑝𝑤𝜎𝑛∶ Δ[𝑛 + 1] → 𝐵, restricting to
its boundary, and then replacing the 𝑛th face in this sphere with 𝑣∶ Δ[𝑛] → 𝐵.
By construction, ℎ maps the vertex {𝑛 + 1} to 𝑝𝑡 which is terminal in 𝐵, so it
follows that we may fill this sphere to define a simplex 𝑘∶ Δ[𝑛 + 1] → 𝐵.

We construct a horn 𝑔∶ Λ𝑛[𝑛 + 1] → 𝐸 by restricting the degenerate sim-
plex 𝑤𝜎𝑛∶ Δ[𝑛 + 1] → 𝐸. This pair of maps defines a factorization of the
commutative square of the statement:

𝜕Δ[𝑛] 𝐸 𝜕Δ[𝑛] Λ𝑛[𝑛 + 1] 𝐸

Δ[𝑛] 𝐵 Δ[𝑛] Δ[𝑛 + 1] 𝐵

ᵆ

𝑝 =

𝛿𝑛 𝑔

𝑝

𝑣 𝛿𝑛 𝑘

ℓ

Since the central vertical map of this commutative rectangle is an inner horn
inclusion and its right hand vertical is an isofibration of quasi-categories, it
follows that the lifting problem on the right has a solution ℓ∶ Δ[𝑛 + 1] → 𝐸 as
marked, and now it is clear that the map ℓ𝛿𝑛∶ Δ[𝑛] → 𝐸 provides a solution to
the original lifting problem.

Exercises
Exercise F.1.i. Prove that if 𝐴 and 𝐵 are quasi-categories which possess a
terminal element and 𝑓∶ 𝐴 → 𝐵 is a functor, not necessarily an isofibration,
which preserves terminal elements, then given any lifting problem as below-left
in which 𝑡 is terminal in 𝐴

1 𝜕Δ[𝑛] 𝐴 𝜕Δ[𝑛] 𝐴

Δ[𝑛] 𝐵 Δ[𝑛] 𝐵

{𝑛}

𝑡

𝑓 ⇝
⇓≅ 𝑓

there exists a lift as above-right so that the upper-left triangle commutes up to
natural isomorphism and the bottom-right triangle commutes on the nose.

Exercise F.1.ii. State and prove the equivalence between various synthetic and
analytic definitions of an initial element in a quasi-category.
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F.2 Limits and Colimits

In this section, we expand Proposition 4.3.2 to prove that the synthetic definition
of a limit of a diagram indexed by a simplicial set and taking values in a quasi-
category coincides with the analytic definition first introduced by Joyal [61, 4.5].
We prove the equivalence between four synthetic definitions of a limit cone – (i)
the original Definition 2.3.8; (ii) appearing in Proposition 4.3.4; (iii) appearing
as Definition 9.4.7 and in Proposition 9.4.8; and (iv) from Proposition 4.3.2 –
and one analytic one (v) which is Joyal’s. In this case, by the results just cited
and Proposition F.1.1, there is nothing left to do but state the result and provide
references for its components.

Proposition F.2.1. Consider a functor 𝑑∶ 𝐽 → 𝐴 between quasi-categories
and a cone 𝜆∶ Δℓ ⇒ 𝑑. The following are equivalent:

(i) The pair (ℓ, 𝜆) defines an absolute right lifting diagram

𝐴

1 𝐴𝐽
⇓𝜆

Δℓ

𝑑

(ii) The cone ⌜𝜆⌝∶ 1 → 𝐴𝐽◃ defines an absolute right lifting diagram

𝐴𝐽◃

1 𝐴𝐽

=

res⌜𝜆⌝

𝑑

(iii) The cone 𝜆∶ ℓ! ⇒ 𝑑 defines a pointwise right extension diagram

𝐽 𝐴

1

𝑑

!
ℓ

⇑𝜆

(iv) The quasi-category of cones Hom𝐴𝐽(Δ, 𝑑) admits a terminal element
⌜𝜆⌝∶ 1 → Hom𝐴𝐽(Δ, 𝑑), representing a cone 𝜆∶ Δℓ ⇒ 𝑑.

(v) The quasi-category 𝐴/𝑑 admits a terminal element ⌜𝜆⌝∶ 1 → 𝐴/𝑑, trans-
posing to define an extension of 𝑑 to a diagram

𝐽

𝐽◃ 𝐴

𝑑

⌜𝜆⌝
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When these conditions hold, the data variously labeled (ℓ, 𝜆) or ⌜𝜆⌝ defines the
limit cone over 𝑑.

Note that any diagram 𝑑′∶ 𝐽′ → 𝐴 indexed by a simplicial set and valued
in a quasi-category can be extended along an inner anodyne extension to a
weakly equivalent diagram 𝑑∶ 𝐽 → 𝐴 between quasi-categories. Alternatively,
there is also no cost in the settings of (i), (ii), and (iv), and (v) to working with
the original diagram, as the quasi-categories of diagrams 𝐴𝐽 ≃ 𝐴𝐽′ and cones
Hom𝐴𝐽(Δ, 𝑑) ≃ Hom𝐴𝐽′(Δ, 𝑑′) and 𝐴/𝑑 ≃ 𝐴/𝑑′ are equivalent.

Proof The equivalence of (i) and (ii) is proven in Proposition 4.3.4 for any
∞-category 𝐴 and simplicial set 𝐽; the simplicial set 𝐽◃ ≔ 𝟙⋆ 𝐽 is the join from
Definition 4.2.4. The equivalence of (i) and (iii) is proven in Proposition 9.4.8
for any cartesian closed ∞-cosmos. Proposition 4.3.2 proves the equivalence
between (i) and (iv) for any diagram valued in any ∞-category.

Finally, the equivalence between (iv) and (v) is a consequence of the equiv-
alence of quasi-categories Hom𝐴𝐽(Δ, 𝑑) ≃ 𝐴/𝑑 over 𝐴 of Proposition D.6.4,
which provides two models for the quasi-category of cones over 𝑑. The final
ingredient is Lemma 2.2.7, which proves that if one of these quasi-categories
has a terminal element, they both do, as terminal elements are preserved by
equivalences.

Exercises
Exercise F.2.i. State and prove the equivalence between various synthetic and
analytic definitions of the colimit of a diagram valued in a quasi-category.

F.3 Right Adjoint Right Inverse Adjunctions

To our knowledge, right adjoint right inverse adjunctions between quasi-catego-
ries have not been given much attention. Nonetheless, we pause to establish a
useful analytic characterization of such adjunctions, which will help us compare
various other synthetic and analytic definitions.

Lemma F.3.1. An isofibration 𝑓∶ 𝐵 ↠ 𝐴 of quasi-categories admits a right
adjoint right inverse if and only if for every element 𝑎∶ 1 → 𝐴, there exists
an element 𝑢𝑎∶ 1 → 𝐵 with 𝑓𝑢𝑎 = 𝑎 that has the property that any lifting
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problem of the following form with 𝑛 ≥ 1 has a solution.

1 𝜕Δ[𝑛] 𝐵

Δ[𝑛] 𝐴

{𝑛}

ᵆ𝑎

𝑓 (F.3.2)

Proof If 𝑓∶ 𝐵 ↠ 𝐴 is an isofibration of quasi-categories admitting a right
adjoint right inverse, then by Lemma 3.6.9 its right adjoint 𝑢 may be chosen to
that the counit 𝜖∶ 𝑓𝑢 = id𝐴 is the identity and the adjunction is fibered over
𝐴. In this case, the induced fibered equivalence ⌜𝜖 ∘ 𝑓(−)⌝∶ Hom𝐵(𝐵, 𝑢) ∼

Hom𝐴(𝑓, 𝐴) of Proposition 4.1.1 is represented by the map induced by 𝑓 between
the comma ∞-categories defined in Proposition 3.4.5.

Hom𝐵(𝐵, 𝑢) 𝐵𝟚

Hom𝐴(𝑓, 𝐴) 𝐴𝟚

𝐴 × 𝐵 𝐵 × 𝐵

𝐴 × 𝐵 𝐴 × 𝐴

⌟⌜𝜖∘𝑓(−)⌝

𝑓𝟚

⌟
ᵆ×𝐵

𝑓×𝑓
𝑓×𝐴

By that result – or alternatively, by Proposition C.1.12, on which its proof relies –
we see that the induced map between comma∞-categories is also an isofibration.
Combining these facts, we see that ⌜𝜖 ∘ 𝑓(−)⌝∶ Hom𝐵(𝐵, 𝑢) ∼ Hom𝐴(𝑓, 𝐴) is
a trivial fibration over 𝐴 × 𝐵. This trivial fibration pulls back over any vertex
𝑎∶ 1 → 𝐴 to define a trivial fibration Hom𝐵(𝐵, 𝑢𝑎) ∼ Hom𝐴(𝑓, 𝑎) over 𝐵. By
Corollary D.6.6, the domain and codomain are equivalent to Joyal’s slices, so
the isofibration 𝑓∶ 𝐵/ᵆ𝑎 ↠ 𝑓/𝑎 induced by 𝑓 is also a trivial fibration between
quasi-categories. The defining lifting property of Definition 1.1.25

𝜕Δ[𝑛 − 1] 𝐵/ᵆ𝑎

Δ[𝑛 − 1] 𝑓/𝑎

∼ 𝑓

for 𝑛 ≥ 1 transposes to the lifting property of (F.3.2).
Conversely, the lifting property (F.3.2) can be used to inductively define a

section 𝑢∶ 𝐴 → 𝐵 of 𝑓 extending the choices of elements 𝑢𝑎∶ 1 → 𝐵 lifting
each 𝑎∶ 1 → 𝐴. The inclusion sk0 𝐴 ↪ 𝐴 can be expressed as a countable
composite of pushouts of coproducts of maps 𝜕Δ[𝑛] ↪ Δ[𝑛] with 𝑛 ≥ 1, and
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each intermediate lifting problem required to define a lift

1 sk0 𝐴 𝐵

𝐴 𝐴

𝑎

ᵆ𝑎

ᵆ

𝑓
ᵆ

has the form of (F.3.2). To show that 𝑢 is a right adjoint right inverse to 𝑓, it
suffices, by Lemma B.4.2 to define a 2-cell 𝜂∶ id𝐵 ⇒ 𝑢𝑓 that whiskers with 𝑢
and with 𝑓 to isomorphisms. We construct a representative for 𝜂 by solving the
lifting problem

𝐵 ⊔ 𝐵 𝐵

𝐵 × Δ[1] 𝐵 𝐴

id𝐵 ⊔ᵆ𝑓

𝑓𝜂

𝜋 𝑓

which is again permitted by (F.3.2); note that the inclusion 𝐵 ⊔𝐵 ↪ 𝐵×Δ[1] is
bijective on vertices, and note further that every simplex of the codomain that is
missing from the domain has its final vertex in the image of 𝑢. By construction
𝑓𝜂 = id𝑓 is certainly invertible.

To show that 𝜂𝑢 is an isomorphism it suffices, by Corollary D.4.19, to check
that each of its components 𝜂𝑢(𝑎)∶ 𝑢𝑎 → 𝑢𝑓𝑢𝑎 = 𝑢𝑎 are isomorphisms in
𝐴. Inverse isomorphisms to these components can be found by elementary
applications of the lifting property (F.3.2), whose details we leave to the reader.

Exercises
Exercise F.3.i. Verify the final statement made in the proof of Lemma F.3.1.

Exercise F.3.ii. Formulate an analogous lifting property to characterize those
isofibrations 𝑓∶ 𝐵 → 𝐴 that admit left adjoint right inverses.

F.4 Cartesian and Cocartesian Fibrations

The aim in this section is to establish the equivalence between synthetic and
analytic characterizations of those isofibrations 𝑝∶ 𝐸 ↠ 𝐵 between quasi-cate-
gories that define cartesian or cocartesian fibrations. We start by considering
𝑝-cartesian arrows, proving the equivalence between the three synthetic defini-
tions of Theorem 5.1.7 and three analytic ones, which appear as [78, 2.4.1.1,



F.4 Cartesian and Cocartesian Fibrations 717

2.4.1.4, 2.4.1.8]. Then we prove a similar comparison between synthetic and ana-
lytic characterizations of cartesian fibrations and use this to strengthen the lifting
properties associated with cartesian fibrations. We conclude by demonstrating
that the discrete cocartesian fibrations coincide with Joyal’s left fibrations, while
the discrete cartesian fibrations coincide with right fibrations.

In §5.1, the appellation “cartesian arrow” referred to a generalized element

⌜𝜓⌝∶ 𝑋 → 𝐸𝟚 or equally to the natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 it

represents. In the ∞-cosmos of quasi-categories, an 𝑋-shaped arrow is cartesian
if and only if its components ⌜𝜓𝑥⌝ at each element 𝑥∶ 1 → 𝑋 are cartesian (see
Proposition 12.2.9), so to simplify the following discussion, we only consider
arrows ⌜𝜓⌝∶ 1 → 𝐸𝟚, or equally 1-simplices in 𝐸, that we depict with simplified
notation as 𝜓∶ 𝑒′ → 𝑒.

Proposition F.4.1. Fix an isofibration of quasi-categories 𝑝∶ 𝐸 ↠ 𝐵. The
following are equivalent and characterize when a 1-simplex 𝜓∶ 𝑒′ → 𝑒 in 𝐸 is
𝑝-cartesian:

(i) The isofibration induced by the inclusion 𝛿∶ ↪ 𝟛 with image 0 →
2 ← 1

𝐸𝟛 𝐵𝟛 ×
𝐵
𝐸

𝐸𝟚

𝛿⋔̂𝑝

𝑝12 𝑝12

pulls back to define a trivial fibration on the fiber over 𝜓.
(ii) The commutative triangle defines an absolute right lifting diagram:

𝐸𝟚

1 Hom𝐵(𝐵, 𝑝)

=

𝑖1⋔̂𝑝
𝜓

𝑝𝜓

where

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

𝑝1

𝑖1⋔̂𝑝

𝑝𝟚

𝑝1

⌜𝜙⌝

⌟
𝑝1

𝑝
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(iii) There is an absolute right lifting diagram with 𝑝1𝜖 = 𝜓 and 𝑝0𝜖 = id𝑝𝑒′

𝐸

1 Hom𝐵(𝐵, 𝑝)
⇓𝜖

Δ𝑝𝑒′

𝑝𝜓

where

𝐸 𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

Δ𝑝

Δ
𝑝𝟚

𝑝1

⌜𝜙⌝

⌟
𝑝1

𝑝

(iv) The induced map to the pullback in the square

𝐸/𝜓 𝐸/𝑒

𝐵/𝑝𝜓 𝐵/𝑝𝑒

𝑝 𝑝

is a trivial fibration 𝐸/𝜓 ∼ 𝐵/𝑝𝜓 ×𝐵/𝑝𝑒 𝐸/𝑒.
(v) Any lifting problem of the following form for 𝑛 ≥ 2 has a solution:

Δ[1] Λ𝑛[𝑛] 𝐸

Δ[𝑛] 𝐵

𝜓

{𝑛−1,𝑛}
𝑝 (F.4.2)

(vi) Any lifting problem of the following form for 𝑛 ≥ 1 has a solution:

Δ[1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} 𝐸

Δ[𝑛] × Δ[1] 𝐵

𝜓

{𝑛}×id

𝑝 (F.4.3)

Proof Theorem 5.1.7 proves the equivalence of conditions (i), (ii), and (iii) in
any ∞-cosmos.

By Lemma 5.1.2, the map in (i) is isomorphic to the induced map to the
pullback in a square that very similar to the square appearing in (iv).1 We
will demonstrate that these squares are equivalent by constructing a natural
1 Indeed, the initial object in the square (5.1.3) is a quasi-category we denote by 𝐸/𝜓 because it is

equivalent (though not isomorphic) to Joyal’s slice quasi-category (see Warning 4.2.10). To
avoid confusion here, we write 𝐸⫽𝜓 for that quasi-category and reserve the notation 𝐸/𝜓 for the
slice quasi-category of Definition 4.2.4.
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equivalence displayed below-left between the top-horizontal maps in each weakly
cartesian square:

𝐸/𝜓 𝐸/𝑒 Δ[𝑛 + 2] Δ[𝑛 + 1]

𝐸⫽𝜓 Hom𝐸(𝐸, 𝑒) Δ[𝑛] × Δ[2] Δ[𝑛] × Δ[1]

∼

∼ ⇜

𝛿𝑛+1

𝜋

id×𝛿1

𝜌

The maps in this diagram are most easily described in terms of their actions on
𝑛-simplices: each map is given by restriction along the corresponding functor in
the commutative square displayed above-right, where 𝜋 and 𝜌 are both defined
by the formula:

𝜌(𝑖, 𝑗) ≔ 𝜋(𝑖, 𝑗) ≔ {
𝑖 𝑗 = 0
𝑛 + 𝑗 𝑗 > 0

Propositions D.6.3 and D.6.4 prove that the left-hand vertical map is an equiva-
lence, while Corollary D.6.6 demonstrates that the right-hand vertical map is an
equivalence. Thus, the two squares are equivalent and, by Lemma 5.1.2, (i) is
equivalent to (iv).

By the adjunction of Proposition 4.2.5, the lifting property that characterizes
the trivial fibration of (iv) transposes to the lifting property of (v)

𝜕Δ[𝑛] 𝐸/𝜓 Δ[1] Λ𝑛+2[𝑛 + 2] 𝐸

Δ[𝑛] 𝐵/𝑝𝜓 ×
𝐵/𝑝𝑒

𝐸/𝑒 Δ[𝑛 + 2] 𝐵

𝜓

{𝑛+1,𝑛+2}

↭ 𝑝 for 𝑛 ≥ 0

proving that (iv) is equivalent to (v).
Now we argue that the lifting properties (F.4.2) and (F.4.3) are equivalent.

One implication holds on account of the retract diagram

Δ[1] Λ𝑛+1[𝑛 + 1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} Λ𝑛+1[𝑛 + 1]

Δ[𝑛 + 1] Δ[𝑛] × Δ[1] Δ[𝑛 + 1]

{𝑛,𝑛+1}

{𝑛}×id

𝜄 𝜌

(F.4.4)
in which 𝜌 is the map defined above and 𝜄 is its unique section. By Lemma



720 The Analytic Theory of Quasi-Categories

C.2.3 it is now clear that the lifting property (F.4.3) implies the lifting property
(F.4.2).

For the converse, we show that the lifting property assumed in (v) suffices
to solve this lifting problem presented by (vi). Our task is to find lifts along
𝑝 for each of the 𝑛 + 1 shuffles of Δ[𝑛] × Δ[1]. We number these shuffles
0,… , 𝑛 starting from the closed end of the cylinder. Proceeding inductively for
𝑘 < 𝑛, we choose a lift for the 𝑘th shuffle by filling a Λ𝑘+1[𝑛 + 1]-horn, which
can be done since 𝑝 is an isofibration between quasi-categories. To lift the 𝑛th
shuffle, we are required to fill a Λ𝑛+1[𝑛 + 1]-horn whose final {𝑛, 𝑛 + 1} edge is
𝜓, which can be done with the lifting property (F.4.2). This demonstrates that
(v)⇔(vi).

Our next result compares the three synthetic definitions proven equivalent in
Theorem 5.2.8 and a fourth synthetic definition of Proposition 5.2.11 with two
analytic definitions due to Lurie [78, §2.4.1-2].

Proposition F.4.5. For an isofibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories,
the following are equivalent and define what it means for 𝑝 to be a cartesian
fibration:

(i) Every natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 as below-left admits a lift
𝜒∶ 𝑒′ ⇒ 𝑒 as below-right:

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

⇑𝛽
𝑝 =

𝑒

𝑒′
⇑𝜒

𝑝

with the property that:
• induction: Given any functor 𝑓∶ 𝑌 → 𝑋 and natural transforma-

tions 𝑌 𝐸
𝑒″

𝑒𝑓

⇓𝜏 and 𝑌 𝐵
𝑝𝑒″

𝑝𝑒′𝑓

⇓𝛾 so that 𝑝𝜏 = 𝑝𝜒𝑓 ⋅ 𝛾,

there exists a lift 𝑌 𝐸
𝑒″

𝑒′𝑓

⇓𝛾̄ of 𝛾 so that 𝜏 = 𝜒𝑓 ⋅ ̄𝛾.

• conservativity: Any fibered endomorphism of a restriction of 𝜒 is

invertible: if 𝑌 𝐸
𝑒′𝑓

𝑒′𝑓

⇓𝜁 is any natural transformation so that

𝜒𝑓 ⋅ 𝜁 = 𝜒𝑓 and 𝑝𝜁 = id𝑝𝑒′𝑓 then 𝜁 is invertible.
(ii) Every natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 as below-left admits a lift
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𝜒∶ 𝑒′ ⇒ 𝑒 as below-right:

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

⇑𝛽
𝑝 =

𝑒

𝑒′
⇑𝜒

𝑝

with the property that the induced map is a trivial fibration:

𝐸/𝜒 ∼ 𝐵/𝛽 ×
𝐵/𝑝𝑒

𝐸/𝑒

(iii) The functor Δ𝑝∶ 𝐸 → Hom𝐵(𝐵, 𝑝) admits a right adjoint over 𝐵.
(iv) The functor 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right adjoint right

inverse.
(v) Any 1-simplex 𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 so that any

lifting problem for 𝑛 ≥ 1

Δ[1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} 𝐸

Δ[𝑛] × Δ[1] 𝐵

𝜒

{𝑛}×id

𝑝

has a solution.
(vi) Any 1-simplex 𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 so that any

lifting problem for 𝑛 ≥ 2

Δ[1] Λ𝑛[𝑛] 𝐸

Δ[𝑛] 𝐵

𝜒

{𝑛−1,𝑛}
𝑝

has a solution.

Condition (vi) appears to be mildly stronger than [78, 2.4.2.1], which only
requires that 𝑝 is an inner fibration with the lifting property (F.4.2), but it follows
easily that any such 𝑝 must be an isofibration (see Exercise F.4.i).

Proof The equivalence of (i) and (iii) is proven in Proposition 5.2.11, using
the equivalence of (i) is equivalent to (iv) in Proposition F.4.1 to identify the
equivalence that characterizes 𝑝-cartesian arrows, while the equivalence of (ii),
(iii), and (iv) is proven in Theorem 5.2.8.

It remains to verify the equivalence between any of these synthetic conditions
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and the corresponding analytic ones. We will demonstrate that (iv)⇔(v) and
(v)⇔(vi).

By Lemma F.3.1, the isofibration 𝑖1 ⋔̂ 𝑝 admits a right adjoint right inverse
if and only if any 1-simplex 𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 with
the lifting property

1 𝜕Δ[𝑛] 𝐸𝟚

Δ[𝑛] Hom𝐵(𝐵, 𝑝)

{𝑛}

𝜒

𝑖1⋔̂𝑝

for 𝑛 ≥ 1. This lifting property is equivalent to the transposed lifting property

Δ[1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} 𝐸

Δ[𝑛] × Δ[1] 𝐵

𝜒

{𝑛}×id

𝑝

again for 𝑛 ≥ 1, proving the equivalence between (iv) and (v).
Finally, Proposition F.4.1(v)⇔(vi) demonstrates the equivalence between (vi)

and (v).

We now extend the notion of cartesian arrow to define a notion of “cartesian
cylinder” to describe a variant of the lifting properties appearing in Proposition
F.4.1.

Definition F.4.6 (cartesian cylinders). Suppose that 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian
fibration of quasi-categories and that 𝑋 is any simplicial set. We say that a
cylinder 𝑒∶ 𝑋 × Δ[1] → 𝐸 is pointwise 𝑝-cartesian if and only if for each
0-simplex 𝑥 ∈ 𝑋, 𝑒 maps the 1-simplex (𝑥𝜎0, id[1])∶ (𝑥, 0) → (𝑥, 1) to a 𝑝-
cartesian arrow in 𝐸.

Lemma F.4.7. Let 𝑝∶ 𝐸 ↠ 𝐵 be a cartesian fibration of quasi-categories. A
cylinder 𝑒∶ 𝑋×Δ[1] → 𝐸 is pointwise 𝑝-cartesian if and only if 𝑒∶ Δ[1] → 𝐸𝑋

defines a 𝑝𝑋-cartesian arrow for the cartesian fibration 𝑝𝑋∶ 𝐸𝑋 ↠ 𝐵𝑋.

Proof First note that Corollary 5.3.5 implies that 𝑝𝑋∶ 𝐸𝑋 ↠ 𝐵𝑋 is a cartesian
fibration, while Proposition 5.6.2 proves that restriction along any 𝑓∶ 𝑌 → 𝑋
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defines a cartesian functor of cartesian fibrations:

𝐸𝑋 𝐸𝑌

𝐵𝑋 𝐵𝑌
𝑝𝑋

𝐸𝑓

𝑝𝑌

𝐵𝑓

In particular, 𝑝𝑋-cartesian arrows are pointwise 𝑝-cartesian. Conversely, any
pointwise 𝑝-cartesian cylinder factors through a 𝑝𝑋-cartesian arrow via a point-
wise isomorphism. By Corollary 1.1.22, a pointwise isomorphism is in fact an
isomorphism, so by isomorphism stability of 𝑝𝑋-cartesian arrows, any pointwise
𝑝-cartesian cylinder is a 𝑝𝑋-cartesian arrow.

The following lifting property is used to prove Proposition 12.2.4.

Lemma F.4.8. Let 𝑋 ↪ 𝑌 be a simplicial subset of a simplicial set 𝑌.

(i) Any lifting problem for 𝑛 ≥ 0

𝑋 × Δ[1] ∪ 𝑌 × {1} 𝐸

𝑌 × Δ[1] 𝐵

𝑒

𝑝

𝑏

̄𝑒

with the property that the cylinder 𝑋 × Δ[1] ⊆ 𝑋 × Δ[1] ∪ 𝑌 × {1}
𝑒

⟶
𝐸 is pointwise 𝑝-cartesian admits a solution ̄𝑒 which is also pointwise
𝑝-cartesian.

(ii) Any lifting problem for 𝑛 ≥ 1

𝑋 × Δ[𝑛] ∪ 𝑌 × Λ𝑛[𝑛] 𝐸

𝑌 × Δ[𝑛] 𝐵

𝑒

𝑝

𝑏

̄𝑒

in which the cylinder 𝑌 × Δ{𝑛−1,𝑛} ⊆ 𝑋 × Δ[𝑛] ∪ 𝑌 × Λ𝑛[𝑛]
𝑒

⟶ 𝐸 is
pointwise 𝑝-cartesian admits a solution ̄𝑒.

Proof The Leibniz tensor with 𝑋 ↪ 𝑌 defines a functor 𝑠𝒮𝑒𝑡𝟚 → 𝑠𝒮𝑒𝑡𝟚 that
preserves the retract diagram (F.4.4), so the lifting property (ii) follows from (i).
In turn, the lifting property (i) follows inductively from Proposition F.4.1(vi)
combined with the fact that any monomorphism 𝑋 ↪ 𝑌 can be decomposed as
a sequential composite of pushouts of coproducts of inclusions 𝑖𝑛∶ 𝜕Δ[𝑛] ↪
Δ[𝑛], and by Proposition C.2.9(vii), the pushout product with {1} ↪ Δ[1] is
then similarly a sequential composite of pushouts of coproducts of the pushout
products 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} ↪ Δ[𝑛] × Δ[1].
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A final result demonstrates that discrete cocartesian and discrete cartesian
fibrations between quasi-categories coincide with the classes of left fibrations
and right fibrations introduced by Joyal [61].

Proposition F.4.9. For an isofibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories,
the following are equivalent and define what it means for 𝑝 to be a discrete
cartesian fibration:

(i) The map 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration whose fibers are Kan
complexes.

(ii) Every 2-cell 𝛽∶ 𝑏 ⇒ 𝑝𝑒 in the homotopy 2-category of quasi-categories
has an essentially unique lift: given 𝜒∶ 𝑒′ ⇒ 𝑒 and 𝜓∶ 𝑒″ ⇒ 𝑒 so that
𝑝𝜒 = 𝑝𝜓 = 𝛽, then there exists an isomorphism 𝛾∶ 𝑒″ ⇒ 𝑒′ with
𝜒 ⋅ 𝛾 = 𝜓 and 𝑝𝛾 = id.

(iii) The induced functor 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) is a trivial fibration.
(iv) The functor 𝑝∶ 𝐸 ↠ 𝐵 is a right fibration, with the lifting property:

Λ𝑘[𝑛] 𝐸

Δ[𝑛] 𝐵

𝑝 for 𝑛 ≥ 0 and 0 < 𝑘 ≤ 𝑛.

Proof The first characterization (i) is a reinterpretation of the original Defini-
tion 5.5.3 using Proposition 12.2.3, which says that an isofibration 𝑝∶ 𝐸 ↠ 𝐵
defines a discrete object in 𝒬𝒞𝑎𝑡/𝐵 if and only if its fibers are Kan complexes.
The equivalence of (i) with (ii) is proven in Proposition 5.5.6, while the equiva-
lence of (i) with (iii) is proven in Proposition 5.5.8.

We conclude by demonstrating the equivalence of (iii) and (iv). By adjunction,
𝑖1 ⋔̂ 𝑝 is a trivial fibration if and only if the lifting problem below-right has a
solution

𝜕Δ[𝑛] 𝐸𝟚 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} 𝐸

Δ[𝑛] Hom𝐵(𝐵, 𝑝) Δ[𝑛] × Δ[1] 𝐵

∼ 𝑖1⋔̂𝑝 ↭ 𝑝

By Proposition D.3.8, if 𝑝∶ 𝐸 ↠ 𝐵 is a right fibration, satisfying condition (iv),
then the lifting problem above-right admits a solution and hence 𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠
Hom𝐵(𝐵, 𝑝) is a trivial fibration proving (iii). Conversely, for 0 < 𝑘 ≤ 𝑛 the



F.5 Adjunctions 725

horn inclusion Λ𝑘[𝑛] ↪ Δ[𝑛] is a retract

Λ𝑘[𝑛] Λ𝑘[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} Λ𝑘[𝑛]

Δ[𝑛] Δ[𝑛] × Δ[1] Δ[𝑛]

Λ𝑘[𝑛]×{0} 𝑟

Δ[𝑛]×{0} 𝑟

where 𝑟(𝑖, 0) = 𝑖 and 𝑟(𝑖, 1) = {
𝑖 𝑖 ≠ 𝑘 − 1
𝑘 𝑖 = 𝑘 − 1.

Thus, to solve the lifting problem postulated by (iv), it suffices to show that
𝑝 lifts against the pushout products (Λ𝑘[𝑛] ↪ Δ[𝑛])×̂({1} ↪ Δ[1]), which
transposes to a lifting problem between the monomorphism Λ𝑘[𝑛] ↪ Δ[𝑛] and
𝑖1 ⋔̂ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝). If (iii) holds and 𝑖1 ⋔̂ 𝑝 is a trivial fibration, then
this constructs the desired lift.

Exercises
Exercise F.4.i. Suppose 𝑝∶ 𝐸 → 𝐵 is an inner fibration between quasi-catego-
ries so that any 1-simplex 𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 so that
any lifting problem for 𝑛 ≥ 2

Δ[1] Λ𝑛[𝑛] 𝐸

Δ[𝑛] 𝐵

𝜒

{𝑛−1,𝑛}
𝑝

has a solution. Show that 𝑝 is an isofibration.

Exercise F.4.ii. State and prove the equivalence between various synthetic and
analytic definitions of

(i) a cocartesian fibration between quasi-categories,
(ii) a cocartesian arrow in a quasi-category, and
(iii) a discrete cocartesian fibration between quasi-categories.

F.5 Adjunctions

The comparison between the analytic and synthetic definitions of adjunction
between quasi-categories is somewhat more subtle than for the other categori-
cal notions considered in this appendix, as these are typically presented with
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different data. The synthetic definition of an adjunction, originally due to Joyal
[63], involves two specified functors 𝑓∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵, together with
specified maps 𝜂∶ 𝐵 × Δ[1] → 𝐵 and 𝜂∶ 𝐴 × Δ[1] → 𝐴 up to homotopy in
𝐵𝐵 or 𝐴𝐴, together with 2-simplices in the quasi-categories 𝐵𝐴 and 𝐴𝐵 that
witness the triangle equalities. By contrast, the analytic notion of an adjunction
between 𝐴 and 𝐵, due to Lurie [78, 5.2.2.1], is defined to be an isofibration2

𝑀 ↠ Δ[1] that is both a cartesian fibration and a cocartesian fibration, called
a correspondence, with equivalences 𝑀1 ≃ 𝐴 and 𝑀0 ≃ 𝐵 identifying the
quasi-categories 𝐴 and 𝐵 with the fibers over the endpoints of the 1-simplex

Since Proposition 2.1.13 demonstrates that the synthetic notion of adjunction
is equivalence-invariant, we simplify our notation somewhat and let 𝐵 and 𝐴
denote the fibers over 0 and 1, respectively, of the isofibration 𝑀 ↠ Δ[1]. Our
aim in this section is to show that from a cocartesian and cartesian fibration
𝑀 ↠ Δ[1], one can extract an adjunction between 𝐵 and 𝐴, with the adjoint
functors determined uniquely up to isomorphism, and conversely from a 2-
categorical adjunction, one can construct a corresponding correspondence𝑀 ↠
Δ[1], which is unique up to fibered equivalence. As the proof is more involved,
we break the argument up into several intermediate steps.

Proposition F.5.1. Let 𝑀 be a quasi-category equipped with a map 𝑀 ↠ Δ[1]
that is both a cocartesian fibration and cartesian fibration. Then

• the fibers 𝐵 ≔ 𝑀0 and 𝐴 ≔ 𝑀1 and
• the functors 𝑓∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 defined by the cocartesian and

cartesian lift, respectively, of the generic arrow in Δ[1]

define an adjunction

𝐴 𝐵
ᵆ
⊥
𝑓

Proof This is a special case of Proposition 5.4.7. We recall the construction
of 𝑓 and 𝑢 and leave the rest of the details to that result and Remark 5.2.7. Let
𝜒 denote a cocartesian lift of the generic arrow in Δ[1] whose domain is the
inclusion 𝐵 ↪ 𝑀 of the fiber over 0. The codomain of this lifted arrow lands in
the fiber over 1 and thus factors uniquely through the inclusion 𝐴 ↪ 𝑀 of that
2 The nitpicker might note that Lurie only requires an inner fibration, but any inner fibration over
Δ[1] is automatically an isofibration. In fact, so long as 𝑀 is a quasi-category, any simplicial
map 𝑀 → Δ[1] is automatically an isofibration.
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fiber:

𝐵 𝑀 𝐵 𝑀

𝐴

1 Δ[1] 1 Δ[1]

⌟

= 𝑓

⇓𝜒

⌟0

1

⇓

1

This factorization defines the functor 𝑓∶ 𝐵 → 𝐴. Since cocartesian lifts of a
fixed arrow and adjoints to a fixed functor are each unique up to isomorphism,
this construction is suitably well-defined. The construction of the right adjoint
𝑢∶ 𝐴 → 𝐵 is dual, involving a cartesian lift of the generic arrow in Δ[1].

The converse makes use of something we call the quasi-categorical collage
construction.

Definition F.5.2 (the quasi-categorical collage construction). For any cospan
𝐵 𝑔 𝐶 𝑓 𝐴 of quasi-categories, define a simplicial set col(𝑓, 𝑔) by

col(𝑓, 𝑔)𝑛 = {(𝑎 ∈ 𝐴𝑖, 𝑏 ∈ 𝐵𝑗, 𝑐 ∈ 𝐶𝑛)
|||
𝑐|{0,…,𝑖} = 𝑓(𝑎), 𝑖, 𝑗 ≥ −1,
𝑐|{𝑛−𝑗,…,𝑛} = 𝑔(𝑏), 𝑖 + 𝑗 = 𝑛 − 1 }

with the convention that conditions indexed by Δ[−1] are empty (or that each
simplicial set is terminally augmented). There are evident inclusions that fit into
a commutative diagram:

𝐵 col(𝑓, 𝑔) 𝐴

{1} Δ[1] {0}

⌟
𝜌

⌞

The map 𝜌 sends an 𝑛-simplex (𝑎∶ Δ[𝑖] → 𝐴, 𝑏∶ Δ[𝑗] → 𝐵, 𝑐∶ Δ[𝑛] → 𝐶) to
the 𝑛-simplex [𝑛] → [1] that carries 0,… , 𝑖 to 0 and 𝑖 + 1,… , 𝑛 to 1. Note that
the fiber of 𝜌 over 0 is isomorphic to 𝐴 while the fiber of 𝜌 over 1 is isomorphic
to 𝐵

As is our custom for two-sided fibrations and modules, we write 𝐵 + 𝐴 ↪
col(𝑓, 𝑔) for the inclusions of the fibers over 1 and 0 – with the fiber over 1 on
the left and the fiber over 0 on the right. This positions the covariantly acting
quasi-category on the “left” and the contravariantly acting quasi-category on
the “right.”

Lemma F.5.3. The map 𝜌∶ col(𝑓, 𝑔) → Δ[1] is an inner fibration. In particular,
the simplicial set col(𝑓, 𝑔) is a quasi-category.
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Proof Since the fibers of 𝜌 over 0 and 1 are the quasi-categories 𝐴 and 𝐵, it
suffices to consider inner horns

Λ𝑘[𝑛] col(𝑓, 𝑔)

Δ[𝑛] Δ[1]

𝜌

𝛼

for which 𝛼∶ [𝑛] → [1] is a surjection. Suppose 𝛼 carries 0,… , 𝑖 to 0 and
𝑖+1,… , 𝑛 to 1. Note that for any 0 < 𝑘 < 𝑛, the faces {0,… , 𝑖} and {𝑖 + 1,… , 𝑛}
of Δ[𝑛] belong to the horn Λ𝑘[𝑛]. In particular, the map Λ𝑘[𝑛] → col(𝑓, 𝑔)
identifies simplices 𝑎∶ Δ[𝑖] → 𝐴 and Δ[𝑛 − 𝑖 − 1] → 𝐵 together with a horn
Λ𝑘[𝑛] → 𝐶 whose initial and final faces are the images of these simplices under
𝑓∶ 𝐴 → 𝐶 and 𝑔∶ 𝐵 → 𝐶. Since 𝐶 is a quasi-category this horn admits a filler
𝑐∶ Δ[𝑛] → 𝐶 and the triple (𝑎, 𝑏, 𝑐) defines an 𝑛-simplex in col(𝑓, 𝑔) solving
the lifting problem.

We write col(𝑓, 𝐵) for the collage of 𝑓∶ 𝐴 → 𝐵 with the identity on 𝐵.

Lemma F.5.4. For any 𝑓∶ 𝐴 → 𝐵, the map 𝜌∶ col(𝑓, 𝐵) → Δ[1] is a cocarte-
sian fibration.

Proof By Proposition F.4.5(vi), to prove the claim, we need only specify
cocartesian lifts of the non-degenerate 1-simplex of Δ[1] and demonstrate that
these edges have the corresponding universal property. To that end, for any
vertex 𝑎 ∈ 𝐴0, let 𝜒𝑎∶ Δ[1] → col(𝑓, 𝐵) be the 1-simplex

𝜒𝑎 ∶= (𝑎∶ Δ[0] → 𝐴, 𝑓𝑎∶ Δ[0] → 𝐵, 𝑓𝑎𝜎0∶ Δ[1] → 𝐵),

defined by the degenerate edge at 𝑓𝑎 ∈ 𝐵0 lying over the 1-simplex in Δ[1]. To
show that 𝜒𝑎 is 𝜌-cocartesian, we must construct fillers for any left horn

Δ[1] Λ0[𝑛] col(𝑓, 𝐵)

Δ[𝑛] Δ[1]

𝜒𝑎

{0,1}
𝜌

𝛽

whose initial edge is 𝜒𝑎. Note that this condition implies that the bottom map
𝛽∶ [𝑛] → [1] carries 0 to 0 and the remaining vertices to 1. The map Λ0[𝑛] →
col(𝑓, 𝐵) defines a horn Λ0[𝑛] → 𝐵 in the quasi-category 𝐵 whose first edge
is degenerate. By Proposition 1.1.14, this “special outer horn” admits a filler
𝑏∶ Δ[𝑛] → 𝐵 and the triple

(𝑎∶ Δ[0] → 𝐴, 𝑏𝛿0∶ Δ[𝑛 − 1] → 𝐵, 𝑏∶ Δ[𝑛] → 𝐵)
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defines an 𝑛-simplex in col(𝑓, 𝐵) that solves the lifting problem.

Proposition F.5.5. For any 𝑓∶ 𝐴 → 𝐵 between quasi-categories, the collage
col(𝑓, 𝐵) defines the oplax colimit of 𝑓 in 𝒬𝒞𝑎𝑡. That is col(𝑓, 𝐵) defines a cone
under the pushout diagram

𝐴 𝐵

𝐴 × Δ[1] 𝑃

col(𝑓, 𝐵)

𝑓

id×𝛿0

⌜

ℎ

𝑖1⋔̂𝑝

so that the induced map 𝑘 is inner anodyne, and in particular a weak equivalence
in the Joyal model structure.

Proof The map 𝑘 is a quotient of the map ℎ, which has the following explicit
description. For each 𝑛-simplex (𝑎, 𝛼)∶ Δ[𝑛] → 𝐴×Δ[1] define 𝑖 ≔ |𝛼−1(0)|−
1, so that −1 ≤ 𝑖 ≤ 𝑛. Then ℎ carries (𝑎, 𝛼) to the 𝑛-simplex of col(𝑓, 𝐵)
corresponding to the triple

(𝑎|{0,…,𝑖}∶ Δ[𝑖] → 𝐴, 𝑓𝑎|{𝑖+1,…,𝑛}∶ Δ[𝑛 − 𝑖 − 1] → 𝐵, 𝑓𝑎∶ Δ[𝑛] → 𝐵).

Note that the composite 𝜌ℎ∶ 𝐴 × Δ[1] → Δ[1] is the projection.
It remains to present 𝑘 as a sequential composite of pushouts of coproducts

of inner horn inclusions. To do so, first note that

col(𝑓, 𝐵)𝑛 = 𝐴𝑛 ⨿ 𝐴𝑛−1 ×𝐵𝑛−1 𝐵𝑛 ⨿⋯⨿ 𝐴0 ×𝐵0 𝐵𝑛 ⨿ 𝐵𝑛

where each map 𝐵𝑛 → 𝐵𝑖 is the initial face map corresponding to {0,… , 𝑖} ↪
Δ[𝑛]. From the perspective of this decomposition, 𝑃𝑛 is the subset containing
the sets 𝐴𝑛 and 𝐵𝑛 and the subset of 𝐴𝑖 ×𝐵𝑖 𝐵𝑛 whose component in 𝐵𝑛 is in the
image of 𝑓. The 𝑛-simplices of col(𝑓, 𝐵) that remain to be attached correspond
to elements of 𝐴𝑖×𝐵𝑖𝐵𝑛, for 0 ≤ 𝑖 < 𝑛, that are not in the image of 𝑓 in the sense
just discussed. Note in particular that the map on vertices 𝑘∶ 𝑃0 ↪ col(𝑓, 𝐵)0
is an isomorphism and 𝑘∶ 𝑃𝑛 ↪ col(𝑓, 𝐵)𝑛 is an injection for all 𝑛 ≥ 1.

To enumerate our attaching maps, we start with the collection of non-degener-
ate 𝑛-simplices of col(𝑓, 𝐵) for 𝑛 ≥ 1 that are not in the image of 𝑓 and remove
also those elements of 𝐴𝑖 ×𝐵𝑖 𝐵𝑛 whose components 𝑏 ∈ 𝐵𝑛 are in the image of
the degeneracy map 𝜎𝑖∶ 𝐵𝑛−1 → 𝐵𝑛. Partially order this set of simplices first
in the order of increasing 𝑛 and then in order of increasing index 𝑖; that is we
lexicographically order the collection of pairs (𝑛, 𝑖) with 𝑛 ≥ 1 and 0 ≤ 𝑖 < 𝑛.
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We filter the inclusion 𝑃 ↪ col(𝑓, 𝐵) as

𝑃 ↪ 𝑃(1,0) ↪ 𝑃(2,0) ↪ 𝑃(2,1) ↪ 𝑃(3,0) ↪⋯↪ 𝑃(𝑛,𝑖) ↪⋯↪ colim ≅ col(𝑓, 𝐵)

where the simplicial set 𝑃(𝑛,𝑖) is built from the previous one by a pushout of a
coproduct of inner horns indexed by the set of 𝑛-simplices (𝑎, 𝑏) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛
with 𝑏 not in the image of 𝑓 or 𝜎𝑖. The filler for the horn indexed by (𝑎, 𝑏) will
attach this 𝑛 simplex to 𝐵𝑛 as the missing face of the horn and also the 𝑛 + 1
simplex (𝑎, 𝑏𝜎𝑖) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛+1.

Consider a simplex (𝑎, 𝑏) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛 with 𝑏 not in the image of 𝑓 or 𝜎𝑖.
Define a horn

Λ𝑖+1[𝑛 + 1] 𝑃(𝑛,𝑖)

Δ[𝑛 + 1] col(𝑓, 𝐵)
(𝑎,𝑏𝜍𝑖)

For each 0 ≤ 𝑗 < 𝑖 + 1, the 𝛿𝑗-face of the 𝑛 + 1 simplex (𝑎, 𝑏𝜎𝑖) is the 𝑛-
simplex (𝑎𝛿𝑗, 𝑏𝜎𝑖𝛿𝑗), which lies in 𝑃(𝑛,𝑖−1) or in 𝐵 ↪ 𝑃 in the case 𝑖 = 0. For
each 𝑖 + 1 < 𝑗 ≤ 𝑛 + 1, the 𝛿𝑗-face of the 𝑛 + 1 simplex (𝑎, 𝑏𝜎𝑖) is the 𝑛-
simplex (𝑎, 𝑏𝜎𝑖𝛿𝑗) = (𝑎, 𝑏𝛿𝑗−1𝜎𝑖) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛, which was previously attached
to 𝑃(𝑛−1,𝑖). So the horn Λ𝑖+1[𝑛+1] indeed maps to 𝑃(𝑛,𝑖), permitting an inductive
construction of the next simplicial set in this sequence as the pushout

∐
∼
Λ𝑖+1[𝑛 + 1] 𝑃(𝑛,𝑖)

∐
∼
Δ[𝑛 + 1] 𝑃(𝑛,𝑖)+1

⌜

where 𝑃(𝑛,𝑖)+1 is 𝑃(𝑛+1,0) in the case 𝑖 = 𝑛 − 1 and 𝑃(𝑛,𝑖+1) otherwise.

Putting these results together, we are now able to prove the desired equivalence
between the synthetic and analytic notions of adjunction.

Proposition F.5.6. For a pair of functors between quasi-categories 𝑓∶ 𝐵 → 𝐴
and 𝑢∶ 𝐴 → 𝐵, the following are equivalent and define what it means to have
an adjunction

𝐵 𝐴
𝑓

⊥
ᵆ

(i) There are natural transformations 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and 𝜖∶ 𝑓𝑢 ⇒ id𝐴
satisfying the triangle equalities: 𝑢𝜖 ⋅ 𝜂𝑢 = idᵆ and 𝜖𝑓 ⋅ 𝑓𝜂 = id𝑓.
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(ii) The functor 𝑓 defines an absolute left lifting of id𝐵 through 𝑢:

𝐴

𝐵 𝐵
⇑𝜂

ᵆ
𝑓

(iii) The functor 𝑢 defines an absolute right lifting of id𝐴 through 𝑓:

𝐵

𝐴 𝐴
⇓𝜖

𝑓ᵆ

(iv) There is a pointwise left extension diagram that is absolute:

𝐵 𝐵

𝐴

𝑓
ᵆ

⇓𝜂

(v) There is a pointwise right extension diagram that is absolute:

𝐴 𝐴

𝐵

ᵆ
𝑓

⇑𝜖

(vi) The modules Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢) are equivalent over 𝐴×𝐵.
(vii) The collages col(𝑓, 𝐴) and col(𝐵, 𝑢) are equivalent under𝐴+𝐵 and over

Δ[1], in which case col(𝑓, 𝐴) ↠ Δ[1] or equivalently col(𝐵, 𝑢) ↠ Δ[1]
defines both a cocartesian and a cartesian fibration.

Proof The equivalence between (i) and (ii) or (iii) is proven in Lemma 2.3.7,
while the equivalence with (iv) or (v) is proven in Proposition 9.4.1. The equiv-
alence between (i) and (vi) is proven in Proposition 4.1.1. We conclude by
showing that (i) is equivalent to (vii).

First suppose that col(𝑓, 𝐴) ≃ col(𝐵, 𝑢) under 𝐴 + 𝐵 and over Δ[1]. By
Lemma F.5.4 and Corollary 5.3.1 this means that the map col(𝑓, 𝐴) → Δ[1] is
both a cocartesian and a cartesian fibration. By Proposition F.5.1 it follows that
the 1-arrow in Δ[1] from 0 to 1 induces an adjunction between the fibers 𝐵 and
𝐴. By inspection of that proof, the left adjoint functor so-constructed in the case
of the bifibration col(𝑓, 𝐴) → Δ[1] is 𝑓; substituting the equivalent bifibration
col(𝐵, 𝑢) → Δ[1], we see that the right adjoint is equivalent to 𝑢. Thus (vii)
implies (i).

For the converse, we work in the opposite ∞-cosmos 𝒬𝒞𝑎𝑡op, an ∞-cosmos
in which “not all objects are cofibrant,” as described in [110]. In that context,
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Proposition F.5.5 proves that col(𝑓, 𝐴) and col(𝐵, 𝑢) construct the contravariant
and covariant comma objects associated to the functors 𝑓 and 𝑢. If 𝑓 ⊣ 𝑢
in 𝒬𝒞𝑎𝑡 then these functors are also adjoint in 𝒬𝒞𝑎𝑡op and Proposition 4.1.1
then proves that the commas col(𝑓, 𝐴) and col(𝐵, 𝑢) are equivalent under 𝐴 +
𝐵. By construction, this equivalence also lies over Δ[1]. Alternatively, if the
reader prefers not to dualize, col(𝑓, 𝐴) and col(𝐵, 𝑢) can be shown to define
“weak cocomma objects” in the homotopy 2-category 𝔥𝒬𝒞𝑎𝑡, satisfying the
1-categorical duals of the weak universal properties of Proposition 3.4.6. Using
these weak universal properties, the proof of Proposition 4.1.1 can be repeated
in the dual to construct the desired equivalence col(𝑓, 𝐴) ≃ col(𝐵, 𝑢) under
𝐴 + 𝐵 and over Δ[1]. So (i) implies (vii), completing the proof.

Exercises
Exercise F.5.i. Construct a correspondence that encodes the adjunction that
expresses the universal property of a terminal element.
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core∗𝒦, 466
core𝑛, 629

𝒞𝒮𝒮, 693
𝒞(𝑥, 𝑦)0, 507
𝜕𝒜𝑎, 602
𝜕𝒜𝑎, 602
𝐷𝒞𝑎𝑡, 436
𝐷2-𝒞𝑎𝑡, 436
𝜕Δ[𝑛], 6
𝜕ℐ(𝑖, −), 577
𝜕𝑖𝑋, 577
dec𝑙, 632
dec𝑟, 632
Δ[𝑛]𝑡, 623
𝚫, 6
Δ, 69
𝚫⊥, 74
𝚫 ≀ 𝐶, 700
⋅𝛿𝑖, 7
Δ𝑘[𝑛], 625
Δ𝑘[𝑛]′, 626
Δ𝑘[𝑛]″, 626
Δ[𝑛], 6
𝚫+, 74
Δ𝑝, 181
𝚫⊤, 74
disc, 695
𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦), 268
𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦)/𝐵, 268
𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦), 268
𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵, 268
𝐴 𝑞 𝐸 𝑝 𝐵, 280
𝐴 𝐸 𝐵, 305
𝐸(𝑏, 𝑎), 315
𝐸−𝑛 , 656
𝐸+𝑛 , 656
𝐸/𝜓, 177
𝐸2-𝒞𝑎𝑡, 436
ev, 508
⃗𝐸, 320

ℱ𝑎𝑐𝑡𝑓, 600
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ℱ𝑎𝑐𝑡≤𝑛𝑓, 600
𝙵, 568, 591
𝙵 ∩ 𝚆, 568
fib, 160
𝐴\ℱ𝑖𝑏(𝒦)/𝐵, 291
Fun, 21
Fun𝐵, 33
Funcart

𝐵 , 223
Fun𝑓×𝑔, 309
Fun𝒦, 21
ℎ𝛼𝑘, 541
hFun, 45
(𝔥𝒦)/𝐵, 123
𝔥(𝒦/𝐵), 123
𝔥𝒦⫽𝐵, 224
(𝔥𝒦) , 240
𝔥(𝒦 ), 240
𝔥𝒦 , 225
𝔥𝒦 , 226
h, 10, 51
hom, 585
Hom𝐴, 317
Hom𝐴(𝑓, 𝑔), 102
Hom𝐴(𝑥, 𝑦), 106
Hom𝐵(𝐵, 𝑓), 109
Hom𝐵(𝑓, 𝐵), 109
ĥom, 585
Hom𝐿

𝐴(𝑥, 𝑦), 682
Hom𝑅

𝐴(𝑥, 𝑦), 682
ℐ𝒞𝑎𝑡, 434
id𝑓, 540
idid𝑎, 541
𝕀, 12
𝕀[𝑛], 671, 694
ℐ2-𝒞𝑎𝑡, 435
ℐ𝑣𝒟𝑏𝑙𝒞𝑎𝑡, 447
ℐ𝒱ℰ, 449
𝙹, 582
𝙹 , 582

𝙹-cell, 583
𝙹-cof, 583
𝐽◃, 141
𝐽▹, 141
𝒦, 21
𝒦/𝐴×𝐵, 292
𝒦𝑎𝑛, 27
𝜅, 92
𝒦/𝐵, 33
𝒦⊥, 260
𝒦co, 37
𝒦 , 238
𝒦⊥,𝐽, 264
𝒦⊤,𝐽, 264
𝒦 , 269
𝒦 , 269
𝒦∗, 260
𝒦≃, 242
𝒦≃

/𝐵, 241
𝒦⊤, 257
𝒦

∼

, 241
𝑥 ∶ 𝐾, 437
𝐾⟨𝑥𝑝⟩, 437
𝙻[𝒜], 610
𝐿𝑎, 604
ℓ𝑎, 604
̂ℓ𝑎𝑓, 604

Λ𝑘[𝑛], 6, 626
lan, 145, 372
ℒ𝑎𝑟𝑖(𝒦), 262
ℒ𝑎𝑟𝑖(𝒦)/𝐵, 260
lim𝑊 𝐹, 525
lim𝑊 𝑓, 372
𝑀𝐴, 604
𝑚𝑎, 604
𝑚̂𝑎𝑓, 604
𝑚𝑖, 577
𝑚̂𝑖, 577
𝕄od(𝒦), 313
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𝐴\ℳ𝑜𝑑(𝒦)/𝐵, 301
Μ𝐶, 436
Μ𝒞, 436
nerve, 693
Ν𝒞, 436
Ω, 157
𝝎, 251
𝑝0, 92, 102
𝑝1, 92, 102
𝒫𝒞𝑎𝑡, 695
𝜙, 102
Π𝑓, 486
𝑄(−), 591
𝒬𝒞𝑎𝑡, 24
𝑛-𝒬𝒞𝑎𝑡, 701
𝑅(−), 591
𝚁[𝒜], 610
ran, 145, 372
ℛ𝑎𝑟𝑖(𝒦), 262
ℛ𝑎𝑟𝑖(𝒦)/𝐵, 260
𝑅̇, 434
ℛ𝑒𝑧𝑘ℳ, 704
𝜌, 315

⌜𝜌⌝, 156
row0, 693

𝒮𝑒𝑔𝑎𝑙, 696
Σ, 157
Σ𝑓, 486
⋅𝜎𝑖, 7
sk𝑛, 602
Sp𝐴, 271
𝑠𝒮𝑒𝑡, 6
𝑠𝒮𝑒𝑡+, 622
𝑛-𝑠𝒮𝑒𝑡+, 629
𝑠𝒮𝑒𝑡+, 632
𝒮𝑡𝑎𝑏(𝒦), 268

𝑡𝚫, 623
𝚯𝑛, 700
𝚯𝑛-𝒮𝑝, 702
trv𝑛, 629

𝑊⨰, 248
𝚆, 568, 591
𝑊←, 251

⌜𝜉⌝, 156

∗, 156
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0-arrow, 22
1-category

as an ∞-cosmos, 688
1-cell, 540
1-cell induction

for arrow ∞-categories, 93
for comma ∞-categories, 104
for pullbacks, 98

1-complicial set, see naturally
marked quasi-category

∞-cosmos of -, 698
1-saturated, 655
2-category, 540

3-category of -, 549
as an ∞-cosmos, 689
cartesian closed -, 47
co-dual, 544
coop-dual, 544
op-dual, 544

2-category of 1-categories
as a homotopy 2-category, 52
duals as ∞-cosmoi, 690

2-cell, 540
conjugates, 551
horizontal composite, 540
invertible -, 46, 544
mates, 550

pasted composite, 542–544
vertical composite, 540
whiskered composite, 541

2-cell conservativity
for arrow ∞-categories, 94
for comma ∞-categories, 104
for pullbacks, 99

2-cell induction
for arrow ∞-categories, 94
for comma ∞-categories, 104
for pullbacks, 98

2-functor, 406, 547
2-natural transformation, 547
2-of-3 property, 29, 568
2-of-6 property, 33
2-product, 47
2-terminal object, 47
3-category, 549

of 2-categories, 549

absolute lifting
pointwise, 477

absolute lifting diagram, 70, 347
equationally witnessed, 558
exact transformation, 563
model invariance, 397
representably defined -, 564

745
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accessible ∞-cosmos, 690
additive category, 171
adjoint equivalence, 62

half -, 20, 656, 661, 675
adjoint functor theorem, 137
adjunction, 361, 549

as fibered equivalence, 134–136
as fiberwise equivalence, 483
between ∞-categories, 55–64
between quasi-categories

as a correspondence, 730
change-of-base -, 534
enriched -, 517, 520
fibered -, 125
left adjoint left inverse -, 115,

554
left adjoint right inverse -, 115,

554
minimal - data, 60
model invariance, 397
of weak factorization systems,

584
preserves limits and colimits, 79,

84
Quillen -, 593
representably defined -, 561
right adjoint left inverse -, 115,

554
right adjoint right inverse -, 115,

554
two-variable -, 503

Leibniz -, 589
admissible simplex, 625
anodyne extension, 635

left, right, or inner -, 635
marked -, 628

elementary -, 626
arrow

1-category of -, 87
in an ∞-category, 92

∞-category of -, 92
atomic formula in FOLDS, 439
augmented simplicial set, 632

terminally -, 633
vs unaugmented, 633

Beck–Chevalley
for absolute lifting diagrams,

564
for exact squares, 497
for pushforward, 488

biadjoint, 487
bicategorical Yoneda lemma, 566
biequivalence

of ∞-cosmoi, 41
of 2-categories, 394
pseudofunctorial -, 407
quasi-pseudofunctorial -, 410

bifibration, 208–209
boundary

of a representable functor, 577,
602

Brown factorization, 32

cartesian
on the left, 284
on the right, 282–284

cartesian arrow, 176–189
between quasi-categories, 717
conservativity, 188, 198
induction, 187, 198
lift, 186

cartesian cell, 315
cartesian closed
∞-cosmos, 35
2-category, 47
category of simplicial sets, 13
model category, 595

cartesian cylinder, 722
cartesian fibration, 175, 189–201,

207–208
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as a cocartesian fibration, 381
between quasi-categories, 720
discrete -, 211
∞-cosmos of -, 268
internal characterization, 213

equivalence invariance of -, 190,
201

exponentiable, 487–488
fiberwise equivalence of -, 481
∞-cosmos of -, 265
model invariance, 397

cartesian functor, 201–206
between two-sided fibrations,

289
cartesian lift, 186

generic -, 192
cartesian transformation, see

cartesian arrow
categorical wreath product, 700
category

additive -, 171
as a quasi-category, 8
cartesian closed -, 503
double -, 545
enriched -, 506

free -, 508
isomorphism in an -, 513
underlying category of-, 507

internal -, 545
of arrows, 87
symmetric monoidal -, 506
triangulated -, 172

category of fibrant objects, 568
fibration in a -, 569
right proper, 569
trivial fibration in a -, 569
weak equivalence in a -, 569

cell complex, 583
change-of-base

2-functor, 532

adjunction, 534
change-of-model functor, see

cosmological biequivalence
Cisinski model structure, 704
co-dual, 544
cocartesian arrow, 207
cocartesian cell, 317

weakly -, 331
cocartesian fibration, 175

as a cartesian fibration, 381
between quasi-categories, 720
discrete -, 211
∞-cosmos of -, 268
internal characterization, 213

exponentiable, 487–488
∞-cosmos of -, 265
model invariance, 397

cocone, see cone
cofiber, 160
cofibrant

constants, 616
object in a model category, 591
replacement, 591

cofibration
in a model category, 591

cofinal, see final
colimit, 365

as a left Kan extension, 145
as a representation, 144
as an initial cone, 144
cone, 72
conical -, 522
connected -, 634
enriched, see weighted colimit
functor, 69
having all -, 478
in a cartesian closed ∞-cosmos,

366
in a quasi-category, 713
in an ∞-category, 68–78
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model invariance, 397, 403
weighted -, 525–527

comma ∞-category, 102–109
as flexible weighted limit, 245
cone, 102, 110
model invariance, 386, 397
oplax maps between -, 106
representable -, 109–121
strict maps between -, 103

commutative square, 147
compatible sequence of modules,

313
complete Segal space, 692
∞-cosmos of -, 693
𝑛-fold -, 706
underlying -, 703

complicial
horn extensions, 626
inner - fibration, 656
isofibration, 628
thinness extensions, 626

complicial set, 626
equivalence between -, 630
saturated -, 655, 666, 707
strict -, 628

composite of modules, 322
strong -, 323

cone, 138
vertex, 141

congruence, 10, 19
conical co/limit, 521, 522

as weighted co/limit, 528
conjugate, 551
connected colimit, 634
conservative functor, 88
constant diagram functor, 69
context in FOLDS, 437
contravariant embedding, 339
coop-dual, 544
coproduct

in an ∞-category, 69
correspondence, 726

encodes an adjunction, 726
cosimplicial object, 74

coaugmented -, 74
split coaugmented -, 74
totalization of -, 75

cosmological biequivalence, 41
2-of-6 property, 44
as change-of-model functor,

394–403
in nature, 685
induced biequivalence, 394

cosmological embedding, 255
cosmological functor, 38, 384–388

in nature, 685
restricted -, 385
underlying quasi-category -, 39

cosmological limit, 21, 22, 237
preservation by cosmological

functors, 38
cosmos

a la Bénabou, 505
a la Street, 505

cospan, 77, 146
cotensor, 518

as flexible weighted limit, 244
as weighted limit, 529
in an ∞-category, 146
preservation -, 520
simplicial -, 23
vs exponential, 397

cotensored enriched category,
518–520

counit, 549
as universal arrow, 476
of an adjunction, 55
universal property of -, 136

covariant embedding, 339
create co/limit, 78
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décalage, 632
degeneracy operator, 6
degree

decreasing, 576, 599
increasing, 599
of an arrow, 600
of an object, 599

dependent product, 143
diagram

family of -, 72
fibrant -, 577
in an ∞-category, 68
∞-category, 68

direct sum, 170
discrete
∞-category, 52

discrete ∞-category, 37
∞-cosmos of -, 242
model invariance, 39, 397

discrete co/cartesian fibration, 211
between quasi-categories, 724
internal characterization, 213
model invariance, 397
with contractible fibers, 482

discrete isofibration, 210
discrete fibers, 472

discretization
of a complete Segal space, 695

double category, 545
virtual, 311

dual ∞-cosmos, 36, 38

element, 64
generalized -, 64
initial -, 65–68
terminal -, 65–68

elementary marked anodyne
extension, 626

enriched
adjunction, 517, 520

category, 506
free -, 508
isomorphism in an -, 513

co/completeness, 530
co/limit, see weighted co/limit
equivalence of categories, 517
functor, 509
model category, 595
natural isomorphism, 512
natural transformation, 511

horizontal composition, 512
object of -, 513
vertical composition, 512

representable functor, 515
Yoneda lemma, 514

entire inclusion of marked
simplicial sets, 623

equivalence
2-of-3 property, 29
2-of-6 property, 33
adjoint -, 62

half -, 20, 656, 661, 675
as homotopy equivalence, 29
equivalence between notions of

-, 49
fibered -, 95, 124
in a 2-category, 48, 544
in a complicial set, 654
in a quasi-category, see

isomorphism
in an ∞-cosmos, 22
marked homotopy -, 630
model invariance, 39, 42, 397
of complicial sets, 630
of enriched categories, 517
of quasi-categories, 15
preserves, reflects, and creates

co/limits, 80
representably defined -, 561
retract of -, 29
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equivalence of structures in
FOLDS, 443

essential image, 555
evaluation in FOLDS, 440
exact

functor, 173
square, 162
triangle, 161

exact square
between adjoint functors, 262
for pointwise extensions, 351

exponentiable fibration, 486
exponential, 35

vs cotensor, 397
extension

along an adjoint functor, 363
in a 2-category, 342
of modules, 343
stable under pasting, 357

external vs internal, 39

face operator, 6
family of co/points, 156
fat join, 139, 141, 637

vs join, 638
fiber, 160
fibered adjunction, 125
fibered equivalence, 95, 124

vs fiberwise equivalence, 479
fibered initial or terminal element,

126
fibered isomorphism, 95
fiberwise equivalence

of cartesian fibrations, 481
of modules, 482
vs fibered equivalence, 479

fiberwise surjection in FOLDS,
441

fibrant
constants, 616

diagram, 577
natural transformation, 577
object in a model category, 591
replacement, 591

fibrant object
category of -, 568

fibration
in a category of fibrant objects,

569
in a model category, 591
Kan, left, right, or inner -, 636
two-sided -, 284–291

final functor, 81–82, 84, 368, 370
first-order logic with dependent

sorts, see FOLDS
flat fibration, see exponentiable

fibration
flexible weight, 244

homotopical properties, 246
flexible weighted limit, 244

in ∞-cosmoi, 246
FOLDS, 433

atomic formula, 439
equivalence, 443
evaluation of a context, 440
fiberwise surjection, 441
formula, 439
invariance under equivalence,

444
kind, 434
language for model independent

∞-category theory, 457
relation symbol, 434
satisfaction, 440
sentence, 439
signature, 434

for 2-categories, 435
for categories, 434
for virtual double categories,

447
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for virtual equipments, 449
sort, 437
structure, 435
variable, 437

formula in FOLDS, 439
free category

on a reflexive directed graph, 10
full on positive-dimensional

arrows, 254
fully faithful ∞-functor, 78, 113,

363
pointwise -, 483
reflects co/limits, 83

functor, see ∞-functor
conservative -, 88
enriched -, 509
initial or final -, 81–82, 84
tensor product, 615

functor space, 21
fundamental theorem of

(∞, 1)-category theory, 483

generalized element, 64
generic arrow, 92
geometric realization, 75, 618

half adjoint equivalence, 20, 656,
661, 675

homotopy
coherent, 87
commutative, 87
relation between 1-simplices, 9

homotopy 2-category, 45
homotopy category

of a quasi-category, 10
of a simplicial set, 10
of an ∞-category, 51

homotopy coherent isomorphism,
12, 19, 656

homotopy colimit, 616

homotopy equivalence as
equivalence, 29

homotopy limit, 616
horizontal composition, 540
horn, 6

inclusion, 635
inner -, 7
left, right, or inner -, 635
special outer -, 12, 14

hypercube pullback lemma, 178

(∞, 1)-category
fundamental theorem of - theory,

483
(∞, 1)-core

of an ∞-cosmos, 466
(∞, 1)-category
∞-cosmos of -, 36, 42, 389

∞-category, 22, 45
comma -, 102–109

oplax maps between -, 106
representable -, 109–121
strict maps between -, 103

discrete -, 37, 52
of arrows, 92
of diagrams, 68
of spaces

universal property, 381
pointed -, 156
stable, 165
stable -, 161

∞-cosmos, 21
1-category as an -, 688
2-category as an -, 689
accessible -, 690
cartesian closed -, 35
cosmologically embedded -, 255
dual -, 36, 38
flexible weighted limits, 246
full sub -, 241
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functor of -, 38
homotopy 2-category of -, 45
in nature, 684, 686, 687
(∞, 1)-core of -, 466
of 1-complicial sets, 698
of co/cartesian fibrations, 265
of complete Segal spaces, 693
of discrete ∞-categories, 242
of discrete co/cartesian

fibrations, 268
of (∞, 1)-categories, 36, 42, 389

duality in -, 464
weakly cartesian closed, 396

of ∞-categories with a terminal
element, 257

of ∞-categories with a zero
element, 260

of ∞-categories with an initial
element, 260

of ∞-categories with co/limits,
264

of isofibrations, 238
of Kan complexes, 27
of left adjoint right inverse

adjunctions, 260, 262
of modules, 301
of 𝑛-complicial sets, 707
of 𝑛-quasi-categories, 701
of quasi-categories, 24
of Rezk objects, 704
of right adjoint right inverse

adjunctions, 260, 262
of Segal categories, 696
of stable ∞-categories, 268
of 𝚯𝑛-spaces, 702
of trivial fibrations, 241
of two-sided fibrations, 291–292
of two-sided isofibrations, 292
replete subcategory of -, 254
right proper, 100

simplicial model category as -,
690

sliced -, 33
∞-cosmos of (∞, 1)-categories,

36, 42, 389
duality in -, 464
weakly cartesian closed, 396

∞-functor, 22, 45
left representation, 109
right representation, 109

∞-groupoid
core, 465, 467, 468

∞-natural isomorphism, 46
∞-natural transformation, 45, 46
initial element, 65–68, 153

as a colimit, 73
as limit, 367
fibered -, 126
in a quasi-category, 709

initial functor, 81–82, 84, 368, 370
injective model structure, 594
inner complicial fibration, 656
internal category, 545
internal vs external, 39
inverse category, 576

simple -, 433
inverse limit, 568

as an iso-tower, 252
iso-comma, 248

as a flexible weighted limit, 249
as a weak pullback, 250
cone, 249

iso-tower, 251
as a flexible weighted limit, 251
as a weak inverse limit, 252

isofibration
between quasi-categories, 13

as a complicial isofibration,
667

complicial -, 628
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discrete -, 210
in a 2-category, 50
in an ∞-cosmos, 21
∞-cosmos of -, 238
of categories, 25
preservation by cosmological

functors, 38
stability, 22
two-sided -, 280

isomorphism
homotopy coherent -, 12, 19,

656
in a quasi-category, 11, 653–667
in an enriched category, 513
in an exponentiated

quasi-category, 665
join, 140, 141, 632, 633

antisymmetry, 641
as a dependent product, 143
fat -, 139, 141, 637
of marked simplicial sets, 641
vs fat join, 638

Joyal model structure, 17
Kan complex, 7, 17, 663
∞-cosmos of -, 27
maximal sub - in a

quasi-category, 12, 41
weak, see quasi-category

Kan extension, see extension
as adjoint to restriction, 495
existence, 493
pointwise -, 357–361

Kan fibration, 27
Ken Brown’s lemma, 572
kind in FOLDS, 434
latching

map, 604
object, 604
relative - map, 604

lax slice 2-category, 224
left adjoint, 56

preserves colimits, 79, 84
preserves weighted colimits, 375

left adjoint right inverse adjunction
between quasi-categories, 714
∞-cosmos of -, 262

left comma cone, 110
left extension

in a 2-category, 342
of modules

as right hom, 489, 492
nonexistence of -, 344

stable under pasting, 357
left fibration, 724
left hom between modules, 489,

492
left lifting

in a 2-category, 343
of modules

nonexistence of -, 344
left lifting property, 582
left Quillen functor, 592
Leibniz

bifunctor, 588
construction, 585
cotensor, 585
exponential, 14
product, 585
property, 588
tensor, 585
two-variable adjunction, 589
why -, 643

lifting
in a 2-category, 343
of modules, 343

lifting diagram
absolute -, 70

lifting problem, 582
lifting property, 582
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transpose, 584
limit, 365

as a right Kan extension, 145
as representation, 144
as terminal cone, 144
cone, 72
conical -, 522
enriched -, see weighted limit
functor, 69
having all -, 478
in a cartesian closed ∞-cosmos,

366
in a quasi-category, 713
in an ∞-category, 68–78
model invariance, 397, 403
simplicially enriched -, 23
weighted -, 525–527

loops functor, 157
loops-suspension adjunction, 157,

164

mapping space, 682
in an ∞-category, 106
is discrete, 107

marked anodyne extension, 628
marked homotopy, 630

equivalence, 630
marked simplex, 622

category, 623
marked simplicial set

entire inclusion of -, 623
𝑛-trivial -, 629
regular inclusion of -, 623

marking
maximal -, 622
minimal -, 622

matching
map, 577, 604
object, 577, 604
relative - map, 604

mates, 550
calculus of -, 551

maximal marking, 622
middle-four interchange, 541
minimal marking, 622
model category, 591

cartesian closed -, 595
enriched -, 595

model independence
formal language, 457

model structure, 591
Cisinski -, 704
injective -, 594
Joyal -, 17
projective -, 594
Reedy -, 614
Verity -, 630

modification, 548
module, 299
𝑛-ary map of -, 313
calculus of -, 305–307, 315, 317,

319, 489
compatible sequence of -, 313
composition, 321–331
contravariantly represented, 303
covariantly represented, 303
fibered map of -, 308
fiberwise equivalence, 482
∞-cosmos of -, 301
left and right homs, 489, 492
map of -, 309
model invariance, 397
representable -, 331–340, 476

model invariance, 397
restriction of -, 316
strong composite of -, 323
unit -, 317
virtual double category of -, 313
virtual equipment of -, 319
Yoneda lemma for -, 303
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module map, 309
𝑛-ary, 313

𝑛-complicial set, 666, 706
∞-cosmos of -, 707

𝑛-core, 629
𝑛-coskeleton, 604, 607
𝑛-fold complete Segal space, 706
𝑛-quasi-category, 700
∞-cosmos of -, 701

𝑛-skeleton, 602, 604, 607
𝑛-trivial, 629
𝑛-arrow, 22
natural isomorphism, see

∞-natural isomorphism46
enriched -, 512
pointwise -, 471

natural marking, 655
natural transformation, see

∞-natural transformation
enriched -, 511

horizontal composition, 512
object of -, 513
vertical composition, 512

fibrant -, 577
pseudo-, 406
quasi-pseudo -, 411

nerve
general - construction, 18
of a 1-category, 7

nullhomotopy, 161

odd dual, 629
𝜔-category

strict -, 628
op-dual, 544
opposite
∞-category, 463
quasi-category, 461
simplicial set, 461

ordinal sum, 631

𝑝-cartesian arrow, see cartesian
arrow

𝑝-cocartesian arrow, see
cocartesian arrow

pasting diagram, 542–544
path object, 38, 568
pointed ∞-category, 156
pointwise extension, 357–361
pointwise isomorphism, 471
pointwise left extension

as weighted colimit, 372
colimit formula, 366

pointwise right extension
as weighted limit, 372
limit formula, 366

preserve co/limit, 78
product

2-, 47
as flexible weighted limit, 245
in an ∞-category, 69

projective cell, 244
complex, 244

projective model structure, 594
pseudo-comma

2-category, 444
pseudofunctor, 404

quasi-categorically enriched -,
408

pseudonatural equivalence, 407,
420

pseudonatural transformation, 406
quasi-categorically enriched -,

411
pullback, 147

as an absolute lifting diagram,
149

as an iso-comma, 250
equivalence invariance, 100
non-flexible, 245
square, 147
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weak -, see weakly cartesian
weak universal property, 98

pushout, 147
square, 147

quasi-categorical collage, 727
quasi-categorically enriched

pseudofunctor, see
quasi-pseudofunctor

quasi-category, 7
∞-cosmos of -, 24
as a 1-complicial set, 663
equivalence of -, 15
Kan complex core, 12, 41
model structure for -, 17
𝑛-, 700
naturally marked -, 11, 655

quasi-pseudofunctor, 408
biequivalence, 410

quasi-pseudonatural
equivalence, 414
transformation, 411

Quillen
adjunction, 593
bifunctor, 595
equivalence, 593
functor, 592
two-variable adjunction, 595

Reedy
factorization, 600
model structure, 614
weak factorization system, 610

Reedy category, 599
as a cell complex, 603

Reedy category theory
all in the weights, 604

Reedy structure, 599
reflect co/limit, 78
regular inclusion of marked

simplicial sets, 623

relation symbol in FOLDS, 434
relative latching map, 604
relative matching map, 577, 604
replete, 254
representable functor

boundary of -, 602
enriched -, 515

representable module, 331–340,
476

restriction
of modules, 316

retract, 570
retract argument, 590
Rezk

isofibration, 704
object, 703
∞-cosmos of -, 704

weak equivalence, 704
right adjoint, 56

preserves limits, 79, 84
preserves weighted limits, 375

right adjoint right inverse
adjunction, 115

between quasi-categories, 714
∞-cosmos of -, 262

right comma cone, 110
right extension

in a 2-category, 342
of modules, 343

as left hom, 489, 492
stable under pasting, 357

right fibration, 724
right hom between modules, 489,

492
right lifting

in a 2-category, 343
of modules, 343

right lifting property, 582
right proper, 100, 569
right Quillen functor, 592
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satisfaction in FOLDS, 440
saturated complicial set, 655, 666,

707
Segal

category, 695
∞-cosmos of -, 696

𝑛-category, 708
object, 703
precategory, 695
space, 692

complete -, 692
Segal category, 546
sentence in FOLDS, 439
shuffle, 645
simplex

admissible - , 625
standard -, 6

simplex category, 6
marked -, 623

simplicial category, 22
simplicial cotensor, 23
simplicial model category

as ∞-cosmos, 690
simplicial object, 74

augmented -, 74
geometric realization of -, 75
in 𝒞𝑎𝑡, 23
split augmented -, 74

simplicial set, 6
augmented -, 632

terminally -, 633
exponential, 13
marked -, 622
underlying reflexive directed

graph of -, 9
vs augmented, 633

simplicial sphere, 6
simplicially enriched category, see

simplicial category
simplicially enriched limit, 23

slice, 140, 634
vs cones, 680
vs hom, 682

sliced ∞-cosmos, 33
smothering

2-functor, 122
lifts adjunctions, 125
lifts equivalences, 124

functor, 88–91
sort in FOLDS, 437
span, 77, 146
spine of a simplex, 8
split fiber homotopy equivalence,

672
square, 147

exact -, 162
stable ∞-category, 161, 165
∞-cosmos of -, 268
model invariance, 397

strict
𝜔-category, 628
complicial set, 628

strong composite of modules, 323
structure in FOLDS, 435
suspension functor, 157
symmetric monoidal category, 506

tensor, 518
as weighted colimit, 529
in an ∞-category, 146
preservation -, 520

tensored enriched category,
518–520

terminal element, 65–68, 153
as a limit, 73
as colimit, 367
fibered -, 126
in a quasi-category, 709

terminal object
2-, 47
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𝚯𝑛-space, 702
∞-cosmos of -, 702

thin simplex, see marked simplex
topological space as a

quasi-category, 7
totalization, 75, 618
tower, 568
triangle, 161

exact -, 161
triangulated category, 172
trivial fibration

between quasi-categories, 16
in a category of fibrant objects,

569
in an ∞-cosmos, 22
∞-cosmos of -, 241
of quasi-categories, 672
preservation by cosmological

functors, 39
split fiber homotopy

equivalence, 31
stability, 28

two-sided fibration, 284–291
cartesian functor, 289
∞-cosmos of -, 291–292
model invariance, 397
represented, 296
Yoneda lemma, 296, 299

two-sided isofibration, 280
fibered map of -, 308
∞-cosmos of -, 292
map of -, 309

two-variable adjunction, 503
Leibniz -, 589
Quillen -, 595

underlying
category, 507
quasi-category, 39
set, 504

space, 223
unit, 549

as universal arrow, 476
of an adjunction, 55
universal property of -, 136

unit module, 317

𝒱-, see enriched -
variable in FOLDS, 437

compatible family, 437
depends on, 437

Verity model structure, 630
vertical composition, 540
virtual double category, 311

FOLDS signature, 447
of modules, 313

virtual equipment, 319
FOLDS signature, 449
homs, 492
of modules, 319

weak equivalence
in a category of fibrant objects,

569
in a model category, 591

weak factorization system, 583
adjunction of -, 584

weakly cartesian, 99
weakly cocartesian cell, 331
weighted

co/limit, 525, 526
limit and colimit, 527

weighted colimit
as a Quillen bifunctor, 596
as left extension, 374
by a module, 372
model invariance, 403

weighted limit
as a Quillen bifunctor, 596
as right extension, 374
by a module, 372
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model invariance, 403
whiskering, 541
Yoneda lemma, 224

bicategorical -, 566
dependent -, 223
discrete -, 223

enriched -, 514
for modules, 303
generalized -, 232
two-sided -, 296

one-sided form of -, 299
zero element, 156




